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Abstract 14 

The purpose of this study was to prepare cubosomes encapsulating the model antigen ovalbumin (OVA) via 15 

spray drying, and to characterise such cubosomes with a view for their potential application in oral vaccine 16 

delivery. Furthermore the cubosome formulation was loaded into polymeric microcontainers intended as 17 

an oral drug delivery system. The cubosomes consisted of commercial glyceryl monooleate, Dimodan®, 18 

containing OVA and were surrounded with a dextran shell prepared by spray drying. Cryo-TEM was used to 19 

confirm that cubosomes were formed after hydration of the spray dried precursor powder. The precursor 20 

powder had a mean particle size of 1.3±0.1 µm, whereas the mean diameter of the dispersed cubosomes 21 

was 282±7 nm (PDI: 0.18) measured by dynamic light scattering. 8.5±0.3 % (w/w) of OVA was present in the 22 

cubosome powder and OVA was found released slowly over the first 70 h, followed by a more rapid 23 

release. Total release of 47.9±2.8 % of loaded OVA occurred over 96 h in a buffer at pH 6.8.  When the 24 

powder was filled into microcontainers, and the opening covered with the pH sensitive polymer Eudragit 25 

S100, the pH sensitive ‘lid’ was intact at gastric pH, but release of OVA from the cubosomes and 26 

microcontainers occurred at pH 6.8, releasing 44.1±5.6 % of the OVA in 96 h. Small-angle X-ray scattering 27 

(SAXS) revealed that the ‘dry’ particles possessed an internal ordered lipid structure (lamellar and inverse 28 

micellar phase) by virtue of a small amount of residual water, and after hydration in buffer at pH 6.8, the 29 

particles formed the hexagonal inverse cubic phases, thereby indicating that cubosomes were formed 30 

when released from microcontainers.   31 
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Introduction 32 

Vaccination is often regarded as the most significant contribution to public health and disease prevention 33 

and moreover, it is a very cost-effective medical intervention [1,2]. Vaccination has reduced the morbidity 34 

and mortality resulting from diseases such as tuberculosis and smallpox and has thereby saved millions of 35 

lives. In spite of this, many infectious diseases remain endemic in large parts of the world, and therefore 36 

vaccination is an area in continuous development [1,2]. 37 

 38 

Most vaccines are administered by injection and there are only a few oral vaccines on the market such as 39 

rotavirus vaccine (as solution or suspension) and a capsule with vaccine formulation against typhoid fever 40 

[3]. Although, the oral route can be beneficial for vaccine administration [4,5].   Some of the advantages of 41 

oral vaccines are the ease of administration and an increased safety compared to injections. In addition, 42 

there is also a great potential for mass vaccination without the requirements of trained personnel [4,6]. 43 

Furthermore, oral vaccines have the ability to induce both mucosal and systemic immune responses [6,7], 44 

as shown in the 1990s with several HIV vaccines [8], and they are therefore considered ideal for combating 45 

infectious diseases. Although, oral vaccines have several attractive features, there are some major 46 

challenges.  47 

The target of vaccine formulations in the gastro-intestinal (GI) tract is the M-cells in the intestine [9]. The 48 

antigen might be damaged, when passing through the harsh environment of the GI tract, which in turn will 49 

lead to the need for large doses. In addition, there is a poor transport of the antigen across the intestinal 50 

epithelium [4]. 51 

 52 

Traditional vaccines are mainly composed of heat-inactivated bacteria or viruses resulting in high 53 

immunogenicity. The risk with these types of vaccines is that they, in the body, can change to the active 54 

state and thereby infect the patients with the bacteria or virus and thus, leading to unwanted side effects 55 

[1,10]. Consequently, new generation vaccines are developed with subunit antigens. These subunit 56 

antigens are highly purified components of pathogens and thereby chemically well-defined. Hence, there is 57 

a much higher safety than for traditional antigens, but as the subunit antigens lack most of the features of 58 

the original pathogen they tend to be poorly immunogenic [1,10]. Therefore, to succeed with oral vaccine 59 

delivery, delivery systems need to be developed, in which the antigen can be encapsulated into particles 60 

