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1 Introduction

In recent years there has been tremendous progress in our understanding of scattering

amplitudes in quantum field theory. The developments have been most notable for max-

imally supersymmetric (N = 4) Yang-Mills theory (SYM) (see e.g. [1–3] and references

therein). New discoveries include results at high loop level [4–18], the existence of infinite

dimensional Yangian symmetries [19] as a result of combining superconformal and dual

superconformal invariance [20, 21], and integrability [22, 23].

These advances have motivated a new formulation of the foundations of field theory

that incorporates these structures at a fundamental level. The new approach relies on

novel mathematical and geometrical objects such as the Grassmannian [24–29], on-shell

diagrams [30] and the amplituhedron [31–37]. So far, most of the new results have been

confined to the planar limit of N =4 SYM. It is natural to ask whether, and if so how, these

ideas extend beyond the planar sector. With this goal in mind, the study of non-planar on-

shell diagrams [38–42] and the non-planar amplituhedron [43] has been recently initiated.

The all-loop integrand in planar N = 4 SYM can be constructed directly in terms of

on-shell diagrams [30, 44]. While at present it is not known whether non-planar on-shell

diagrams provide sufficient building blocks for directly expressing non-planar scattering
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amplitudes in the same way, they clearly encode complete information about the theory

— sufficient to reconstruct amplitudes at all orders using (generalized) unitarity [45, 46]

(see also [47–49] for more recent developments). At least for N =4 SYM, it has long been

known that only a finite number of distinct on-shell functions exist : all-order information

is captured by a finite (and small) number of elementary objects. And yet (beyond the

case of MHV amplitudes [38]), very little is known about their scope or relations beyond

the planar limit.

We seek to improve our understanding of these functions through a systematic survey

of concrete examples. We describe a general procedure to explore the space of functions for

general amplitudes, and we use this to completely classify the on-shell functions relevant

to the 6-particle NMHV amplitude. This program is made possible through the corre-

spondence between on-shell functions and cluster sub-varieties of Grassmannian manifolds

described in ref. [30]. We refer to the cluster varieties associated with on-shell functions as

on-shell varieties.

There remain many important and fundamental open questions about non-planar on-

shell varieties. In this work, we begin to answer some of these questions through a complete

classification in the case of G(3, 6). We will find that much of the simplicity of positroids

(the on-shell varieties of planar on-shell functions) is preserved, but that important new

features also arise. We illustrate these novelties with examples from G(3, 6), and describe

what aspects we expect to be preserved more generally.

This work is organized as follows. In section 2 we provide a lightning review of the

basic correspondence between on-shell functions and Grassmannian geometry. We describe

the map between on-shell diagrams and on-shell varieties and the basic operations from

which each can be built. There exist two known equivalence transformations among on-

shell diagrams that leave their on-shell functions and the corresponding on-shell varieties

unchanged; these are cluster mutations for the variety. All diagrams related to a planar

(positroid) on-shell variety are related by these transformations alone. Is this true for

non-planar varieties? We find that this continues to be true for at least G(3, 6).

In section 3, we describe how the space of on-shell varieties can be surveyed by direct

construction of representative on-shell diagrams. We describe two systematic approaches

to building non-planar on-shell diagrams from planar ones: by attaching BCFW bridges ;

and by gluing additional external legs. Of these, only the latter is truly general. While

representatives of all planar on-shell diagrams can be obtained through a sequence of

BCFW bridges, we find that this fails in general. In particular, we find exactly two 9-

dimensional on-shell varieties of G(3, 6) that cannot be obtained through a sequence of

bridges. These varieties are represented by the diagrams,

and (1.1)
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In addition to these, we find 22 other top-dimensional varieties (all bridge constructible).

These examples, and some of their novel features are described in more detail in section 4.

In appendix A, we give representative diagrams for all 24 top-dimensional varieties that

exist, together with their volume forms expressed in Plücker coordinates. We also provide

representatives of all (10) co-dimension one on-shell varieties (corresponding to leading

singularities) in appendix B. For each representative leading singularity, we have given an

explicit formula for the corresponding on-shell function in terms of spinor-helicity variables.

In appendix C, we outline the classification of the higher co-dimension on-shell varieties of

G(3, 6) — all of which are positroid varieties below dimension 6.

2 Grassmannian representations of on-shell diagrams

There exists a fundamental and deep correspondence between on-shell diagrams in quantum

field theory and cluster varieties in the Grassmannian. In this section, we sketch the

essential ingredients of this story, illustrating all of the essential ideas required for the study

of non-planar on-shell varieties for maximally supersymmetric (N = 4) Yang-Mills theory

(SYM). The on-shell functions of SYM correspond to (generally non-planar) undirected

graphs called on-shell diagrams constructed from two fundamental vertices,

and (2.1)

which represent the three-particle amplitudes of N =4 SYM. Examples of on-shell diagrams

constructed from these vertices can be seen in (1.1). Let n denote the number of external

legs of the diagram. For a trivalent diagram with nI internal edges, nB black vertices and

nW white vertices, it is convenient to define

k ≡ 2nB + nW − nI . (2.2)

We will refer to an on-shell diagram as planar if it admits an embedding on the disk

without crossings and for which all external lines are along the boundary of the disk; a

non-planar diagram is one that does not admit such an embedding.

