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h i g h l i g h t s

• Visual identification of single stimuli in pure accuracy task is investigated.
• Multivariate Wiener and Ornstein–Uhlenbeck counter models are proposed and tested.
• Two classes of models, race and first passage time models, are proposed and analyzed.
• The models are compared with the Poisson counter model from the literature.
• Model selection favors Gaussian race models over Poisson or first passage time models.
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a b s t r a c t

When identifying confusable visual stimuli, accumulation of information over time is an obvious
strategy of the observer. However, the nature of the accumulation process is unresolved: for example
it may be discrete or continuous in terms of the information encoded. Another unanswered question
is whether or not stimulus sampling continues after the stimulus offset. In the present paper we
propose various continuous Gaussian counter models of the time course of visual identification of briefly
presented, mutually confusable single stimuli in a pure accuracy task. During stimulus analysis, tentative
categorizations that stimulus i belongs to category j are made until a maximum time after the stimulus
disappears. Two classes of models are proposed. First, the overt response is based on the categorization
that had the highest value at the time the stimulus disappears (race models). Second, the overt response
is based on the categorization that made the minimum first passage time through a constant boundary
(first passage timemodels).Within this framework,multivariateWiener andOrnstein–Uhlenbeck counter
models are considered under different parameter regimes, assuming either that the stimulus sampling
stops immediately or that it continues for some time after the stimulus offset. Each type of model was
evaluated by Monte Carlo tests of goodness of fit against observed probability distributions of responses
in two extensive experiments. A comparison of these continuous models with a simple discrete Poisson
counter model proposed by Kyllingsbæk, Markussen, and Bundesen (2012) was carried out, together
with model selection among the competing candidates. Both the Wiener and the Ornstein–Uhlenbeck
race models provide a close fit to individual data on identification of both digits and Landolt rings,
outperforming the first passage time model and the Poisson counter race model.
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1. Introduction

When a single visual stimulus is briefly presented for identifi-
cation, the probability of identifying the stimulus correctly at time
t > t0 can be modeled by
p(t) = 1 − e−v(t−t0), t > t0,
where v is the rate of processing and t0 is the longest ineffective
exposure duration before which the stimulus cannot be identified
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(Bundesen, 1990; Bundesen & Harms, 1999; Petersen & Andersen,
2012). This model is a good approximation when confusability
between different categorizations of the stimuli is low and thus
can be neglected. However, in situations where this assumption is
not appropriate a more complex model assuming accumulation of
information is needed to account for the data, including predictions
of erroneous categorizations. In particular, the probabilities of
error reports are observed to be non-monotonic functions of
exposure time. Intuitively, this can be explained by the fact that
when exposure times are very short, a non-response will always
be given, and for very long exposure times the stimulus is always
correctly identified, whereas for some exposure times in between
confusable stimuli might result in erroneous reports.

Two general classes of accumulator models are natural candi-
dates to account for identification when stimulus confusability is
high: discrete and continuous accumulator models. Classic exam-
ples of the former are counter models (e.g. Townsend & Ashby,
1983) in which evidence is accumulated as discrete units of infor-
mation. The inter-arrival time of the units is usually assumed to
be continuously distributed. In the simplest Poisson version, the
inter-arrival times are exponentially distributed leading to gamma
distributed processing times. The most successful example of con-
tinuous accumulator models is the drift diffusion model, which is
based on the assumption of anunderlyingWiener process. The drift
diffusion model has been very successful in accounting for reac-
tion time distributions in various identification and memory tasks
(see Ratcliff, 1978; Ratcliff & Smith, 2004).

The distinction between discrete and continuous accumulator
models of identification highlights a fundamental question within
studies of visual cognition: is the extraction and categorization of
information from the environment discrete or continuous in na-
ture? In Kyllingsbæk, Markussen, and Bundesen (2012), a simple
Poisson counter model for visual identification was proposed to
answer this question: Is it possible to account for the data from
a single-stimulus non-speeded in a pure accuracy identification
taskwith amodel assuming discrete accumulation of information?
The model proposed by Kyllingsbæk et al. (2012) accounted well
for the data from the non-forced identification experiment using
Landolt’s rings as stimulus material, less so when using single dig-
its as stimulus. The Poisson model assumes that tentative catego-
rizations of the stimulus are accumulated into a visual short-term
memory. A counter for each possible response category accumu-
lates the tentative categorizations. When the exposure duration
of the stimulus ends, the categorization of the counter with the
highest number of counts is chosen as the final categorization
and is reported. In case of ties, the observer will chose randomly
between the categorizations of the counters with the highest
number of counts. In case no tentative categorizations have been
made the participant either refrains from guessing and makes a
null response, or chooses to guess on one of the response cate-
gories. The model accounted well for the measured monotonically
increasing probabilities of correct reports with exposure duration
and partially well for the non-monotonic behavior of the probabil-
ities of error reports as a function of exposure duration.

In the present paper we explore the ability of continuous
models (based on Gaussian processes) assuming accumulation of
information with or without barriers to account for the data from
Kyllingsbæk et al. (2012). How well may continuous accumulator
models account for the data from single-stimulus non-speeded
pure accuracy identification task? As described above, more
complex models based on Wiener processes have been used with
great success in modeling both response accuracy and response
time in speeded classification tasks, see e.g. Logan (1996), Ratcliff
and Smith (2004), Smith and Van Zandt (2000), Townsend and
Ashby (1983) and Van Zandt, Colonius, and Proctor (2000).
We test two specific classes of Gaussian counter models: in the
class of first passage time (FTP) models, the overt response is based
on the categorization that made the minimum first passage time
through a constant boundary. In the class of race models, the overt
response is based on the categorization that has the highest value
at a time∆ ≥ 0 after the stimulus disappears. MultivariateWiener
and Ornstein–Uhlenbeck (OU) processes are Gaussian models. We
evaluate both processes in the race model, and the Wiener in the
FPTmodel byMonte Carlo goodness of fit tests against the observed
probability distributions of responses in the data from the two
experiments and the four subjects in Kyllingsbæk et al. (2012),
for a total of eight data sets. Finally, we compare the models to
the simple Poisson counter model and perform model selection.1
While the Poisson and the FPT counter models fail to fit the data
from five out of eight data sets, the Wiener and OU race models
performwell on both experiments and they are always selected as
best models for the considered data set. Interestingly, race models
with a fitted ∆ larger than 0 are selected as best models in four
out of eight data sets, suggesting that the stimulus sampling may
continue after the stimulus offset. The Gaussian race models are
all able to reproduce the non-monotonic behavior of the error
response. This can be explained as follows. For short exposure
times, none of the counters have had time to reach the minimum
level, and a non-response is reported. For long exposure times, the
drift is dominating over the noise, and the counterwith the highest
drift, i.e., the correct counter, will provide correct categorization.
For exposure times in between the noise will play a role, and
counters with similar drifts, i.e., confusable stimuli, can cause an
error report to occur.

2. Data

The data set was presented and analyzed with the Poisson
counter model in Kyllingsbæk et al. (2012). The exposure duration
of stimuli was varied systematically between values of t1 =

10, 20, 30, 40, 50, 60, 80, 100 ms, i.e., k = 8 different exposure
durations. In Experiment 1, the stimulus was one of the digits
from i = 1 to 9, and thus, there were 9 × 8 = 72 different
experimental conditions. Four students from the University of
Copenhagen participated in the experiment; subjects KK, MA, MF
and MR. Each participant ran a total of 100 repetitions of each
of the eight exposure durations for each of the nine digits and a
total of 7200 trials each. The subjects were informed that the first
200 trials were used as training trials and therefore the analyzed
data counted 7000 trials per participant. In Experiment 2, the
stimulus was one of eight gap orientations in the Landolt rings,
i = E, NE, N, NW, W, SW, S or SE, and thus, there were 8 × 8 =

64 experimental conditions. One of the authors (SK) and three
of the previous four students from the University of Copenhagen
participated in the experiment; subjects KK, MF, MR and SK. Each
participant ran a total of 100 repetitions of each of the eight
exposure durations for eachof the eight orientation gaps and a total
of 6400 trials each. No training trials were run and all 6400 trials
were used in the analysis. For each experimental trial, a typed-
in response j = 0, . . . , n was given, where response 0 denotes
no response (null report), and n is the number of stimuli, n = 8
or 9. To summarize, we analyze four independent data sets for
Experiment 1 and four independent data sets for Experiment 2.
An illustration of the observed proportions of correct and wrong
reports for stimulus digits and for orientation gaps, for the same

1 A detailed guideline on how to carry out both parameter estimation and model
validation in the computing environment R (R Core Team, 2014) is presented in the
Appendix.
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Fig. 1. Observed proportions of correct and erroneous reports for stimulus digits 1, . . . , 9 as functions of exposure duration for the representative participant MF in
Experiment 1. Odd columns: probability of correct report. Even columns: probability of false report. Filled circles: observed probabilities. The error bars show 95% confidence
intervals of the observed proportions. The continuous lines denote the predictions generated by the overall maximum likelihood fit of theWiener FPTmodel (pink lines), the
Wiener race model with ∆ = 0 (blue lines) and the OU race model with ∆ = 0 (red lines) to the data of participant MF when σ 2

i = 1. Indistinguishable results are obtained
for the Wiener and OU race models with ∆ > 0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
representative participant (MF) considered in Kyllingsbæk et al.
(2012) is reported in Figs. 1–4, respectively.