[11,12]. These particles will assure presentation of the antigen to the antigen-presenting cells, but can also 61 

stabilise and release the antigen over an extended period of time [10]. Some particles will provide an 62 

adjuvant effect in themselves, but potent adjuvants can in addition also be added to the particulates for 63 

inducing an effective immunity [13].  64 

 65 

There are many possibilities for vaccine delivery systems, and some of the most common ones are: 66 

polymeric micro- and nanoparticles, immunostimulatory complexes and liposomes [14,15]. Cubosomes 67 

have also shown to be an efficient delivery system for vaccines [11]. Cubosomes contain a highly twisted, 68 

continuous lipid bilayer with two congruent, non-intersecting water channels, giving the particles both 69 

hydrophobic and hydrophilic domains [11]. This offers great flexibility with respect to the types of 70 

compounds, that can be incorporated into the particles [16,17]. Rizwan et al. found that significantly higher 71 

amounts of antigen can be encapsulated in cubosomes compared to liposomes due to the larger surface 72 

area of cubosomes, and moreover in cubosomes, the antigen was also retained more efficiently compared 73 

to liposomes [11].  74 



4 
 

Traditionally, cubosomes are produced by mixing monoolein or phytantriol and water and thereby creating 75 

a high-energy dispersion followed by colloidal stabilisation using polymeric stabilisers [11,18,19]. However, 76 

it can be desirable to have the vaccine particles in a powder form (here termed “precursors”), and 77 

precursors of cubosomes have earlier been produced by either freeze drying [20] or spray drying [21–23]. 78 

In the spray drying process, dry powder precursors have the active ingredient incorporated, and upon 79 

hydration colloidally stable cubosomes are spontaneously formed. The powder form of the vaccine 80 

formulation can be advantageous in terms of stability of the antigen. Also, there is no need for a cold-chain 81 

storage which is needed for traditional vaccines [4].  82 

 83 

After oral administration of the vaccine formulations, the antigen needs to be protected in the stomach and 84 

during transportation to the small intestine. In the small intestine, the vaccine particles should be delivered 85 

to the microfold (M) cells of the peyer’s patches as they will present the antigen to the underlying immune 86 

cells and thereby obtain an immune response [24]. The particles, carrying the antigen (and adjuvant), can 87 

give some protection of the antigen through the GI environment, but often the particles will also degrade 88 

on the way to the intestine, and therefore more advanced drug delivery systems can be necessary. An 89 

example of these advanced drug delivery systems is microcontainers. Microcontainers are polymeric, 90 

cylindrical devices in the micrometre size range (Fig. 1) [25–27]. They have the potential for targeted 91 

and/or sustained delivery in the GI tract [28]. Some of the advantages of the microcontainers are that size 92 

and shape can be controlled very precisely. Furthermore, the devices allow for unidirectional release, as 93 

only one side of the microcontainer is open, compared to more conventional microparticles where release 94 

can occur from the whole surface area. This has shown to increase the drug concentration at the 95 

microdevice-cell interface and thereby, allowing for increased permeation of the drug in vitro leading to 96 

enlarged oral bioavailability of the drug [27,29,30]. In addition, the antigen can be protected inside the 97 

cavity of the microcontainer from the harsh environment of the stomach until release is desirable [31,32]. 98 

The microcontainers have previously shown to interact with the intestinal mucus resulting in prolonged 99 

drug absorption [27]. It is reported in the literature that one way to improve oral vaccine delivery is to 100 

extend the intestinal residence time [13], hence, the microcontainers can be a promising platform for this 101 

purpose. In this paper, SU-8 (an epoxy photoresist) was used as a model polymer for fabrication of the 102 

microcontainers [25,26,31], but microcontainers have also been fabricated using biopolymers such as poly-103 