As described in ref. [30], for any on-shell diagram there exists a corresponding subman-

ifold C⊂G(k, n) of the Grassmannian of k-planes in n dimensions. We will often consider

this submanifold as being represented by a k×n matrix C≡(c1, . . . , cn), with the columns

ca ∈Ck indexed by the labels of the external legs, a ∈ {1, . . . , n}. (When the diagram is

planar, it is natural to order the columns according to the diagram’s plane embedding;

but no preferred ordering exists for non-planar diagrams.) The on-shell diagram endows

the submanifold C with canonical (e.g. cluster) coordinates {αi} and a volume-form Ω.

– 3 –
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We refer to coordinates as being canonical if, when expressed in terms of them, Ω takes

the form:

Ω =
dα1

α1
∧ · · · ∧ dαd

αd
. (2.3)

Notice that we have used ‘d’ to denote the number of cluster coordinates. This number

need not be equal to the dimensionality of the corresponding variety; there can be degen-

eracies among the coordinates. Nevertheless, the number of cluster coordinates is a useful

characteristic for any graph Γ; for a graph with nV vertices,

d(Γ) = 2nV − nI
(trivalent)

= n+ nI − nV
(general valency)

= nF − χ, (2.4)

where nF counts the number of cycles (including boundaries along which external edges

terminate) of an embedding of Γ on a surface with Euler characteristic χ.

2.1 On-shell functions and equivalence relations

The physical significance of this correspondence between Grassmannian geometry and on-

shell diagrams follows from the fact that on-shell diagrams represent physically important

functions called on-shell functions. The on-shell function fΓ associated with an on-shell

diagram Γ can be represented according to:

fΓ ≡
∫

ΩC δk×4
(
C(α)·η̃

)
δk×2

(
C(α)·λ̃

)
δ2×(n−k)

(
λ·C⊥(α)

)
. (2.5)

The details of this formula need not concern us here. (The interested reader should refer to

ref. [1].) But this correspondence makes manifest two equivalence transformations among

on-shell diagrams that leave the corresponding on-shell functions unchanged. The first of

these transformations is fairly trivial: any chain of same-colored vertices can be arbitrarily

rearranged — e.g.,

⇔ ⇔ (2.6)

This equivalence relation naturally suggests that we define higher-valency vertices so that

all on-shell diagrams are made bipartite, trivializing the relation (2.6). (Bivalent vertices

of either color can also be added to any edge without affect; this provides another way

to render any on-shell diagram bipartite.) This is arguably the right thing to do, and

greatly simplifies much of the analysis. Note, however, that several of the characteristics

of diagrams quoted herein such as the formula for k in (2.2) must be altered accordingly:

for a bipartite graph involving nW white vertices and nvB of black vertices with valency v,

k would given by:

k ≡
(∑

v

(v−1)nvB

)
+ nW − nI . (2.7)
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The second equivalence relation among on-shell diagrams is much more interesting. It

is the so-called square-move [50]:

⇔ (2.8)

This equivalence relation has nothing to do with planarity, and corresponds to a cluster

mutation for the on-shell variety. (And because cluster mutations are volume-preserving,

this is guaranteed to leave invariant the on-shell function (2.5).)

These two equivalence relations leave invariant both on-shell functions and on-shell

varieties. For planar on-shell diagrams it can be shown that two diagrams correspond to

the same positroid variety iff they are related through a sequence of mergers (2.6) and

square moves (2.8). It remains an open question whether or not this remains true for

non-planar on-shell diagrams. Specifically, is it possible for two on-shell diagrams, not

related by mergers and square moves, to correspond to the same on-shell variety or on-

shell function? Our surveys have found no example of this happening, and we conjecture

that no further equivalence relations among diagrams exist.

2.2 Iteratively building-up on-shell diagrams and on-shell varieties

In the next section, we will review how canonical coordinate charts can be obtained for

any on-shell diagram directly. But let us first describe how the correspondence between

on-shell diagrams and on-shell varieties can be understood in more geometric terms — by

building-up any diagram sequentially from the fundamental vertices (2.1).