3. Multivariate Gaussian counter model

In the Gaussian counter model, when stimulus i is presented,
each member j of the set of n possible categorization responses is
associated with a counter, Xj(t; i). For exposures below the longest
ineffective exposure duration t0, no perceptual analysis is done, so
all counters remain at a value of zero. Denote t1 > t0 the exposure
duration. After the stimulus disappears, the perceptual analysis
goes on for a time∆, i.e., until time tmax = t1 +∆. Themultivariate
counter X(t; i) = {(X1(t; i), . . . , Xn(t; i)) ; n ∈ N, t ∈ [0, tmax]}
satisfies the stochastic differential equation (SDE)

dX(t; i) = A(X(t; i); t)dt + B(X(t; i); t)dW (t),
X(s; i) = 0, ∀s ∈ [0, t0], t > t0,

(1)

whereW is an n-dimensional standardWiener process, also called
Brownianmotion. HereA(·) and B(·) are functions representing the
drift and the diffusion component of the SDE, respectively.
The Rn-valued function A and the Rn×n-valued function B are as-
sumed to be measurable and such that the conditions on existence
and uniqueness of the solution are satisfied (Arnold, 1992).

Categorizations that stimulus i belongs to category j are made
following two different strategies: the overt response is based on
the categorization that made either the minimum FPT through a
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Fig. 2. Observed andmaximum likelihood estimates for p2(i, j), the probability of reporting jwhendigit i is presented at exposure duration t1 = 20ms (k = 2), in Experiment
1. The four tables show the results for participants KK, MA, MF and MR, respectively. For each participant, the area of the circle in cell i and column j, for i, j = 1, . . . , 9
is proportional to the estimate for p2(i, j). Red circles: observed proportions p̂2;o(i, j). Blue circles: fitted estimates p̂2;best(i, j) under the best Gaussian model according to
the ∆AIC criterion. Green circles: fitted estimates p̂2;worse(i, j) under the worse Gaussian model according to the ∆AIC criterion. No probabilities are reported if p̂2;o(i, j) = 0,
i.e., no reports j are observed, or if p̂2;·(i, j) < 10−3 , i.e., the theoretical probabilities of reporting j are small. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
constant boundary (FPTmodel), or themaximumvalue at time tmax
(race model).

3.1. FPT model: response based on minimum of FPTs of X

In presence of stimulus i, define the random variables

Tj(i) = inf{t > t0 : Xj(t; i) ≥ Si}, j = 1, . . . , n,

i.e., the FPT of Xj(t; i) through a constant boundary Si > 0, and
T (i) = min1≤j≤n Tj(i), the minimum of the FPTs for stimulus i.
Then, two situations can happen: (a) Stimulus j is reported if T (i) =

Tj(i) < tmax, which can be either correct or wrong, depending on
whether j = i or j ≠ i, respectively; (b) No report is given if
T (i) > tmax. These reports depend on the exposure time t1, since
tmax = t1+∆. The probabilities of reporting j or nothing for a given
exposure time t1 are given by

p(i, j) := Pi(report j) = P(T (i) = Tj(i), Tj(i) < tmax)

=

 tmax

t0

∂

∂t
P(Tj(i) < t; Tl(i) > t, l = 1, . . . , n, l ≠ j)dt (2)

p(i, 0) := Pi(no report) = P(T (i) > tmax)

= P(T1(i) > tmax, . . . , Tn(i) > tmax). (3)
If the counters Xj(t; i), j = 1, . . . , n are independent, then (2) and
(3) become

p(i, j) =

 tmax

t0
fTj(t; i)

n
l=1;l≠j

F̄Tl(t; i)dt;

p(i, 0) =

n
j=1

F̄Tj(tmax; i),

(4)

where fTj denotes the probability density function (pdf) of Tj
and F̄Tj the survival cumulative distribution function (cdf) of Tj,
i.e. F̄Tj(t; i) = 1 − FTj(t; i) = 1 − P(Tj(i) < t). Obviously, these
probabilities depend on the underlying model (1).

3.2. Race model: response based on highest value of X

In presence of stimulus i, denoteM(tmax; i) themaximum value
of the vector X(tmax; i) at time tmax, i.e., at the time of the end of
the perceptual analysis. A categorization is made only ifM(tmax; i)
is larger than a positive constant value λi > 0, otherwise the
process is assumed to be noise driven andno reports are given. Two
situations can happen: (a) Stimulus j is reported if M(tmax; i) =

Xj(tmax; i) and M(tmax; i) > λi, which can be either correct or
wrong, depending on whether j = i or j ≠ i, respectively; (b) No
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Fig. 3. Evaluations of the bestmodel (according to the∆AIC criterion) for participants KK,MA,MF andMR, respectively, in Experiment 1: QQplot of estimated p values against
p values simulated under the null hypothesis for the 63 experimental conditions having an observed finite χ2 test statistics (17), i.e., for exposure durations t̂0 > t1 = 10ms.
Except for participant MF, the points fall approximately along the diagonal, suggesting that the estimated p values come from a population with the same distribution as the
p values that are simulated under the null hypothesis.
report is given if M(tmax; i) < λi. For a given exposure duration t1,
the probabilities of reporting j or nothing are

p(i, j) := Pi(report j)
= P


M(tmax; i) = Xj(tmax; i),M(tmax; i) > λi


= P(Xj(tmax; i) > λi, Xl(tmax; i) < Xj(tmax; i), l ≠ j)

=


∞

λi

∂

∂x
P(Xj(tmax; i) > x, Xl(tmax; i) < x, l = 1, . . . , n, l ≠ j)dx

(5)
p(i, 0) := Pi(no report) = P(M(tmax; i) < λi)

= P(X1(tmax; i) < λi, . . . , Xn(tmax; i) < λi). (6)

If the counters Xj(t; i), 1 ≤ j ≤ n are independent, then (5) and (6)
become

p(i, j) =


∞

λi

fXj(x, tmax; i)
n

l=1;l≠j

FXl(x, tmax; i)dx;

p(i, 0) =

n
j=1

FXj(λi, tmax; i),

(7)

where fXj and FXj denote the pdf and the cdf of Xj(t; i), respectively.
As for the FPT model, also these probabilities depend on the
underlying model (1). In Sections 4 and 5 we compute the
probabilities (2)–(7) for both the FPT and the racemodels assuming
that the underlying model (1) is a multivariate Wiener or OU
process, respectively.
4. Multivariate Wiener counter model

The simplest Gaussian countermodel is amultivariate indepen-
dent Wiener process which is solution of (1) with A(X(t; i); t) =

µ(t; i) and B(X(t; i); t) = 6(i) = 6, with drift µ(t; i) ∈ Rn and
positive-definite diffusion matrix 6 ∈ Rn×n, for each t > t0. The
sign and the size of the drift componentµj(t; i) indicate howmuch
the jth stimulus resembles the ith stimulus. We expect thatµi(t; i)
has the highest positive value, but for a confusable stimulus j ≠ i,
the drift might still be positive, which could result in an incorrect
categorization. A negative drift indicates that the jth stimulus is
clearly distinguishable from stimulus i, and awrong categorization
for stimulus j is highly unlikely. For simplicity, we assume 6 to be
the same for all stimuli i and to be a diagonal matrix with diago-
nal elements σj > 0. Thus, the components of the Wiener counter
model are independent. Different drift components are considered,
depending on how the categorization is modeled.