L-lactic acid (PLLA) [33,34].  104 

 105 

The aim of this study was, as a proof-of-concept, to prepare and characterise cubosomes loaded with 106 

ovalbumin (OVA) in a spray dried powder form for future application in oral vaccine delivery. The precursor 107 

powder was filled into microcontainers for protection and release control, and the in vitro release was 108 

studied together with small-angle X-ray scattering (SAXS) to confirm whether cubosomes were released 109 

from the microcontainers as internally structured particles. 110 

 111 

 112 
Fig. 1: SEM image of an SU-8 microcontainer with an inner diameter of 223 µm [26].  113 
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 114 

Materials and methods 115 

Materials 116 

OVA was purchased from TCI Europe (Zwijndrecht, Belgium). Dimodan® D90 was kindly donated by Danisco 117 

(Grindsted, Denmark). Dextran (from Leuconostoc Mesenteroides) and potassium dihydrogen phosphate 118 

were acquired from Sigma-Aldrich (St. Louis, MO, USA). Pierce BCA Protein Assay kit was purchased from 119 

Thermo Fisher Scientific (Rockford, IL, USA). Deionised water was obtained from an SG Ultra Clear water 120 

system (SG Water USA, LLC, Nashua, NH, USA) and was freshly produced in all cases. All other chemicals 121 

used were of analytical grade.  122 

 123 

Spray drying of precursors for cubosomes containing OVA 124 

Cubosomes were prepared using a commercial source of glyceryl monooleate (GMO), Dimodan® MO 90/D. 125 

The cubosomes were loaded with OVA as a model antigen, and the particles were surrounded by a dextran 126 

shell. The particles were prepared by first dissolving GMO in ethanol (1.78 w/v %), and then mixing with a 127 

solution of OVA in MilliQ water (0.075 final w/w % of OVA). After 1 h of mixing, dextran dissolved in MilliQ 128 

water (1.77 w/v %) was added to the GMO/OVA solution (0.72 w/w % of GMO + OVA), and the final 129 

solution was spray dried using a B 290 Büchi mini spray dryer (Büchi Labortechnik AG, Flawil, Switzerland). 130 

Free OVA was not removed prior to the spray drying process. 131 

For the spray drying of the precursors, a 0.7-mm nozzle was used and air was utilised as the drying medium. 132 

Spray drying was performed at an inlet temperature of 200 °C resulting in an outlet temperature of 133 

approximately 85 °C. The drying flow rate was set to 32 m3/h and an aspirator capacity of 80 % with a feed 134 

rate of 4 mL/min was used. Particles without OVA were also produced as blank particles and used as 135 

reference.  136 

 137 

Cryo-TEM of cubosomes 138 

The precursors for the cubosomes with OVA were dispersed in MilliQ water at a concentration of 1 mg/mL. 139 

The samples for the Cryo-TEM studies were prepared in a controlled environment vitrification system 140 

(CEVS). A small amount of the sample (5 μL) was put on a carbon film supported by a copper grid and 141 

blotted with filter paper to obtain a thin liquid film on the grid. The grid was quenched in liquid ethane at 142 

−180 °C and transferred to liquid nitrogen (−196 °C). The samples were then examined using a Tecnai G2 143 

F30 Transmission Electron Microscope (FEI, Eindhoven, The Netherlands) operating at a voltage of 300 kV 144 

and a working temperature of −180 °C. Images were recorded using Gatan UltraScan 1000 (2k × 2k) CCD 145 

camera (Gatan, California, USA).  146 

 147 

Size of particles  148 

The size of the dry particles with the dextran shell was measured using aerosizer particle size analyser 149 

(Model 3321, TSI Incorporated, MN, USA) by setting the pump to 1.37 bar and with a capillary flow of 8 150 

L/min. A small amount of powder was distributed on the plate and the particle size was measured in six 151 

replicates.  152 

 153 

For the particles dispersed in water, the particle size distribution (Z-average), polydispersity (PDI) and zeta 154 

potential were determined using dynamic light scattering (Malvern Zetasizer, NanoZs ZEN 3600, Malvern, 155 