Any on-shell diagram can be constructed through a sequence of two fundamental oper-

ations: combining graphs into larger (disconnected) graphs, and gluing legs together. The

first of these operations acts in the obvious (and trivial) way on the varieties associated

with the graphs. Given on-shell diagrams ΓL and ΓR, we can define their outer product

according to:

(ΓL,ΓR) 7→ (ΓL⊕ΓR),
(CL, CR) 7→ (CL⊕CR)∈G(kL+kR, nL+nR)

(ΩL,ΩR) 7→ ΩL ∧ ΩR with d = dL+dR
. (2.9)

Less trivially, any two legs of an on-shell diagram can be glued together, resulting in

a diagram with two fewer legs. Notice that this operation reduces k by one (see equa-

tion (2.2)). The following illustrates the result of gluing external legs:

⇒ (2.10)
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This operation on the diagram acts on the corresponding variety according to:

G(k+ 1, n+ 2) 3 C0 7→ C∈G(k, n) with ci 7→ ci ∩ (cA+cA′)
⊥

Ω0 ≡ Ω̃0 ∧
dαA
αA
∧ dαA

′

αA′
7→ Ω̃0 ∧

dαAA′

αAA′
with d0 7→ d0−1

(2.11)

Geometrically, the columns ci∈Ck+1 of C0 are projected onto the (k-dimensional) orthog-

onal complement of the span of (cA+cA′). Notice that the number d of cluster coordinates

always reduces by one.

The two operations above are defined without respect to planarity and can be used

to iteratively construct the on-shell variety (together with canonical coordinates) from

those of the fundamental three-particle vertices (2.1) for any on-shell diagram. Because

any non-planar diagram can be constructed from a planar one by iteratively gluing legs

together, much of the structure of general on-shell varieties is inherited from that of planar

varieties — positroids. While the discussion so far is sufficient to explore general on-shell

varieties, it is worth describing one more way that they can be iteratively constructed —

through the addition of so-called ‘BCFW bridges’ between legs. While not sufficient to

generate all non-planar on-shell diagrams (as evidenced by (1.1)), those graphs that can

be constructed using BCFW bridges forms an interesting sub-class of on-shell diagrams

(including all planar diagrams).

Building with BCFW bridges. One final way that on-shell diagrams can be iteratively

built from simpler ones is by adding so-called BCFW bridges. Adding a bridge ‘(a b)’

attaches a white (blue) vertex to the leg labelled a (b), and a new internal line between

these vertices. The legs a and b need not be adjacent. Under this operation, the on-shell

variety is transformed in a very simple way:

(a b) : (c1, . . . , cb, . . . , cn) 7→ (c1, . . . , c
′
b, . . . , cn) with c′b ≡ cb+α ca

Ω 7→ Ω ∧ dα
α

with d 7→ d+ 1
, (2.12)

shifting column cb by column ca by an amount parameterized by the (canonical) coordi-

nate α. Because this new coordinate is canonical, the volume form Ω is transformed in the

obvious way — namely, multiplying it by a factor of dα/α.

To illustrate this operation, consider the following example:

⇒
(13)

(2.13)

Starting from any canonical coordinate chart for the initial on-shell variety, we obtain a

coordinate chart for the new variety in a simple way. For the example above (2.13),


c1 c2 c3 c4 c5 c6

0 1 α3 α3α5 0 0

0 0 0 1 α2 α2α4

α1 α1α6 0 0 0 1

⇒
(13)


c1 c2 c′3 c4 c5 c6

0 1 α3 α3α5 0 0

0 0 0 1 α2 α2α4

α1 α1α6 αα1 0 0 1

. (2.14)
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2.3 (Canonical) coordinates, boundary measurements, and volume forms

The discussion above makes it possible to iteratively construct the on-shell variety CΓ(α),

parameterized by canonical coordinates, for any on-shell diagram Γ. But the coordinate

chart obtained in this way depends on how the graph is constructed; and no single coordi-

nate chart suffices to expose all of the boundary configurations of a given on-shell variety.

The boundaries of an on-shell variety will be described in the next section (where we will

also discuss the coordinate charts that allow all boundaries to be reached). But let us first

describe a more general approach to constructing the on-shell variety associated with an

on-shell diagram.

Given any on-shell diagram, the variety C(α) — represented in terms of canonical

coordinates αi — can be obtained as a matrix of boundary measurements for the graph

in the following way. For the sake of this discussion, it is convenient to suppose that the

diagram in consideration has been made bipartite (making use of the equivalence (2.6)).

Boundary measurements for an on-shell diagram are defined with respect to a perfect

orientation — that is, a choice of orientations for the edges of the graph for which every

black vertex has a single outgoing edge and every white vertex has a single incoming edge.

For a bipartite graph, perfect orientations are in one-to-one correspondence with perfect

matchings — subsets of edges for which every internal node is an endpoint of exactly one

edge in the subset.

Perfect matchings can be efficiently determined using generalized Kasteleyn matrices,

which are certain adjacency matrices for the graph [51]. The correspondence between

perfect matchings and perfect orientations is very simple [51, 52]: when a graph is perfectly

oriented, there is one preferred edge at every vertex — the one outgoing (incoming) edge at

each black (white) vertex; these preferred edges must connect pairs of vertices (from black

to white) in non-overlapping subsets, and therefore define a perfect matching. And the

construction of a perfect orientation from a perfect matching is similarly straight-forward.