4.1. Wiener FPT model

Consider µ(t; i) given by

µj(t; i) =


v(i, j) if t0 < t ≤ t1
v(i, j)h if t > t1

,

with µj ∈ R for 0 ≤ h < 1, 1 ≤ i, j ≤ n. Thus, after the stimulus
disappears, the drift of the counter model shrinks towards 0 with
a factor 1/h. As a particular case, when h = 0, the counter model
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Fig. 4. Observed proportions of correct and erroneous reports for Landolt rings (with gaps centered at E, NE, N, NW, W, SW, S and SE, respectively) as functions of exposure
duration for the representative participant MF in Experiment 2. Odd columns: probability of correct report. Even columns: probability of false report. Filled circles: observed
probabilities. The error bars show 95% confidence intervals of the observed proportions. The continuous lines denote the predictions generated by the overall maximum
likelihood fit of the Wiener FPT model (pink lines), the Wiener race model with ∆ = 0 (blue lines) and the OU race model with ∆ = 0 (red lines) to the data of participant
MF when σ 2

i = 1. Indistinguishable results are obtained for the Wiener and OU race models with ∆ > 0. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
becomes only noise driven for t > t1. To compute the distribution
of Tj(i), we proceed as follows:

FTj(t; i) = P(Tj(i) < t, Tj(i) < t1) + P(Tj(i) < t,Tj(i) ≥ t1)
= P(Tj(i) < min(t1, t)) + P(Tj(i) < t|Tj(i) ≥ t1)

× P(Tj(i) ≥ t1). (8)

The first probability in (8) is equal to the probability of the FPT
of a Wiener process starting in 0 with drift v(i, j) and diffusion
coefficient σ 2

j . The second term in (8) has the same probability
of the FPT of a Wiener process starting in a random position
Xj(t1; i) < Si with drift v(i, j)h and diffusion coefficient σ 2

j .
Conditioning on Xj(t1; i), we obtain

P(Tj(i) < t|Tj(i) ≥ t1) =

 Si

−∞

P(Tj(i) < t|Tj(i) ≥ t1, Xj(t1; i) = x)

× fXj|Tj(x, t1; i)dx, (9)
where fXj|Tj(x, t1; i) is the conditional density of Xj(t1; i) given that
Tj(i) > t1, defined by Aalen and Gjessing (2001)

fXj(x, t1; i) :=
∂

∂x
P(Xj(t1; i) < x|Tj(i) > t1)

=

f aXj(x, t1; i)

P(Tj(i) > t1)
, (10)
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1)

2)
FTj(t; i) =



FIG(Si/v(i,j),S2i /σ 2
j )(min(t, t1) − t0; i)

+1{t>t1}

 Si

−∞

F
IG


(Si−x)/v(i,j)h,(Si−x)2/σ 2

j

(t − t1; i)f aXj(x, t1 − t0; i)dx, if v(i, j) > 0;

e2Siv(i,j)/σ 2
j FIG(−Si/v(i,j),S2i /σ 2

j )(min(t, t1) − t0; i)

+1{t>t1}

 Si

−∞

e2(Si−x)v(i,j)/σ 2
j F

IG

−(Si−x)/v(i,j)h,(Si−x)2/σ 2

j

(t − t1; i)f aXj(x, t1 − t0; i)dx, if v(i, j) < 0;

FLevy(0,S2i σ 2
j )(min(t, t1) − t0; i) + 1{t>t1}

 Si

−∞

FLevy(0,(Si−x)2σ 2
j )(t − t1; i)f aXj(x, t1 − t0; i)dx, if v(i, j) = 0

(1

fTj(t; i) =



fIG(Si/v(i,j),S2i /σ 2
j )(min(t, t1) − t0; i)1{t∈[t0,t1]}

+1{t>t1}

 Si

−∞

f
IG


(Si−x)/v(i,j)h,(Si−x)2/σ 2

j

(t − t1; i)f aXj(x, t1 − t0; i)dx, if v(i, j) > 0;

e2Siv(i,j)/σ 2
j fIG(−Si/v(i,j),S2i /σ 2

j )(min(t, t1) − t0; i)1{t∈[t0,t1]}

+1{t>t1}

 Si

−∞

e2(Si−x)v(i,j)/σ 2
j f

IG

−(Si−x)/v(i,j)h,(Si−x)2/σ 2

j

(t − t1; i)f aXj(x, t1 − t0; i)dx, if v(i, j) < 0;

fLevy(0,S2i σ 2
j )(min(t, t1) − t0; i)1{t∈[t0,t1]}

+1{t>t1}

 Si

−∞

fLevy(0,(Si−x)2σ 2
j )(t − t1; i)f aXj(x, t1 − t0; i)dx, if v(i, j) = 0

(1

Box I.
where (Tamborrino, Ditlevsen, & Lansky, 2015)

f aXj(x, t1; i) =
1

2πσ 2
j t1


exp


−

(x − v(i, j)t1)2

2σ 2
j t1



− exp


2v(i, j)Si

σ 2
j

−
(x − 2Si − v(i, j)t1)2

2σ 2
j t1


.

Using the Markov property on Xj in (9), plugging (10) in (9) and
then in (8), the FPT distribution of Tj becomes Eqs. (11) and (12)
(given in Box I) where FIG(α,β) and fIG(α,β) denote the cdf and pdf of
the Inverse Gaussian distribution with mean α and variance α3/β ,
with α > 0, β > 0. Moreover, FLevy(0,γ ) and fLevy(0,γ ) denote the cdf
and pdf of the Levy distribution with null location parameter and
scale parameter γ > 0 (Chhikara & Folks, 1989). Note that negative
or null drifts µj are also allowed, in which case P(Tj = ∞) > 0,
complicating the probabilistic analysis. If v(i, j) < 0, then FIG(α,β)

is the conditional distribution of Tj given that Tj < ∞, with
P(Tj < ∞) = exp(−2β/α) (Chhikara & Folks, 1989). If v(i, j) = 0
or h = 0, then we have a Levy distribution with null location
parameter and scale parameter (Siσ)2 (Chhikara & Folks, 1989).
Finally, the probability of reporting j or nothing can be numerically
calculated by plugging (11) and (12) into (4).

4.2. Wiener race model

Consider µ(t; i) and 6 defined as before. Since Xj(t; i) is a
Wiener process with drift v(i, j) for t ∈ (t0, t1) and drift v(i, j)h for
t ∈ (t1, tmax), the distribution of Xj(tmax; i) is normal with mean
v(i, j)(t1 − t0 + h∆) and variance σ 2

j (tmax − t0), i.e.,

Xj;W(tmax) ∼ N(µij;W, σ 2
j;W)

= N

v(i, j)(t1 − t0 + h∆), σ 2

j (t1 + ∆ − t0)

. (13)

Thus, fXj , FXj and F̄Xj are directly available and can be plugged into
(7) to numerically evaluate the probability of reporting either j or
nothing.
5. Multivariate Ornstein–Uhlenbeck counter race model

A more general counter model is the multivariate OU process
which is solution of (1) with

A(X(t; i); t) = α(t; i)X(t; i) + µ(t; i),
B(X(t; i); t) = 6(i) = 6

(14)

where µ(t; i) and 6 are functions defined as before, and α(t; i) ∈

Rn is given by

αii(t; i) = −
1
τ

, αij(t; i) = αij,

for i, j = 1, . . . , n, i ≠ j. If the real parts of the eigenvalues of α are
negative, then the model has a stationary solution. However, the
proposed counter model is well defined even when no stationary
solution exists, and thus no assumptions on α are imposed. Since
W is ann-dimensional standardWiener process and6 is a diagonal
matrix, the dependence between the different components is
entirely modeled by α. Note that even in the simplest case of a
one-dimensional OU process with drift v, an explicit expression of
the FPT density is only available for the specific situation vτ =

S, see Lansky and Ditlevsen (2008). To avoid massive numerical
calculations which are out of the scope of this paper, throughout
weonly consider theOUprocess for the racemodel, since in the FPT
model, the probabilities of reporting j for stimulus i, p(i, j), involve
FPT distributions.

When α(t; i) is a diagonal matrix, X has independent compo-
nents and Xj(t; i) has infinitesimal drift

−Xj(t; i)/τ + v(i, j)[1{t∈(t0,t1)} + h1{t≥t1}]

and diffusion coefficient σj. Then the probability of reporting either

j or nothing is given by (7), with Xj;OU(tmax; i) ∼ N

µij;OU; σ 2

j;OU


,

and µij;OU and σ 2
j;OU given by

µij;OU = v(i, j)τ (1 − e−(t1−t0)/τ )e−∆/τ
+ v(i, j)hτ


1 − e−∆/τ


,

σ 2
j;OU =

1
2
σ 2
j τ(1 − e−2(tmax−t0)/τ ), (15)
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recalling that tmax = t1 + ∆. If α(t; i) is not diagonal, then X
is a multivariate OU with dependent components. The presence
of non-zero off-diagonal elements can be used to model either
inhibition or excitation, depending on whether αij < 0 or αij > 0,
respectively, with i ≠ j. The probabilities of reporting j or nothing
can be numerically computed using (5) and (6).