UK). Measurements were performed at 37°C, and the results presented are the mean of three successive 156 
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measurements of 100 s of at least three independent samples. Samples were diluted with water to adjust 157 

the signal level.  158 

 159 

OVA present in the cubosomes  160 

Precursor powder (10 mg) was added to a solution of 20 mM phosphate buffer, pH 6.8 containing 5 % 161 

Triton X-100. After vortex mixing, the cubosomes were dissolved and a sample of 200 µL was taken out. A 162 

BCA Protein Assay kit was used to determine how much OVA was present in the cubosome powder by 163 

following the procedures for the standards and samples recommended by the manufacturer. The same 164 

process was performed with the blank cubosomes to check for any cross activity of the formulation.  The 165 

absorbance was measured at 562 nm on a plate reader, and the obtained absorbance values were analysed 166 

against the standard curves prepared on the same day as the samples. OVA entrapment was then 167 

determined by calculating the difference between the total OVA added before the spray drying process and 168 

the free fraction of OVA in the solution. The experiments were performed in triplicates.  169 

 170 

Fabrication of SU-8 microcontainers 171 

Production of the microcontainers involved two steps of photolithography with the negative epoxy-based 172 

photoresist, SU-8 [26,32]. The microcontainers were structured on a fluorocarbon coating deposited on top 173 

of the supporting silicon wafer by plasma polymerisation. This enabled dry removal of the fabricated SU-8 174 

devices from the support substrate in order to obtain individual microcontainers if needed [27,35]. The 175 

fabricated microcontainers had an inner diameter of 223±3 µm and a height of 270±3 µm (mean±SD, n=6). 176 

Silicon wafers supporting the microcontainers were finally cut into squares of 12.8 x 12.8 mm2 using an 177 

Automatic Dicing Saw from DISCO (Kirchheim b. München, Germany). Each chip contained arrays of 25 x 25 178 

containers with a pitch of 450 µm.  179 

 180 

Filling of microcontainers with powder precursors 181 

Powder precursors were manually distributed on the microcontainer chip. The excess drug in between the 182 

microcontainers was then removed with pressurised air, resulting in powder-filled microcontainers [27]. 183 

The chip with microcontainers was weighed before and after filling to determine the amount of drug filled 184 

into the microcontainers.  185 

 186 

Spray coating of the filled microcontainers with Eudragit S100 187 

A spray coating system (ExactaCoat, Sono Tek, USA) equipped with an ultrasonic nozzle actuated at 120 kHz 188 

[36] was used to deposit Eudragit S100 (dissolved to a 2 % (w/w) solution in isopropyl alcohol) on the cavity 189 

of the drug-filled microcontainers in a set-up similar to previously described [33]. The generator power was 190 

set to 1.5 W, and the polymer solution was pumped through the nozzle at a flow rate of 100 µL/min. 191 

Nitrogen gas at a pressure of 10 mbar was used to direct the beam of droplets onto the microcontainers, 192 

and the distance between nozzle and substrate was 40 mm with the beam diameter on the substrate being 193 

approximately 4 mm. The lateral movements of the nozzle were controlled by an x-y stage and the nozzle 194 

path was defined in the equipment software. The nozzle was moved line-by-line at a speed of 25 mm/s, and 195 

the coating was repeated 60 times to obtain a coating thickness in the µm range.  196 

 197 

Release of OVA from the cubosomes 198 
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In vitro release of OVA from the cubosomes unconfined (bulk powder) and confined in microcontainers 199 

coated with Eudragit S100 was investigated on a µDISS profiler (pION INC, Woburn, MA). In both release 200 

studies, each channel was calibrated with its own OVA standard curve prior to the experiments. For the 201 

calibration curves, aliquots of OVA in water stock solution were repeatedly added to 10 mL of either a HCl 202 

solution or a phosphate buffer in order to achieve a range of defined standard concentrations, and the UV 203 

spectrum of each standard was recorded. The release experiments were performed at 37±0.5°C using a 204 

stirring rate of 200±5 rpm using 20 mm path length in situ UV probes on a µDISS profiler. The absorbance 205 

data was evaluated using 280 nm on the standard curve and utilising the 2nd derivative function in the Au 206 