The correspondence between perfect orientations and perfect matchings is illustrated in

the following example:

⇔ (2.15)

Given an on-shell diagram with a perfect orientation, it easy to construct the matrix

C(α) which encodes its boundary measurements. The basic idea is very simple: provided a

perfect orientation, an on-shell diagram has k incoming external edges called sources, and

(n−k) outgoing edges called sinks ; every edge is assigned a weight αe, and the boundary

measurements are the products of edge-weights along connected all paths from the sources

to the sinks. See refs. [30, 53] for more details.
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To be concrete, suppose the incoming external edges are indexed by ai ∈ A and the

sinks indexed by b∈B; then the matrix-representative of the variety C∈G(k, n) is given by:

cib ≡
∑

γ∈{ai b}

(−1)sγ
∏
e∈γ

αe with ciaj ≡ δij . (2.16)

Here, the sum runs over all oriented paths γ from the source ai to the sink b (geometrically

summing the paths involving closed cycles) and sγ represents an important sign that de-

pends on the details of the path γ. For planar graphs, sγ is crucial for the total positivity

of the resulting boundary measurement matrix. Although there is no sense of positivity

for non-planar graphs, the beautiful combinatorial description of Plücker coordinates in

terms of the matroid polytope suggests how these signs should be fixed. These signs were

first introduced in [54] for diagrams on an annulus, and extended to genus-zero embeddings

with an arbitrary number of boundaries in [53]; a proposal for generic on-shell diagrams

was put forward in [39].

For the sake of illustration, the perfect orientation shown in (2.15) would give rise to

the following boundary measurements:

⇒C(α)≡


c1 c2 c3 c4 c5 c6

−α5(1 +α8) −α2 α6 α7 α8 1 0 0

α1 α5 α1 α2 +α4 α4 α7 0 1 0

−α5 α9 α3 α4 α7(α3α4 +α6α9) 0 0 1

 (2.17)

Here, we have set many of the edge-weights to 1 for reasons that we discuss presently.

The attentive reader will notice a discrepancy between the number d of cluster coor-

dinates quoted in equation (2.4) and the number of edges of a graph. This is due to a

GL(1)-redundancy at each vertex, resulting in nV extra edge coordinates αe. This means

that nV of the edge weights should be set to 1, explaining why only 9 of the 21 edges

had non-trivial weights in the example (2.17). But this redundancy turns out to be useful.

Keeping it manifest, the volume form Ω associated with the boundary measurement matrix

C(α) given in (2.16) would be given by,

Ω ≡

( ∏
vertices v

1

vol(GL(1)v)

) ∏
edges e

dαe
αe

 . (2.18)

Canonical coordinates vs. cluster coordinates. For any on-shell variety C⊂G(k, n)

associated with an on-shell diagram, we refer to any coordinate chart as being canonical if

Ω takes the form given in equation (2.3) — a product of factors of the form dαi/αi. The

edge variables associated with boundary measurements appearing in (2.18) are essentially

the same as BCFW-bridge coordinates; but while these coordinates are canonical, they

are not strictly speaking cluster variables: they do not transform under (2.8) according

to what is ordinarily called a cluster mutation. However, there does exist closely related

– 8 –
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coordinates which do transform as cluster X -coordinates under mutations [30]. And the

existence of these coordinates is why on-shell varieties are cluster varieties [55, 56].

The cluster coordinates of on-shell varieties are called generalized face variables and

were introduced in ref. [57] (see also refs. [39, 58]). We need not review the details of

how these variables are constructed (as their form will not play an important role in our

analysis). But the basic idea is to change from edge variables to face variables, defined

as products of edge-weights along any face of the graph (when embedded on a Riemann

surface). The resulting coordinates are still canonical, but with less redundancy than (all)

edge variables.

Plücker coordinates and generalized matroid data. Perhaps the most familiar co-

ordinate charts used to describe Grassmannian manifolds are the so-called Plücker coordi-

nates — which are just the k× k minors of a matrix representative C ∈G(k, n). As such,

Plücker coordinates are labelled by k-element subsets of the columns, which we will denote

as follows:

(a1 a2 · · · ak) ≡ det
{
ca1 , ca2 , . . . , cak

}
. (2.19)

These coordinates satisfy so-called Plücker relations — which are non-trivial when viewed

as abstract coordinates labeled by k-element subsets, but follow trivially from Cramer’s

rule when they are understood as minors. They are also projective: we are free to set

any one minor to the identity (corresponding to a choice of GL(k) ‘gauge’ for the matrix

representative C). For example, Plücker coordinates for G(3, 6) — in the gauge where

minor (456) is set to the identity — would be given by:

C≡

(156) (256) (356) 1 0 0

(416) (426) (436) 0 1 0

(451) (452) (453) 0 0 1

 . (2.20)

Because Plücker coordinates are good coordinates on the Grassmannian, any other co-

ordinate chart can be expressed in these variables. And thus, for the example given in

equation (2.17), it is possible to change variables from {α1, . . . , α9} to the Plücker coor-

dinates in (2.20), and write Ω in terms of these variables. (The result of this change of

variables is given below in equation (2.25).)