6. Parameter estimation

In this paper, we aim to discriminate whether discrete or
continuous accumulator models can account for the data from
the single-stimulus non-speeded pure accuracy identification task,
andwhether stimulus sampling continues after the stimulus offset
or not, i.e. ∆ = 0 or ∆ > 0, respectively. For doing that, we first
need to estimate the parameters of X for each subject in presence
of different stimuli and for different models, and then perform
model validation and model selection, as described in Section 7.
Without loss of generality, for parameter identifiability, we set
σi = 1, i.e., 6 is the identity matrix. We aim at estimating φ =

(v(i, j), Si, t0) when X is the multivariate Wiener FPT model, φ =

(v(i, j), λi, t0, ∆, h)whenX is themultivariateWiener racemodel,
and φ = (v(i, j), λi, t0, ∆, h, τ ), when X is the multivariate OU
race model, that is, we assume α to be diagonal. Then the number
of parameters is n2

+ n + 1 for the Wiener FPT, n2
+ n + 3 for the

Wiener race andn2
+n+4 for theOU racemodels. A summary of the

total number of parameters for different models and experiments
is reported in Table 1.

LetNijk be the random variable counting the number of j reports
when stimulus i is shown for the kth exposure time, for i =

1, . . . , n; j = 0, . . . , n; k = 1, . . . , 8. The report j is correct,
wrong or null, depending on whether j = i, j ≠ i or j =

0, respectively. The distribution of (Nijk)
n,n,8
i=1,j=0,k=1 is multinomial

with probabilities pk(i, j), which correspond to the probabilities
p(i, j) for the kth exposure time t1 = t(k)1 and the kth maximum
time tmax = t(k)1 + ∆. Moreover, for each experimental condition,n

j=0 pk(i, j) = 1, and nijk are the number of observed j responses,
yielding 8n2 independent data points. The log-likelihood of the
unknown parameters φ is given by

lN(φ) ∝

n
i=1

n
j=0

8
k=1

nijk log pk(i, j), (16)

and the maximum likelihood estimator φ̂ is obtained by numer-
ically maximizing lN , as described in the Appendix. In both ex-
periments and for all participants, (nijk) are sparse matrices. In
Experiment 1, the percentages of independent non-null entries in
(nijk) are 19%, 33%, 26% and 20% for participants KK, MA, MF and
MR, respectively, while in Experiment 2, the percentages are 26%,
35%, 38% and 41% for participants KK, SK, MF andMR, respectively.
We denote by p̂k;o(i, j), p̂k;best(i, j) and p̂k;worse(i, j) the estimates
of pk(i, j) computed empirically from data, or assuming the
best/worse Gaussian model, according to the ∆AIC criterion,
respectively.

7. Statistical analysis: model validation and model selection

Model validation.Weperformmodel validation and comparison to
evaluate eachmodel and to choose the one providing the best data-
fit. First, we test goodness of fit between observed and predicted
distributions of responses by a Monte Carlo test based on the χ2

test statistic (Hope, 1968). For each of the 72 and 64 experimental
conditions in Experiments 1 and 2, respectively, we compute the
value of the χ2 test statistic

χ2
=

n
j=0

(Oj − Ej)2

Ej
, (17)
where Oj is the observed number of j responses and Ej is the
expected number under the theoretical distribution. In the sum,
we do not count those responses j whose expected number is 0,
i.e. Ej = 0. Then we estimate the p value corresponding to the
computed χ2 value, χ2

obs, by simulating 1000 times the 100 trials,
and determining the relative frequency of getting χ2

≥ χ2
obs for

each experimental condition. Since the data are discrete, the null
distribution of the p values is also a discrete distribution, which
we approximate by a distribution of 7200 (6400) p values, 100 p
values for each of the experimental conditions. Each of them was
obtained by computing a χ2 value, χ2

sim, for 100 simulated trials
and calculating the corresponding p value by simulating 100 new
trials 1000 times and determining the relative frequency of getting
χ2

≥ χ2
sim. Finally, the goodness of fit statistic was found by a

Kolmogorov–Smirnov two-sample test of the 72 (64) estimated
p values against the 7200 (6400) simulated p values at a 10%
significance level.
Model selection. After checking that the model provides a
satisfactory fit of the data, we should choose whether ∆ > 0
or ∆ = 0, i.e. whether or not stimulus sampling continues after
the stimulus offset, as well as select the best model among the
four available, i.e., Wiener FPT, Wiener race, OU race, and Poisson
counter models. Since the distribution of N is multinomial for
all underlying models, our goal is to find the model minimizing
−lN , hence maximizing lN , while avoiding over-parametrization.
However, along with the improvement comes an increase in
the number of parameters, which has to be taken into account.
By choosing the Kullback–Leibler divergence measure (Kullback,
1959), under some regularity conditions (Linhart&Zucchini, 1986),
the model selection criterion simplifies to the Akaike information
criterion (AIC):

AIC = −2lN + 2p,

where p denotes the number of parameters of the model. The
first term is a measure of the fit and decreases with increasing
number of parameters, while the second term is a penalty term,
and increases with increasing p. Following Burnham and Anderson
(2004), we report ∆AIC values, which are defined as differences
between the AIC-values and the minimum of them. Hence ∆AIC =

0 for the best model; ∆AIC ≤ 2 for models having substantial
support (evidence); 4 ≤ ∆AIC ≤ 7 for models having considerably
less support, ∆AIC > 10 for models having essentially no support
compared to the best model, i.e. models which are rejected by the
AIC (Burnham & Anderson, 2004).

7.1. Model diagnostics

The distributions of Xj(t; i) for a Wiener and OU process are
different for any parameter vector φ, but it might still be difficult
to statistically distinguish which of the two distributions have
generated a given sample. In particular, it is well known that an OU
process approaches a Wiener process as τ → ∞. That means that
the two models can be distinguished theoretically, but in practice
onlywhen τ is small compared to tmax, i.e., for τ ≪ tmax. Moreover,
the probabilities (7) for the racemodelswith independent counters
depend on the distributions of Xj(tmax; i) < λi, i, j = 1, . . . , n for
fixed t = tmax, which are given by

FXj;W(λi, tmax; i) = Φ


λi;W − µij;W

σj;W


,

FXj;OU(λi, tmax; i) = Φ


λi;OU − µij;OU

σj;OU


,

(18)

for the Wiener and OU race models, respectively. Here Φ(·)
denotes the standard normal cdf, λi,W and λi;OU the values of λi for



M. Tamborrino et al. / Journal of Mathematical Psychology 79 (2017) 85–103 93
Table 1
Number of parameters for the Poisson, Wiener FPT, Wiener race and OU race models in Experiment 1 and Experiment 2 assuming that 6 is the identity matrix and α is
a diagonal matrix with αii = −1/τ . Here Pg denotes the probability of guessing in the Poisson counter model (Kyllingsbæk et al., 2012). The total number of observed
frequencies is 648 and 512 in Experiments 1 and 2, respectively.

Model Parameters Experiment 1 (Digits) Experiment 2 (Landolt rings)

Poisson v(i, j), t0, Pg 91 73
Wiener FPT v(i, j), Si, t0 91 73
Wiener race v(i, j), λi, t0, ∆, h 93 75
OU race v(i, j), λi, τ , t0, ∆, h 94 76
Table 2
Summary of the statistics (minimum, maximum and average) of the drift or rates (for Poisson) of categorizations v(i, j) and of λi; estimates of t0, ∆, h and τ for all
four participants in Experiment 1. When stimulus i is presented, v(i, i) denotes the drift/rate of correct categorization, while v(i, ¬i) denotes the drift/rate of erroneous
categorization, i.e., a stimulus j ≠ i is reported. Five models are considered: Wiener FPT model; Wiener race model with ∆ = 0 and ∆ > 0; OU race model with ∆ = 0 and
∆ > 0; Poisson counter model (results taken from Nielsen et al., 2015). With an abuse of notation, here we denote by λi the threshold level Si in the Wiener FPT model. For
each participant, the best model, according to the ∆AIC criterion (see Table 3), is highlighted in bold face.