Pro software affiliated with the µDISS profiler.  207 

 208 

The release of OVA from the precursor powder was studied in 20 mM phosphate buffer, pH 6.8 for 96 h. 209 

The in situ UV probes were situated in each sample vial containing 10 mg of powder and 10 mL of 210 

phosphate buffer was added. The probes scanned and detected the absorbance of released OVA. 211 

The release studies from the microcontainers were performed in a set-up similar to one previously 212 

described [25,27,33]. The chips with microcontainers were attached to cylindrical magnetic stirring bars 213 

(using carbon pads) and placed in the bottom of sample vials. The chips were covered with 10 mL of 0.1 M 214 

HCl pH 1.6 for 2 h and subsequently, the medium was changed to 10 mL of 20 mM phosphate buffer, pH 215 

6.8 for 96 h, and the in situ UV probes detected the absorbance.  216 

Both sets of experiments were performed in 3 replicates. 217 

 218 

Scanning electron microscopy of the microcontainers 219 

SEM was utilised to examine the microcontainers after filling, after spray coating of the lid of Eudragit S-220 

100, and after release in phosphate buffer at pH 6.8. The examinations were carried out using a Phenom 221 

Pro scanning electron microscope (Phenom World, Eindhoven, the Netherlands). Prior to the investigations, 222 

the microcontainer chip was mounted onto metal stubs, and imaging was performed at an operation 223 

voltage of 10kV with a 600x magnification.   224 

 225 

SAXS determination of the structure of cubosomes loaded into microcontainers 226 

The SAXS/WAXS beamline at the Australian Synchrotron, Clayton, Australia [37] was used to determine the 227 

internal structure of the spray dried particles, when the cubosomes were confined in microcontainers and 228 

released from the devices. The X-ray beam had an energy of 11 keV, and the 2D SAXS patterns were 229 

collected using a Pilatus 1M camera (active area 169 x 179 mm2 with a pixel size of 172 x 172 m), which 230 

was located 900 mm from the sample position. The total q range for the instrument configuration outlined 231 

above was 0.02 ˂ q ˂ 1.06 Å−1, and 2D SAXS patterns were collected for 1 sec. The in-house designed 232 

computer software ‘ScatterBrain’ was used to acquire and reduce these 2D patterns to 1D intensity versus 233 

q profiles. The powder-filled microcontainers were separated from the base using a scalpel, and filled into a 234 

1.5 mL capillary and SAXS patterns were acquired in dry state followed by addition of 50 µL of MilliQ water, 235 

where after patterns were acquired for a time period of 80 min. The set-up with empty microcontainers as 236 

an example can be seen in Fig. 2A, with an image of the microcontainers in a capillary in the X-ray beam 237 

shown in Fig. 2B.  238 

 239 



8 
 

       240 
Fig. 2: A) Schematic of the SU-8 microcontainers filled into a capillary to be used in the SAXS/WAXS 241 

synchrotron. B)  Micrograph showing the set-up with the microcontainers in the x-ray beam.  242 

 243 

Statistics  244 

The data are expressed as mean ± standard deviation (SD). Where appropriate, statistical analysis was 245 

carried out using Student t-tests using GraphPad Prism version 7.00 (GraphPad Software Inc., CA, USA). P-246 

values below 5 % (p < 0.05) were considered statistically significant. 247 

 248 

Results and discussion 249 

For the production of the powder precursors of cubosomes, spray drying was chosen as this is a simple 250 

technique converting a solution to powder in a one-step process [38]. GMO has for many years been one of 251 

the lipids of choice for producing cubosomes, as it is non-toxic, biocompatible and biodegradable [39], and 252 