Importantly, Plücker coordinates are not canonical coordinates — and are not obvi-

ously the right coordinates in which to write these volume forms. Nevertheless, we will

find it useful to express volume-forms of on-shell varieties in these coordinates. One reason

for doing this is that the geometric interpretation of the variety is often more clear when

the boundaries are viewed as constraints on Plücker coordinates. This is exemplified in the

case of positroid varieties, for which the top-form expressed in Plücker coordinates always

takes the form,

Ω ≡ Ω0 ×
1

(1 · · · k)(2 · · · k+ 1) · · · (n · · · k−1)
with Ω0 ≡

dk×nC

vol(GL(k))
. (2.21)

(This form of the volume-form for planar on-shell functions was discovered in [25].) A

more detailed discussion of the meaning of this formula can be found in ref. [1]. But we
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should mention that the factor of ‘1/vol(GL(k))’ appearing in (2.21) should be viewed as

an instruction to pick a ‘GL(k)-gauge’ for the matrix C, setting k of the columns to the

identity matrix (as in the example (2.20)); and writing the form as ‘dk×nC’ is motivated by

the fact that, once such a gauge has been chosen, the non-fixed Plücker coordinates simply

correspond to the entries of the matrix C ≡
(
ci1, c

i
2, . . . , c

i
n

)
. (In the examples discussed

below, we will often leave implicit the overall factor Ω0 when expressing volume forms in

Plücker coordinates.)

One advantage to using Plücker coordinates — at least for positroid varieties — is that

it makes clear that boundaries correspond to the vanishing of certain Plücker coordinates.

Thus, every top-dimensional positroid variety has exactly n co-dimension one sub-strata —

obtained by setting one of the consecutive minors in (2.21) to zero. This is a consequence

of the fact that the cluster coordinates for positroid varieties can always be expressed as

ratios of products of Plücker coordinates [1]. This fails to be true more generally, with

boundaries corresponding to often intricate relations among Plücker coordinates.

For example, one of the top-dimensional on-shell varieties of G(3, 6) — number 9 ac-

cording to the classification given in appendix A — has a volume form that, when expressed

in Plücker coordinates, becomes

Ω9 ≡ Ω0 ×
(125)

(123)(134)(156)(245)(256)(16(25)
⋂

(34))
, (2.22)

where the unusual factor is defined according to:

(16(25)
⋂

(34)) ≡ (162)(534)− (165)(234) . (2.23)

This notation is motivated by the fact that there exists a unique point in C3, denoted

‘(25)
⋂

(34)’, at the intersection of span{c2, c5} and span{c3, c4}. The formula for this point

follows easily from (the 3-dimensional form of) Cramer’s rule:

(a b)
⋂

(c d) ≡ ca(b c d)− cb(a c d) = −cc(d a b) + cd(c a b) . (2.24)

Hence the notation used in the definition (2.23).

The appearance of such an unusual pole in the volume form Ω9 in (2.22) illustrates

the richness of geometry that can arise for non-planar on-shell varieties. In particular, this

variety has a co-dimension one boundary obtainable by taking the residue on the support

of (16(25)
⋂

(34))=0 — upon which no single Plücker coordinate vanishes.

Another interesting example is the case of the on-shell diagram and variety given above

in equation (2.17). The volume-form for this variety is denoted Ω24 in our classification;

in terms in Plücker coordinates, it is given by:

Ω24 ≡ Ω0 ×
(456)2

(164)(145)(245)(256)(356)(364)∆
, (2.25)

where the factor ∆ is defined by:

∆≡
√[

(124)(356)− (234)(156) + (235)(146))
]2−4 (145)(356)(126)(234). (2.26)
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It is not hard to verify that ∆, when evaluated for the boundary measurement matrix C(α)

given in (2.17), becomes a perfect square. It arises simply as the Jacobian in the transfor-

mation between coordinates αi in (2.17) to the Plücker coordinates of equation (2.20).

Interestingly, this on-shell variety has only six boundary configurations (as described

in the next section) — all corresponding to the vanishing of one of the Plücker coordinates

appearing in the denominator of (2.25). The factor ∆ does not correspond to a boundary

(at least not one that corresponds to an on-shell variety); nevertheless, on the support of

any of the six Plücker coordinates vanishing, the argument of ∆ becomes a perfect square

— and so contributes novel boundaries at co-dimension 2 involving factors similar to that

appearing in (2.23).