Experiment 1, digits, all participants.
Measure KK MA

W FPT W∆=0 W∆>0 OU∆=0 OU∆>0 Poisson W FPT W∆=0 W∆>0 OU∆=0 OU∆>0 Poisson

Min v(i, i) 8 8 8 12 12 48 13 9 9 10 10 62
Average v(i, i) 16 16 16 36 31 147 19 15 15 16 16 116
Max v(i, i) 24 24 24 106 77 316 28 24 24 28 27 223
Min v(i, ¬i) −214 −165 −165 −52 −54 0 −100 −76 −147 −36 −67 0

Average v(i, ¬i) −53 −51 −51 −21 −20 1 −24 −23 −24 −10 −13 2
Max v(i, ¬i) 0 3 3 84 54 33 2 2 2 3 3 18

Min λi 0.257 0.087 0.097 0.072 0.096 0.188 0.084 0.081 0.082 0.080
Average λi 0.316 0.125 0.130 0.231 0.205 0.223 0.127 0.125 0.128 0.122
Max λi 0.374 0.173 0.176 0.665 0.487 0.269 0.171 0.166 0.171 0.158
t0 (ms) 2.1 e−88 10 10 11 11 11 10 10 11 11 11 13
∆ (ms) 0.089 1.9 e−14 2e−6 0.277

h 0.98890 0.00452 0.36788 0.97952
τ (ms) 26 26 61 58

Measure MF MR
W FPT W∆=0 W∆>0 OU∆=0 OU∆>0 Poisson W FPT W∆=0 W∆>0 OU∆=0 OU∆>0 Poisson

Min v(i, i) 1 4 4 4 4 14 8 8 8 10 12 49
Average v(i, i) 7 8 8 8 8 48 13 13 14 15 17 112
Max v(i, i) 13 12 13 12 13 102 18 18 20 21 24 208
Min v(i, ¬i) −232 −779 −44 −56 −56 0 −48 −48 −32 −69 −90 0

Average v(i, ¬i) −7 −75 −19 −17 −20 0 −19 −19 −17 −20 −25 1
Max v(i, ¬i) −5 −1 −1 −1 −1 7 1 1 3 1 7 10

Min λi 0.035 0.083 0.093 0.088 0.096 0.103 0.066 0.077 0.063 0.059
Average λi 0.140 0.171 0.194 0.167 0.197 0.168 0.129 0.159 0.113 0.133
Max λi 0.226 0.241 0.274 0.234 0.280 0.323 0.255 0.317 0.210 0.264
t0 (ms) 11 9 10 10 16 13 8 10 18 12 19 13
∆ (ms) 3.580 9.212 10.404 7.796

h 0.8202 0.9357 1 0.99997
τ (ms) 11826 29628 45 29
the Wiener and OU race models, respectively, and µij;W, σj;W and
µij;OU, σj;OU are the means and standard deviations of the Wiener
and OU race models defined in (13) and (15), respectively. Also in
this case, the quantities in (18) cannot be identical for all i, j, =
1, . . . , n and t1 = t(k)1 , k = 1, . . . , 8, but they could be similar for
some value of i, j, k, φW and φOU, making difficult the distinction
between the two models.

Similarly, parameter identification issues arise when consider-
ing the distributions of Xj(t; i) for ∆ = 0 or ∆ > 0 when h → 1.
In fact, in the limit case of h = 1, the quantities µij;W, σj;W and
µij;OU, σj;OU in (13) and (15), respectively, depend on t(k)1 − t0 + ∆.
Therefore, neither t0 nor∆ are identifiable but only their difference
t0 − ∆, making impossible to statistically distinguish between a
model with ∆ = 0 and ∆ > 0. Note also that when ∆ ≈ 0, the
model will be statistically indistinguishable from the model with
∆ = 0.

To summarize, among the proposedmodels, there are twokinds
of nested model comparisons, i.e., the OU model reducing to the
Wiener model as τ → ∞, and the ∆ model reducing to the model
with∆ = 0 as∆ → 0.Moreover, themodels including or not post-
stimulus sampling cannot be distinguished when h → 1. In all
these situations, the negative log-likelihood is close to each other
and the reduced models will then be selected by the ∆AIC criterion
having fewer parameters.
To investigate the accuracy of the proposed model selection, in
Section 10we perform amodel recovery simulation study to check
whether synthetic data generated by eachmodel are appropriately
identified as such by the proposed ∆AIC criterion.

8. Results for digits (Experiment 1)

Here we perform parameter estimation and goodness of fit of
the three considered models: theWiener FPT, Wiener race and OU
race models, and compare them with the Poisson counter model
proposed in Kyllingsbæk et al. (2012). The proportion of null re-
ports is close to one at exposure durations below 10ms. For longer
exposures, the probability of correct responses increases rapidly,
approaching one. The probability of erroneous responses is a non-
monotonic function of exposure duration, starting close to zero, in-
creasing and then decreasing to zero for longer exposure times.

Fig. 1 shows the observed (black points) and fitted proportions
of correct and erroneous reports for the Wiener FPT and the
Wiener and OU race models with ∆ = 0 for all stimulus
digits and representative participant MF. The error bars show 95%
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Table 3
Estimates of the negative log-likelihood, p values and ∆AIC for all participants in Experiment 1 for the Wiener FPT model, the Wiener and OU race models with ∆ = 0 and
∆ > 0, and for Poisson (results taken from Nielsen et al., 2015). Each p value was obtained by a Kolmogorov–Smirnov test summarizing the results of Monte Carlo tests
based on the χ2 test statistic (17). For each participant, the ∆AIC is obtained as the difference between the AIC of the model and the minimum of the AICs for all models,
i.e. ∆AIC = 0 for the best model, which is highlighted in bold face.

Estimates of the negative log-likelihood, p values and ∆AIC for participants in Experiment 1.
Measure KK MA

W FPT W∆=0 W∆>0 OU∆=0 OU∆>0 Poisson W FPT W∆=0 W∆>0 OU∆=0 OU∆>0 Poisson

−lN 1851.78 1640.19 1638.25 1626.28 1626.54 1815 2909.84 2572.55 2573.49 2572.94 2572.50 3085
p-value 1e−4 0.130 0.105 0.220 0.288 0.031 0 0.557 0.439 0.439 0.464 0.003
∆AIC 449.1 25.9 26.1 0.0 4.6 375.5 674.6 0.0 5.9 2.8 5.9 1024.9

Measure MF MR
W FPT W∆=0 W∆>0 OU∆=0 OU∆>0 Poisson W FPT W∆=0 W∆>0 OU∆=0 OU∆>0 Poisson

−lN 3628.38 3613.36 3606.94 3612.34 3607.72 3684 2089.23 1988.01 1985.79 1988.97 1970.35 2118
p-value 0.048 0.015 0.071 0.019 0.035 0.006 0.305 0.243 0.321 0.561 0.814 0.079
∆AIC 38.9 8.8 0 8.8 3.6 150.1 231.8 29.3 28.9 33.2 0 289.3
Fig. 5. Observed andmaximum likelihood estimates for p4(i, j), the probability of reporting jwhendigit i is presented at exposure duration t1 = 40ms (k = 4), in Experiment
2. The four tables show the results for participants KK, SK, MF and MR, respectively. For each participant, the area of the circle in the cell i and column j, for i, j = 1, . . . , 8 is
directly proportional to the estimate for p4(i, j). Red circles: observed estimates p̂4;o(i, j). Blue circles: fitted estimates p̂4;best(i, j) under the best Gaussianmodel according to
the ∆AIC criterion. Green circles: fitted estimates p̂4;worse(i, j) under the worse Gaussian model according to the ∆AIC criterion. No probabilities are reported if p̂4;o(i, j) = 0,
i.e. no reports j are observed, or if p̂4;·(i, j) < 10−3 , i.e. the theoretical probabilities of reporting j are small. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
confidence intervals of the proportions. Indistinguishable results
are obtained for ∆ > 0. While both the Wiener FPT model and
the Poisson counter model do not provide an entirely satisfactory
fit (Kyllingsbæk et al., 2012), both the Wiener and OU race models
present theoretical fits close to the observed proportions p̂k;o(i, j),
capturing also the non-monotonic behavior with respect to the
exposure duration of the probability of wrong reports. Satisfactory
fits are obtained for all participants (Figs. 7–9), as also confirmed
by Fig. 2, where we depict the estimates of the probabilities of
reporting j when stimulus i is presented for the fixed exposure
time t1 = 20 ms. We plot observed proportions p̂2;o(i, j), or fitted
probabilities under the best, p̂2;best(i, j), and worse, p̂2;worse(i, j),
Gaussian models according to the ∆AIC criterion (results in
Section 8.1). No probabilities are reported if p̂2;o(i, j) = 0 or
if p̂2;·(i, j) < 10−3. We choose k = 2 since t1 = 20 ms is
the exposure duration yielding most often the highest probability
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Table 4
Summary of the statistics (minimum, maximum and average) of the drifts or rates (for Poisson) of categorizations v(i, j) and of λi; estimates of t0, ∆, h and τ for all
four participants in Experiment 2. When stimulus i is presented, v(i, i) denotes the drift/rate of correct categorization, while v(i, ¬i) denotes the drift/rate of erroneous
categorization, i.e. a stimulus j ≠ i is reported. Five models are considered: Wiener FPT model; Wiener race model with ∆ = 0 and ∆ > 0; OU race model with ∆ = 0 and
∆ > 0; Poisson counter model (results taken from Nielsen et al., 2015). With an abuse of notation, here we denote by λi the threshold level Si in the Wiener FPT model. For
each participant, the best model, according to the ∆AIC criterion (see Table 3), is highlighted in bold face.