therefore it was decided to produce GMO particles in this study. The spray drying technique is convenient 253 

for producing the powder precursors, but GMO can be challenging to spray dry as it immediately forms the 254 

cubic phase upon hydration. Spicer et al. studied the effect of applying ethanol as a hydrotrope and this 255 

resulted in the formation of a low-viscous emulsion that was easily spray dried [21]. For this reason, in this 256 

study, GMO was first dissolved in ethanol and then added to the aqueous dextran solution. It has been 257 

reported that GMO itself produces sticky agglomerates after spray drying, and to obtain a more flowable 258 

powder an aqueous starch or a dextran solution can be added prior to spray drying resulting in the GMO 259 

being encapsulated in a dry starch or dextran shell [21–23]. In this work, it was chosen to add dextran as 260 

the anti-cohesion agent, and the produced powder was flowable and easy to hydrate. After production of 261 

the GMO powder precursors, the powder was hydrated and cryo-TEM was performed to identify whether 262 

cubosomes were obtained. It can be observed in Fig. 3 that cubic structures were found after hydration of 263 

the powder.  264 

 265 

A)
B)
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 266 
Fig. 3: Cryo-TEM image of a representative hydrated particle with a distinct cubic liquid crystalline 267 

structure.  The resolution in cryo-TEM images is limited by the presence of dissolved dextran. 268 

 269 

In vitro characterisation of the particulates 270 

The size, shape and surface charge of a particulate vaccine carrier will influence its performance as a 271 

vaccine [40]. The dry powder with OVA and the dextran shell had a size of 1.3±0.1 µm, whereas the dry 272 

blank particles without OVA had a size of 1.6±0.1 µm. After hydration, self-assembled, close to neutrally 273 

charged nanoparticles were formed, with mean size of 146.1±1.3 nm and 281.7±7.4 nm for the blank and 274 

OVA-loaded particles, respectively (Table 1). There was a significant size difference between the blank and 275 

OVA-loaded particles (p-value ˂0.0001), and the PDI for both formulations was low, indicating 276 

homogeneous formulations. The particles were much smaller than those reported by Spicer et al., where 277 

the dry particles had a diameter of 24 μm, and in the hydrated form the cubosomes were in average 0.6 μm 278 

with a size distribution from 0.1 to 5 μm [22]. In general, it is reported that the particle size should be 279 

between 20 nm to 10 µm to be well recognised by the immune system [11], but more specifically for oral 280 

vaccine formulations, a size between 200-500 nm can be advantageous for uptake into the antigen-281 

presenting cells after oral administration [40,41]. In relation to this, it can be observed that the size of the 282 

cubosomes with OVA is in this size range, and the cubosomes should therefore be able to be taken up by 283 

the antigen-presenting cells.  284 

 285 

Table 1: Size measurements of the hydrated cubosomes with and without OVA dispersed in MilliQ water. 286 

The measurements were performed using dynamic light scattering in triplicates, and data are represented 287 

as mean±SD  288 

 Z-average (nm) PDI Zeta potential (mV) 

Blank particles 146.1 ± 1.3 0.15±0.02 -0.43±0.077 

Particles with OVA 281.7 ± 7.4 0.18±0.11 -0.18±0.042 

 289 

Presence and release of OVA in and from the particles  290 

Before the release measurements, it was initially determined that 8.5±0.3 % (w/w) OVA was present in the 291 

cubosome powder. It is also well-known that cubosomes often provide a sustained release of a drug [39], 292 

and this is also observed in this study, where release studies in buffer at pH 6.8 showed that during the first 293 