How to study the intricate structure and geometry of the boundaries of on-shell vari-

eties is described in the next section.

2.4 Stratifications of varieties and covering relations

So far, we have given a rapid sketch of the correspondence between on-shell diagrams and

on-shell varieties. In this section, we describe how on-shell varieties are stratified by their

covering relations, and how this stratification can be explored even without the combina-

torial tools (such as those of [59]) that exist for positroid varieties. The most important

ingredient in this analysis will be the notion of the irreducibility of on-shell diagrams repre-

senting on-shell varieties. Recall that the number d of canonical coordinates for an on-shell

variety may exceed the dimension of the corresponding submanifold C(α)⊂G(k, n). This

suggests that we make the following definition.

Definition. An on-shell diagram is said to be reduced if the number of canonical coor-

dinates, d (given in equation (2.4)), is equal to the dimension of its corresponding on-shell

variety C(α)⊂G(k, n) — represented, e.g., by boundary measurements (2.16).

An on-shell diagram that is not reduced is said to be reducible. Because the dimen-

sionality of the on-shell variety is always easy to determine — as the rank of its tangent

space, represented in any (possibly degenerate) coordinate chart — the irreducibility of

any on-shell diagram may be rapidly determined. Conveniently, the GL(1)-redundancies

associated with edge variables do not affect this test, and so the boundary-measurement

matrix analyzed need not have any edge-weights set to 1.

Of particular interest are the boundary configurations of an on-shell variety. These cor-

respond to co-dimension one residues of the volume-form Ω. Recall that this volume-form

is constructed precisely so that it has only (and strictly) logarithmic singularities (2.3); and

so its co-dimension one residues obviously correspond to the vanishing of some canonical

coordinate αi. From the form of Ω expressed in terms of edge variables in (2.18), these

clearly correspond to setting an edge-weight to zero — graphically, to deleting an edge

from the on-shell diagram. Thus, boundary configurations can be represented by on-shell

diagrams with one edge removed.

Definition. An edge of an on-shell diagram is said to be removable if the graph obtained

after its deletion is reduced.
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Conveniently, this definition allows for removable edges to be identified without ref-

erence to any coordinate chart for the corresponding on-shell variety. Thus, given any

on-shell diagram it is easy to identify all its removable edges — the removal of which will

result in a co-dimension one boundary configuration. For example, consider the on-shell

diagram representing variety numbered 20 in the classification given in appendix A; for

this diagram, we can easily identify its three removable edges, drawn in red below:

(2.27)

For planar on-shell diagrams, there is a one-to-one correspondence between removable

edges and boundary configurations. This, however, is not true in general for non-planar

diagrams: the correspondence can be many-to-one. While the varieties obtained from

diagrams where removable edges have been removed surely correspond to boundary con-

figurations, it is not generally true that they are all distinct.

Among the best illustrations of this new phenomenon is the first on-shell diagram

drawn in equation (1.1). This diagram has twelve removable edges but only six boundaries;

its removable edges correspond to those highlighted,

(2.28)

Here, we have colored each removable edge according to the boundary configuration that

results. Removable edges drawn in the same color correspond to identical boundaries.

Consider for example the pair of edges drawn in red. Removing each edge results in a

different reduced on-shell diagram:

∼ (2.29)

In this case, the equivalence between the two varieties can be confirmed by performing a

square move on each graph (the only one possible in each case). It is worth mentioning
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that there does not exist any (GL(1)-reduced) canonical edge-coordinate chart for which

both edges have non-unit weight.

The fact that the removal of distinct edges of an on-shell diagram can result in the

same boundary variety is a troubling novelty of non-planar diagrams. It is troubling

because, without explicitly constructing the mutations required to show that two boundary

elements are the same, a more systematic approach to the identification of equivalent

on-shell varieties is required. Let us be clear about the meaning of identical varieties,

mentioned in passing above.

Definition. Two on-shell varieties are said to be identical if there exists a non-singular

change of variables (with unit Jacobian) between their canonical coordinates.

Two varieties that are not identical are called distinct. The varieties of diagrams

related by square moves and mergers are clearly identical, but it is unknown whether all

diagrams corresponding to identical varieties are related by sequences of these equivalence

transformations. Without knowing an explicit coordinate transformation, how can identical

varieties be identified? We propose the following test:

Conjecture. The on-shell varieties of two on-shell diagrams are identical iff their collec-

tion of boundary configurations are identical.

Because at sufficiently low dimension all on-shell varieties are positroid varieties for

which this is trivially true, this conjecture implies a systematic, recursive test for identifying

identical configurations. And so provided this, we may define:

Definition. We will call the graph generated by covering relations — connecting a dia-

gram to its distinct boundaries — for a given on-shell diagram its stratification.