Experiment 2, Landolt rings, all participants.
Measure KK SK

W FPT W∆=0 W∆>0 OU∆=0 OU∆>0 Poisson W FPT W∆=0 W∆>0 OU∆=0 OU∆>0 Poisson

Min v(i, i) 5 7 7 7 11 40 8 10 11 10 11 54
Average v(i, i) 7 9 9 9 13 54 10 12 12 12 12 63
Max v(i, i) 9 11 11 11 15 70 12 14 14 14 14 71
Min v(i, ¬i) −688 −688 −63 −46 −63 0 −288 −96 −176 −3324 −3324 0

Average v(i, ¬i) −274 −270 −37 −25 −29 1 −34 −18 −18 −510 −510 3
Max v(i, ¬i) −7 0 0 1 3 10 −1 5 5 5 5 20

Min λi 0.113 0.111 0.111 0.111 0.129 0.134 0.144 0.151 0.144 0.150
Average λi 0.126 0.126 0.126 0.126 0.145 0.166 0.176 0.181 0.176 0.180
Max λi 0.149 0.146 0.146 0.146 0.167 0.219 0.227 0.228 0.227 0.226
t0 (ms) 17 16 16 16 16 18 17 16 17 16 17 20
∆ (ms) 1.3 e−7 0.379 1.58 1.98

h 4.5 e−3 5.6e−27 0.00158 0.18769
τ (ms) 407 36 1413930 397110

Measure MF MR
W FPT W∆=0 W∆>0 OU∆=0 OU∆>0 Poisson W FPT W∆=0 W∆>0 OU∆=0 OU∆>0 Poisson

Min v(i, i) 3 5 5 8 8 24 3 5 5 11 13 19
Average v(i, i) 6 8 8 11 11 44 6 8 8 15 16 35
Max v(i, i) 7 10 10 12 13 55 10 12 12 21 22 54
Min v(i, ¬i) −58 −58 −58 −508 −508 0 −78 −637 −40 −94 −31 0

Average v(i, ¬i) −22 −22 −22 −100 −100 1 −15 −55 −7 −2 0 2
Max v(i, ¬i) 1 1 1 4 4 7 0 3 3 10 11 10

Min λi 0.121 0.137 0.145 0.146 0.173 0.0186 0.0186 0.214 0.214
Average λi 0.141 0.155 0.155 0.164 0.165 0.192 0.204 0.240 0.240 0.238
Max λi 0.186 0.194 0.194 0.206 0.207 0.231 0.245 0.245 0.296 0.290
t0 (ms) 16 15 18 15 16 19 18 17 17 16 16 22
∆ (ms) 2.703 0.843 2.8 e−7 2.51

h 0.99997 0.30021 0.00174 0.47295
τ (ms) 43 42 27 25
Table 5
Estimates of the negative log-likelihood, p values and ∆AIC for all participants in Experiment 2 for the Wiener and OU race models with ∆ = 0 and ∆ > 0, and for Poisson
(results taken fromNielsen et al., 2015). For the representative participantMF, theWiener FPTmodel is also considered. Each p valuewas obtained by a Kolmogorov–Smirnov
test summarizing the results of Monte Carlo tests based on the χ2 test statistic (17). For each participant, the ∆AIC is obtained as the difference between the AIC of the model
and the minimum of the AICs for all models, i.e. ∆AIC = 0 for the best model, which is highlighted in bold face.

Estimates of the negative log-likelihood, p values and ∆AIC for all participants in Experiment 2.
Measure KK SK

W FPT W∆=0 W∆>0 OU∆=0 OU∆>0 Poisson W FPT W∆=0 W∆>0 OU∆=0 OU∆>0 Poisson

−lN 2974.13 2949.91 2949.89 2949.56 2942.67 3012 3407.22 3285.70 3282.33 3285.70 3282.31 3360
p-value 0.486 0.175 0.182 0.240 0.228 0.053 0.0001 0.194 0.552 0.121 0.563 0.805
∆AIC 56.9 8.5 12.4 9.8 0 132.7 249.8 2.7 0 4.7 2.0 151.3

Measure MF MR
W FPT W∆=0 W∆>0 OU∆=0 OU∆>0 Poisson W FPT W∆=0 W∆>0 OU∆=0 OU∆>0 Poisson

−lN 4084.37 4061.08 4061.08 4054.47 4053.77 4086 4677.56 4686.51 4686.51 4663.01 4662.60 4697
p-value 0.018 0.736 0.796 0.929 0.808 0.918 0.690 0.215 0.236 0.810 0.204 0.742
∆AIC 57.8 11.2 15.2 0 2.6 61.1 27.1 45.0 49.0 0 3.2 66.0
of wrong reports among all 9 stimulus digits and 4 participants,
namely 15 out of 36 times. Interestingly, all Gaussian race models
provide satisfactory fits. A summary of the parameter estimates
is listed in Table 2. For participants KK and MA, the fitted values
of ∆ are smaller than 0.3 ms, and thus it is not surprising that
undistinguishable results are obtained for ∆ = 0 and ∆ > 0.

8.1. Model validation

Except for the Wiener race model with ∆ = 0 for participant
MF, the estimated values of t0 for all participants and models are
between 10 and 20ms (cf. Table 2). Thus, no categorization is done
at exposure duration t1 = 10 ms ≤ t̂0, i.e., p1(i, j) = 0 and
p1(i; 0) = 1 for all i, j = 1, . . . , 9, and the χ2 test statistic (17)
is available only in 63 out of 72 experimental conditions. Fig. 3
shows the QQ plots of estimated versus simulated (under the best
model selected by the ∆AIC criterion) p values for the 63 available
experimental conditions and for all participants. Table 3, second
row, contains the p values from the Kolmogorov–Smirnov two
sample goodness of fit test for all models and participants. For
participant MF, the maximum likelihood fits (Fig. 1) were close
to the data for Gaussian race models, however, the deviations
between estimated and simulated p values were significant at a
10% significance level, with p ranging between 0.015 and 0.071.
For participants KK, MA and MR, both the Wiener and the OU race
models (with ∆ = 0 and ∆ > 0) provide satisfactory fits, with p
values higher than 0.1. On the contrary, the Poisson counter model
fails for all participants, while the FPT counter model provides
satisfactory fit only for participant MR.
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Fig. 6. Evaluations of the bestmodel (according to the∆AIC criterion) for participants KK, SK, MF andMR, respectively, in Experiment 2: QQ plot of estimated p values against
p values simulated under the null hypothesis for the 56 experimental conditions having an observed finite χ2 test statistics (17), i.e. for all 8 orientation gaps and exposure
durations except t1 = 10 ms < t̂0 . The plotted points fall approximately along the diagonal, suggesting that the estimated p values come from a population with the same
distribution as the p values that are simulated under the null hypothesis.
8.2. Model selection

Except for participant MF, the Wiener and the OU race models
provide satisfactory fit of the data. Since themodel with∆ = 0 can
be considered a submodel of themodel with∆ > 0 for∆ → 0, we
expectmodelswith∆ > 0 tominimize the negative log-likelihood
compared to ∆ = 0. This is seen in Table 3, first row, except for
a few cases where they are close, coinciding with estimates of ∆

practically being 0 (Table 2). The results of model selection by ∆AIC
are listed in Table 3, third row. The values of ∆AIC suggest to select
the OU race model with ∆ = 0 for participant KK, the Wiener race
model with∆ = 0 for participant MA, theWiener racemodel with
∆ > 0 for participant MF and the OU race model with ∆ > 0
for participant MR. From Tables 2 and 3, we notice that a key role
is played by the estimated values of τ and ∆. If ∆ is very small,
the estimates of the negative log-likelihood −lN are close to that
for ∆ = 0, which will then be selected by the ∆AIC having fewer
parameters. Similarly, if τ̂ is large, as happens for participant MF,
then the OU racemodel approaches theWiener process, whichwill
then be selected by the ∆AIC having fewer parameters.