100 nm



10 
 

70 h, OVA was slowly released, followed by a more rapid release from 70-80 h. A total release of 47.9±2.8 % 294 

was observed in relation to the total loading of OVA in the cubosomes over a 96 h period (Fig. 4). It can be 295 

seen that there is a significant burst release of OVA from the cubosomes (insert in Fig. 4) of 18.2±1.6 % in 296 

the first 10 min. This is probably caused by the release of OVA from the powder just when the powder 297 

precursors are dispersed in the aqueous solution, and thereafter the OVA entrapped in the channels of the 298 

cubosomes is released. In the literature, it is reported that OVA was released during 168 h from cubosomes 299 

resulting in a complete release [18]. A study preparing precursors of cubosomes by spray drying, but 300 

encapsulating the highly lipophilic drug, efavirenz, also is reporting on a burst release of the drug of up to 301 

16 %, with a total release in 12 h of up to 56 %, again indicating that when dispersing powder precursors in 302 

aqueous solution a burst release is occurring [23]. A sustained release of OVA is also observed in this study 303 

and this could be beneficial when developing vaccine formulations [42].  304 

 305 

 306 
Fig. 4: Release of OVA from the cubosomes in 20 mM phosphate buffer pH 6.8, expressed as % of the total 307 

content of OVA. The insert is showing the release over the first 60 min. The release study was performed in 308 

triplicates, and the data represent mean±SD. 309 

 310 

Internal structure of particles formed upon hydration from microcontainers 311 

SAXS/WAXS can be used to detect phase transformations in self-assembled lipid systems, and this was 312 

utilised to identify whether particles released from the microcontainers contained internal nanostructures 313 

consistent with cubosomes. Fig. 5 shows the plot of intensity versus the scattering vector q obtained from 314 

the release of GMO particles in dry form and when the microcontainers containing the particles were 315 

dispersed in water for a period of 80 min. For the dry particles, it can be observed that there are three 316 

equally spaced peaks in the diffractogram (Fig. 5), indicating that the dry particles are in a lamellar phase 317 

with the lattice parameter of 49.5 Å (Table 2). There is also an inverse micellar phase present, indicated by 318 

the broad peak at q ~ 0,2 Å-1 in  the diffractogram) with a D-spacing of 31.1 Å. This can be explained by the 319 
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presence of residual moisture in the spray dried powder. According to the phase diagram of GMO in water, 320 

the inverse micellar phase and lamellar phase coexist at approximately 5 % water [43,44], consistent with  321 

Spicer et al. reporting approximately 5 % (w/w) of moisture content in their spray dried cubosome powders 322 

[22].  323 

 324 

After hydration (here exemplified by the diffractogram at 50 min), the liquid crystalline nanostructured 325 

particles showed a mix of phases, with peak indexing indicating coexisting inverse hexagonal (H2) phase 326 

(peaks at √1 : √3 : √4), . Pn3m cubic phase (peaks at √2 : √3 : √4), and la3d cubic phase (peaks at √6 : √8). 327 

These three phases appear in the GMO + water phase diagram [44], and the calculated lattice parameters 328 

are listed in Table 2. The presence of H2 and Pn3m cubic phases for commercial GMO samples in water 329 

might be expected at full hydration, however the la3d cubic phase is only expected at less than full 330 

hydration o the lipid. Therefore it is proposed that the particles were not completely hydrated after 50 min, 331 

which is also supported by the fact that after 80 min the la3d phase appears even less prominent.  332 

 333 

 334 
Fig. 5: 2D SAXS patterns were collected from cubosomes confined in microcontainers and followed while 335 

the cubosomes were released from the microcontainers in MilliQ water. The cubosome filled 336 

microcontainers were enclosed in a glass capillary during hydration for up to 80 min. After 50 min of 337 

hydration the particles show a mix of phases with inverse hexagonal (H2) phase (peaks at √1 : √3 : √4), 338 

Pn3m cubic phase (peaks at √2 : √3 : √4), and la3d cubic phase (peaks at √6 : √8).     339 

 340 

 341 

 342 

Table 2: Phase structure and lattice parameters obtained from SAXS measurements of dry particles and 343 

particles released from microcontainers after hydration, here with an example after 50 min of hydration.  344 

√2

√6
√1

√3
√3 √4√8 √4
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 Lattice parameters (Å) 