Because permutations of leg labels, and parity (exchanging the colors of vertices

throughout) clearly leave an on-shell variety’s stratification invariant as a graph, this data

is well suited for distinguishing fundamentally inequivalent varieties.

When two varieties are related by a reordering of the legs or parity, we call them

equivalent. (Nota bene: we are using ‘equivalent’ and ‘identical’ quite differently!) And

in order to identify all equivalence classes of on-shell varieties, we make use of one final

conjecture:

Conjecture. If the stratifications of two on-shell diagrams are isomorphic as graphs,

then their corresponding varieties are equivalent (by relabeling legs and/or parity).

Our systematic but incomplete study of examples in G(3, 6) suggest that this conjecture

is true. However, it amounts to an important caveat regarding the completeness of our

classification of on-shell varieties for G(3, 6): if either of the two conjectures above fail,

there may exist new, inequivalent on-shell varieties missed by our analysis. It is really the

space of stratifications that we have classified for G(3, 6).

Let us conclude this section with an important, exceptional novelty discovered for

G(3, 6). For the top-form Ω24 given in (2.25) corresponding to the variety (2.17), we have

found that the sum of inequivalent boundaries associated with removable edges (shown

in (2.28)) does not correspond to a residue theorem. This suggests that there may be
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residues associated with taking some edge variables to infinity — which would not cor-

respond to an on-shell diagram (at least not one obtained from deleting edges). Such

behavior has never before been seen in N = 4 SYM, although it is prevalent in N = 8

supergravity, [60, 61]. This may be related to poles at infinity, which were expected to be

absent in N =4 SYM even beyond the planar limit, [62]. We do not know what the mean-

ing or implications of this novelty, but it does not affect our analysis of on-shell varieties

(defined to be those related to on-shell diagrams). More likely, however, we think that the

correct prescription for the residue theorem involves all boundary configurations obtained

by removing removable edges, including equivalent copies with multiplicity. This renders

the residue theorem trivial, as the 12 removable edges of Ω24 come in 6 equivalent pairs.

3 Stratifying the varieties of (general) on-shell diagrams

We are interested in classifying all cluster varieties associated with on-shell diagrams —

considering those related by relabeling the external legs of the diagram to be equivalent.

Relabeling the external legs corresponds to a permutation of the columns of the matrix

(representative) C ≡
(
c1, c2, . . . , cn) ∈ G(k, n) of the on-shell variety. We will also con-

sider varieties related by parity, C 7→ C⊥ ∈ G(n−k, n), to be equivalent (relevant when

n= 2k). The on-shell varieties of planar on-shell diagrams are called positroid varieties,

which are completely characterized by (decorated) permutations as described in ref. [1].

But as mentioned above, little is known about the scope of varieties that exist beyond

the planar limit.

A systematic way to explore the space of on-shell varieties beyond the planar limit is

to simply construct — by brute force — all reduced on-shell diagrams for fixed k, n and

identify the equivalence classes that result. We describe below how the space of non-planar

diagrams can be explored exhaustively (for fixed k, n). Let us now describe how all on-shell

diagrams can be exhaustively (and exhaustingly) constructed.

3.1 Constructing representatives of all on-shell diagrams

Non-planar on-shell diagrams can be constructed from planar ones by gluing together

general pairs of legs, or by attaching BCFW bridges between non-adjacent legs. Neither of

these operations depends on planarity. While the first is clearly the only general strategy,

it turns out to be much easier to enumerate the graphs generated by sequences of BCFW

bridges. Thus, we find it advantageous to separately enumerate the on-shell diagrams

that are ‘bridge-constructible’ — those obtainable by sequences of (possibly non-adjacent)

bridges — and then those that are non-bridge constructible.

3.1.1 Bottom-up approach: bridge-constructible diagrams

Let us first describe the enumeration of all bridge-constructible on-shell varieties. These

correspond to varieties represented by diagrams constructible from an empty diagram

through a sequence of (possibly non-adjacent) BCFW bridges. All positroid varieties are

bridge constructible; but this turns out not to be true for non-planar varieties, as we

– 14 –



J
H
E
P
1
0
(
2
0
1
6
)
0
0
3

have seen in (1.1). Nevertheless, it is computationally much easier to enumerate all se-

quences of BCFW bridges, providing an interesting (though incomplete) subset of general

on-shell varieties.

Consider any bridge constructible on-shell variety for the top-cell of G(k, n). This can

be represented by a reduced diagram with (k−1)(n−k−1) internal cycles. Removing a

BCFW bridge results in a diagram with one fewer internal cycles. And so after enough

boundaries have been taken, the resulting diagram is guaranteed to be planar with re-

spect to some ordering of the external legs. Therefore, we need not consider all diagrams

constructed through sequences of bridges; rather, we need only consider those obtainable

through sequences of bridges starting from representatives of inequivalent low-dimensional

positroid varietys. This greatly simplifies the analysis, allowing for a rigorously complete

list of representatives diagrams to be constructed.