9. Results for Landolt rings (Experiment 2)

Also for the Landolt rings, we perform parameter estimation
and goodness of fit of the Gaussian models, and compare them
with the Poisson counter model. The proportion of null reports is
close to one at exposure durations below 20 ms. Fig. 4 shows the
observed (black) and fitted proportions of correct and erroneous
reports for theWiener FPT,Wiener andOU racemodelswith∆ = 0
for all orientation gaps for participant MF. The error bars show 95%
confidence intervals of the observedproportions. Indistinguishable
results are obtained for the Gaussian race models with ∆ > 0. As
before, the FPT model does not provide a satisfactory fit, failing to
capture the non-monotonic behavior of the probability of wrong
reports. If we compare the performance of the same participant
on the two experiments, we notice that here the probability of
correct reports is lower than before, suggesting that orientation
gaps in the Landolt rings are more difficult to identify than digits.
Satisfactory fits are obtained for all participants (Figs. 10–12), as
also confirmed by Fig. 5, where we depict p̂4;o(i, j), p̂4;best(i, j)
and p̂4;worse(i, j), i.e., the observed and fitted estimates under
the best/worse Gaussian models, respectively, for the exposure
duration yielding most often the highest probability of wrong
reports, in this experiment t1 = 40 ms, i.e., k = 4. Also in this
case, the likelihood fits are close for all models. As expected from
intuition, themost commonwrong reports are the orientation gaps
which are nearest to those shown, e.g., SE or NE when orientation
gap E is presented. A summary of the parameter estimates is listed
in Table 4.

9.1. Model validation

For all participants and models, the estimated values of t0 are
larger than 14 ms, yielding p1(i, j) = 0, p1(i, 0) = 1, i, j =
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Fig. 7. Observed proportions of correct and erroneous reports for stimulus digits 1, . . . , 9 as functions of exposure duration for participant KK in Experiment 1. Odd columns:
probability of correct report. Even columns: probability of false report. Filled circles: observed proportions. The error bars show 95% confidence intervals of the observed
proportions. The continuous lines denote the predictions generated by the overall maximum likelihood fit of theWiener FPT model (pink lines), theWiener race model with
∆ = 0 (blue lines) and the OU race model with ∆ = 0 (red lines) to the data of participant KK when σ 2

i = 1. Indistinguishable results are obtained for the Wiener and OU
race models with ∆ > 0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
1, . . . , 8 for t1 = 10 ms. Therefore, only 7 exposure durations for
each of the 8 orientation gaps lead to a finite χ2 statistics (17).
Fig. 6 shows the QQ plots of estimated versus simulated (under
the best model selected by the ∆AIC criterion) p values for the 56
available experimental conditions and for all participants. Except
for the Wiener FPT model, which has p = 0.018, all other models
provide satisfactory or excellent fits, since the p values obtained
by the Kolmogorov–Smirnov test are all larger than a 10% critical
level (see the second row of Table 5). Note that the Poisson counter
model fails for participant KK. Thus, by the Kolmogorov–Smirnov
test, we found no signs of systematic deviations between the data
and the Gaussian race models for the 4 participants.
9.2. Model selection

Except for the Wiener FPT model for participants SK and MF,
the Wiener and the OU race models as well as the Poisson counter
model (except for participant KK) provide satisfactory fit of the
data. For all participants, the OU racemodel with∆ > 0minimizes
the fitted negative log-likelihood. If we take into account the
number of parameters, the ∆AIC suggests to select the OU race
model with ∆ = 0 for participants KK and MF and with ∆ > 0
for participant MR. The Wiener race model (with ∆ > 0) is only
selected for participant SK, even if the OU race model with ∆ > 0
has also substantial evidence, having ∆AIC = 2. From Table 4 we
notice that τ̂ = 407 and 1 413 930 ms for the OU race models
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Fig. 8. Observed proportions of correct and erroneous reports for stimulus digits 1, . . . , 9 as functions of exposure duration for participantMA in Experiment 1. Odd columns:
probability of correct report. Even columns: probability of false report. Filled circles: observed proportions. The error bars show 95% confidence intervals of the observed
proportions. The continuous lines denote the predictions generated by the overall maximum likelihood fit of theWiener FPT model (pink lines), theWiener race model with
∆ = 0 (blue lines) and the OU race model with ∆ = 0 (red lines) to the data of participant MA when σ 2

i = 1. Indistinguishable results are obtained for the Wiener and OU
race models with ∆ > 0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
with ∆ = 0 for participants KK and SK, respectively, and τ̂ =

397 110 ms for the OU race model with ∆ > 0 for participant SK.
Thus these models approach the Wiener race models, which are
then selected having fewer parameters.

10. Robustness of the model selection

Here we perform a model recovery simulation of 100 data sets
to investigatewhether synthetic data generated by theWiener race
model is correctly identified by the proposed ∆AIC criterion. Fur-
thermore, we illustrate on one simulated data set from each of
the remaining Gaussian race models with different parameter set-
tings. Due to the long computational time required, the Wiener
FPT model is not analyzed here. In all simulations we choose the
same exposure times as in the experiments, and set n = 8, t0 =

15 ms, h = 0.5 and σ 2
= 1, having a total of 8n2

= 512 inde-
pendent simulated frequencies nijk, as many as in Experiment 2.
Moreover, v(i, j), v(i, i) and λi, i, j = 1, . . . , n, i ≠ j are ran-
domly generated from a uniform distribution in (−50, 4), (7, 15)
and (0, 0.5), respectively, yielding a percentage of independent
non-null entries between 20% and 25%. These values were chosen
to resemble the fitted values coming from the two Experiments.

First we simulate the 100 data set, each of 512 frequencies,
from a Wiener race model with ∆ = 0. In 93% of the cases,
the correct model is selected by the ∆AIC criterion. A Wiener race
model with ∆ > 0 and OU race model with ∆ = 0 are selected in
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Fig. 9. Observed proportions of correct and erroneous reports for stimulus digits 1, . . . , 9 as functions of exposure duration for participantMR in Experiment 1. Odd columns:
probability of correct report. Even columns: probability of false report. Filled circles: observed proportions. The error bars show 95% confidence intervals of the observed
proportions. The continuous lines denote the predictions generated by the overall maximum likelihood fit of theWiener FPT model (pink lines), theWiener race model with
∆ = 0 (blue lines) and the OU race model with ∆ = 0 (red lines) to the data of participant MR when σ 2

i = 1. Indistinguishable results are obtained for the Wiener and OU
race models with ∆ > 0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the remaining 2% and 5% of the cases, respectively. Nevertheless,
in all cases when the correct model is not recovered, it still has
substantial evidence having ∆AIC ≤ 2.

As an illustration, we then generate one data set for each of
the remaining race models under different parameter choices. The
Wiener race model is correctly recovered when data sets from a
Wiener process with ∆ = 5 or ∆ = 10 ms are generated. When
generating from an OU race model with ∆ = 0, the ∆AIC criterion
selects the correct model when τ = 10, 25, 50ms, and theWiener
race model with ∆ = 0 when τ = 100, 1000, 10 000 ms, even
if the OU race model with ∆ = 0 has still substantial support
having ∆AIC ≤ 2. All results agree with the theoretical discussion
in Section 7.1. The only case where the model recovery fails is for
the OU racemodel with∆ > 0, where the samemodel with∆ = 0
is chosen instead.

11. Discussion

The Gaussian race model for visual identification of mutually
confusable single stimuli in pure accuracy tasks yielded satisfac-
tory performances in Experiment 1, where participants identified
briefly presented single digits, and excellent performances in Ex-
periment 2, where participants identified orientation gaps in Lan-
dolt rings. In both experiments, themodel provided close fits to the
proportion of correct reports, increasing with increasing exposure
duration, and to the non-monotonic behavior of the proportion of
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Fig. 10. Observed proportions of correct and erroneous reports for Landolt rings (with gaps centered at E, NE, N, NW,W, SW, S and SE, respectively) as functions of exposure
duration for the representative participant KK in Experiment 2. Odd columns: probability of correct report. Even columns: probability of false report. Filled circles: observed
probabilities. The error bars show 95% confidence intervals of the observed proportions. The continuous lines denote the predictions generated by the overall maximum
likelihood fit of theWiener FPTmodel (pink lines), theWiener racemodel with∆ = 0 (blue lines) and theWiener racemodel with∆ > 0 (red lines) to the data of participant
KK when σ 2

i = 1. Indistinguishable results are obtained for the OU race models with ∆ = 0 and ∆ > 0. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
erroneous reports as exposure duration increased. Such fits were
made for individual participants and individual stimuli. Less sat-
isfactory fits were obtained for the Wiener FPT model and for the
Poisson counter model, which were not entirely able to catch the
non-monotonic behavior of the probability of erroneous catego-
rization.