 Dry particles Hydration for 50 min 

Lamellar phase, L 49.5  

Inverse micellar phase, L2 31.1  

Inverse hexagonal phase, H2  61.0 

Inverse bicontinuous cubic 

phase, Pn3m 

 84.6  

Inverse bicontinuous cubic 

phase, Ia3d 

 132.7 

 345 

Loading of precursors into the microcontainers and coating of the pH sensitive lid 346 

After successfully loading the cubosomes into the microcontainers (Fig. 6A), the cavity of the 347 

microcontainers was coated with Eudragit S100 (Fig. 6B) as this polymer will dissolve at a pH value of 348 

approximately 7 corresponding to the pH found in the small intestine around the M cells [9].  349 

 350 

 351 
Fig. 6: SEM images of A) a cubosome-filled microcontainer, B) a filled microcontainers with a lid of Eudragit 352 

S100, and C) an empty microcontainer after release study in phosphate buffer pH 6.8. 353 

 354 

Release of OVA loaded cubosomes from coated microcontainers 355 

The coating on the cavity of the microcontainers can prevent the release until the intestine [33], and a large 356 

dose (approximately 2 µg of powder) of the vaccine formulation can be loaded into the cavity of the 357 

microcontainers [27]. In the study, the cavity of the microcontainers was coated with the pH sensitive 358 

polymer Eudragit S100. The release of OVA from the cubosomes and microcontainers was first measured 359 

for 2 h in a pH value corresponding to the pH of the stomach (pH 1.6), and here, as expected, no release 360 

was observed due to the intact layer of the Eudragit lid (Fig. 7). After 2 h, the pH of the medium was 361 

changed to reflect that of the small intestine (pH 6.8). Fig. 7 shows that the release of OVA is occurring, and 362 

this indicate that the cubosomes are also released from the microcontainers as these are empty after the 363 

release studies (Fig. 6C).  The release is appearing in a more controlled fashion than observed from the 364 

unconfined powder cubosomes (Fig. 4). The OVA release in pH 6.8 is 44.1±5.6 % in relation to the amount 365 

of OVA in the particles. This is comparable to the release from the bulk powder being 47.9 % after 96 h (p-366 

value: 0.4311).  367 

In the literature, a rice-based oral vaccine has shown to be efficient as a delivery system as it can protect 368 

the antigen from enzymes in the stomach [7]. The microcontainers have the same feature and therefore, 369 

there is a promise for the microcontainers to work as an oral vaccine system as well. When delivering 370 

vaccines by the oral route, the delivery system should be able to present the vaccine formulation to the M 371 

cells followed by transport to the immune cells to create a response. It has been shown to be effective to 372 

100 µm100 µm 100 µm

A) B) C)
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keep the vaccine formulation inside a particle for a significant period of time [10,12], securing a slow 373 

release. Therefore the slow release that the microcontainers and the cubosomes provide can be a great 374 

advantage when delivering vaccines.  375 

 376 

 377 
Fig. 7: Release of OVA from the cubosomes, when the vaccine formulation was confined in microcontainers. 378 

The release of OVA is expressed as a % of the loaded OVA into the cubosomes. For the first 2 h the release 379 

was measured in pH 1.6 followed by pH of 6.8 for up to 98 h. The data is presented in triplicates as a 380 

mean±SD.  381 

 382 

Conclusion 383 

Powder precursors of cubosomes loaded with OVA have been produced by spray drying, and it was 384 

concluded that the precursors contained cubic structure in bulk as well as when released from 385 

microcontainers. The microcontainers coated with an Eudragit S100 lid can serve as an oral vaccine delivery 386 

system protecting the cubosomes through the GI tract until release occurs in the small intestine. For these 387 

produced cubosomes to be completely developed as an oral vaccine system, an adjuvant needs to be 388 

added to the particles to obtain the optimal effect of this system and further investigations are therefore 389 

also needed for fully develop this oral vaccine delivery system.   390 

 391 
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