In Experiment 1, the deviations between predicted and
observed data were significant at a 10% significance level by a
Kolmogorov–Smirnov goodness of fit test, for each participant for
the Poisson counter model, for participants KK, MA and MF for
the Wiener FPT model and for participant MF for the Gaussian
race models. In Experiment 2, the Poisson counter model fails for
participant KK, the Wiener FPT model for participants SK and MF,
while the Gaussian race provides always satisfactory fit, with p
values higher than the 10% critical level.

Model selection was then carried out considering ∆AIC values,
which take into account both the fit of the model, judged by the
likelihood, and the number of parameters. Neither the Poisson
counter model nor the Wiener FPT model is ever selected. In
contrast, either the Wiener or the OU race models with ∆ = 0
or ∆ > 0 are selected for all participants and experiments. A key
role is played by the estimated values of τ , h and ∆. If τ̂ is large,
then the OU race models approach the Wiener process, which will
then be selected by the ∆AIC having fewer parameters. Similarly, if
∆̂ is very small or h → 1 and the fitted likelihood is similar to that
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Fig. 11. Observed proportions of correct and erroneous reports for Landolt rings (with gaps centered at E, NE, N, NW,W, SW, S and SE, respectively) as functions of exposure
duration for the representative participant SK in Experiment 2. Odd columns: probability of correct report. Even columns: probability of false report. Filled circles: observed
probabilities. The error bars show 95% confidence intervals of the observed proportions. The continuous lines denote the predictions generated by the overall maximum
likelihood fit of theWiener FPTmodel (pink lines), theWiener racemodel with∆ = 0 (blue lines) and theWiener racemodel with∆ > 0 (red lines) to the data of participant
SK when σ 2

i = 1. Indistinguishable results are obtained for the OU race models with ∆ = 0 and ∆ > 0. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
under ∆ = 0, then the model with ∆ > 0 approaches that with
∆ = 0, which will be selected having fewer parameters.

Combining the model validation and selection, we suggest
choosing the OU race model with ∆ > 0 to perform the analysis
for visual identification of mutually confusable single stimuli in
pure accuracy tasks. Then, if the fitted values of τ are large, we
recommend to proceed with the fit of the Wiener race model. If
the fitted values of ∆ are small, we recommend to proceed with
a model with ∆ = 0. Based on our results, we cannot conclude
whether or not stimulus sampling continues after the stimulus
offset.

Returning to the fundamental question regarding the nature
of identification processing raised in the introduction: is evidence
accumulation in identification tasks a discrete or continuous
process? Our re-analyses of the data from Kyllingsbæk et al.
(2012) suggest that a continuous OU race model may account
in more detail for the results from the two non-forced pure
accuracy identification experiments than the simple discrete
Poisson counter model. It is also noteworthy that the successful
drift diffusion model (Ratcliff, 1978) assuming decisions that are
based on FPT was not chosen over the Gaussian race models,
despite outperforming the simple Poisson counter model in most
cases. Finally, we would like to point out that despite the Poisson
counter model was never selected over the other models, it can
still be used as an approximating model, due to its simplicity
and mathematical properties (quantities of interest are available
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Fig. 12. Observed proportions of correct and erroneous reports for Landolt rings (with gaps centered at E, NE, N, NW,W, SW, S and SE, respectively) as functions of exposure
duration for the representative participant MR in Experiment 2. Odd columns: probability of correct report. Even columns: probability of false report. Filled circles: observed
probabilities. The error bars show 95% confidence intervals of the observed proportions. The continuous lines denote the predictions generated by the overall maximum
likelihood fit of the Wiener FPT model (pink lines), the Wiener race model with ∆ = 0 (blue lines) and the OU race model with ∆ = 0 (red lines) to the data of participant
MR when σ 2

i = 1. Indistinguishable results are obtained for the Wiener and OU race models with ∆ > 0. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
in closed form) as well as for the possibility of interpreting each
parameter, e.g., the rate v(i, i), in the framework of the Theory of
Visual Attention (Bundesen, 1990).

The present analyses have focused on accounting for data
from non-forced pure accuracy identification tasks where the
processing time of the stimuli is controlled by backward masking.
This type of paradigms has previously been termed time controlled
paradigms in contrast to information controlled paradigms such as
response terminated choice reaction time tasks (see Ratcliff, 1980).
Given the success of drift diffusion models that base decisions
on FPTs it is natural to ask how the present models would have
fared if reaction times had been recorded and included in the data
analyses, see e.g. Jones, Hawkins, and Brown (2015). However,
given the large number of responses in the present identification
tasks (9 in the digit task and 8 in the Landolt rings task), it was not
feasible to design the paradigms of Experiments 1 and 2 as speeded
reaction time tasks. In future research using a more constrained
stimulus–response set, it would be interesting to include reaction
time measures in the comparison of continuous and discrete
models of identification.
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Appendix

Estimation of the parameter vector φ in R

Since the parameter values of t0, τ and ∆ need to be positive
and h ∈ [0, 1), maximizing the log-likelihood is a constrained
optimization problem. It is also required that Si > 0 for theWiener
FPT model and λi > 0 for the Gaussian race model, but this caused
no problem in the present implementation. Furthermore, since for
each participant and experiment there exist some stimulus i and
response j such that p(i, j) > 0 for exposure duration as small
as t1 = 20 ms, we require t0 ∈ (0, 20) ms. These conditions
can be imposed by transforming natural parameters into working
parameters, using the following code in R:
t0<- exp(-abs(t0))/50 #To have t0 in (0,0.02)s =(0,20)ms
tau<-tau^2
delta<-exp(-abs(delta)) #To have Delta in (0,1)s=(0,1000)ms
h<-exp(-abs(h))

We then minimize −lN(φ) given by (16) by means of the function
optim using different optimization methods, such as the default
Nelder and Mead, BFGS and SANN. For the Gaussian counter
models, the probabilities p(i, j) involve a combination of pdfs and
cdfs which are normal for the Gaussian race model, and inverse
Gaussian for the Wiener FPT model. The functions dnorm and
pnorm are used to evaluate pdf and cdf from a normal distribution,
while dinvgauss and pinvgauss, available in the R-package
‘‘statmod’’, are used to evaluate pdf and cdf from an inverse
Gaussian distribution. Since lN(φ) is a complicated function of φ,
it can frequently happen that it has several local maxima. To find
the global maximum, sensible starting values are paramount. We
set all parameters in the starting value φ0 to 0.1 and carry out the
estimation procedure. To reduce the influence of the starting value
in the optimization procedure, we then use the obtained estimate
φ̂ as a new starting value φ0. We repeat this procedure until φ0
and the estimated parameters yield approximately the same value
of −lN . We then repeat the entire procedure choosing 1 instead
of 0.1 as initial parameter values. Moreover, to further reduce
the risk of finding a local minimum, other optimization functions
(e.g. de-optim, dfsane or nmk in the BB and dfoptim packages,
respectively) have also been tried, yielding the same results. Once
φ̂ has been obtained, we calculate the natural parameters starting
from the estimated working parameters.

Model validation in R

Once themodel parametersφ have been estimated, we perform
model validation as described in Section 7. The expected number
of j = 1, . . . , n responses Ej is equal to 0 if t1 ≤ t̂0. This
happens when t1 = 10 ms, and therefore there are only 63
and 56 available experimental conditions in Experiments 1 and 2,
respectively, yielding a finite value of the χ2 test statistics (17).
For each participant and experiment, we proceed as follows. For
each available experimental condition, we estimate the p value
corresponding to the computed χ2 value by using the function
chisq.test and the following code
chisq.test(x=O,p=E,simulate.p.value=TRUE,B= 1000,rescale.p = TRUE)$p.value
where O and E are the vectors of observed and expected
probabilities of j responses and B = 1000 is the number of times
we simulate the 100 trials. The null distribution of the p values
is approximated by a distribution of 6300 (5600) p values, 100 p
values for each experimental condition. Each p value was obtained
by computing a χ2 value, χ2

sim, for 100 simulated trials, with
simulated numbers Osim;j of responses j obtained by the function
rmultinom, and calculating the corresponding p value as before,
with the vector O replaced by the vector Osim. Finally, the goodness
of fit statistic was found by a Kolmogorov–Smirnov two-sample
test of the 63 (56) estimated p values against the 6300 (5600)
simulated p values at a 10% significance level using the function
ks.test.
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