3.1.2 Top-down approach: non-planar diagrams from gluing legs

Consider an arbitrary on-shell diagram, representing an on-shell variety in G(k, n). By

cutting open an internal line, it can always be obtained from a diagram with two additional

legs, representing a variety in G(k+ 1, n+ 2). Because cutting open an internal line results

in a graph with one fewer internal cycle, it is clear that after cutting open a sufficient

number, `, of internal lines the result will be a planar graph in G(k+ `, n+ 2`).

Starting from a top-dimensional variety of G(k, n), it is not hard to see that when

` = k(n−k)−n internal lines are cut, the result is guaranteed to be planar and hence

correspond to a positroid variety. For G(3, 6), this means that all on-shell diagrams can

be constructed from planar diagrams in G(6, 12). For example, the first (non-bridge-

constructible) diagram in (1.1) can be constructed as follows:

⇒ (3.1)

Similarly, the second (non-bridge-constructible) diagram in (1.1) can be constructed from

a diagram in G(5, 10) as follows:

⇒ (3.2)

For the purposes of classification, it is worth bearing in mind that we need only consider

those on-shell diagrams which, after gluing, are non-bridge constructible. Moreover, cutting

upon an internal line can always result in a graph with at least one bridge-removable
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boundary. (For G(3, 6), it can be further shown that any non-bridge-constructible graph

is fully bridge-constructible after one internal line has been cut.) This greatly reduces the

space of possible starting points, allowing for a systematic survey to be completed.

4 The stratification of on-shell varieties for G(3, 6)

In the case of G(3, 6), top-dimensional on-shell varieties correspond to reduced on-shell

diagrams with 4 internal cycles. Thus, a complete survey of bridge-constructible graphs

can be obtained by starting with representative diagrams for all 6-dimensional positroid

varieties of G(3, 6), and all non-bridge-constructible graphs obtained by iteratively gluing

pairs of legs of (12-dimensional) positroid varieties of G(6, 12).

Among this large, but manageable list of on-shell diagrams, only 24 inequivalent on-

shell varieties were found. Of these, 22 are directly bridge-constructible (and, interestingly,

all constructed as sequence of bridges starting from a single same 6-dimensional positroid

variety). These are enumerated in appendix A, where we have also written their volume-

forms in terms of Plücker coordinates. Details for this classification are also provided in the

file g36 top form data.txt, included as part of this work’s submission files on the arXiv.

From these 24 top-dimensional varieties, all lower-dimensional on-shell varieties can be

obtained by taking boundaries — by removing removable edges. At co-dimension one, we

find only 10 inequivalent on-shell varieties, representatives of which are given in appendix B.

Being related to so-called ‘leading singularities’, these are of particular interest to physics.

And so, we have also provided explicit, spinor-helicity formulae for each of these.

Because relations among on-shell functions can be obtained as residue theorems start-

ing from a higher-dimensional variety, in appendix B we give explicit formulae for all the

residue theorems generated by these varieties. The exceptional case described above for

the boundaries of Ω24 is included among this list, although not an identity among (the

on-shell functions of) on-shell varieties.

In appendix C we continue this classification to lower dimensions. Representative

diagrams are given for all inequivalent classes of 7- and 6-dimensional on-shell varieties

— those with lower dimension are all positroids. The enumeration of different varieties

for G(3, 6) is summarized in table 1. Here, we have also listed the numbers of prime

on-shell varieties, defined to be those which are not the disconnected outer-product of non-

trivial on-shell varieties (allowing for arbitrary numbers of disconnected, zero-dimensional

components).

5 Conclusions and future directions

Non-planarity represents one of the obvious future frontiers in the study of on-shell dia-

grams. This problem is interesting both for its potential applications to scattering ampli-

tudes and for its new mathematical and geometric structures.

In this paper we have put forth a strategy toward the classification of inequivalent

on-shell varieties in G(k, n) corresponding to generally non-planar on-shell diagrams. The
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dim: 9 8 7 6 5 4 3 2 1 0

prime: 24 10 7 6 4 3 2 1 1 1

planar: 1 1 3 5 5 5 4 2 1 1

total: 24 10 7 6 5 5 4 2 1 1

Table 1. The number of inequivalent on-shell varieties of G(3, 6) for each dimension. Recall

that a prime variety is one which is not a product manifold (but may involve zero-dimensional,

disconnected components consisting of ‘hanging’ legs).

classification of planar on-shell diagrams has lead to beautiful geometric and combinato-

rial tools. These tools become insufficient when abandoning planarity. We advocate the

stratification of on-shell diagrams, for which we developed efficient tools, as a way of iden-

tifying equivalence classes. We applied our approach to G(3, 6), identifying 24 inequivalent

top-dimensional on-shell varieties.

Our investigation reveals that non-planar on-shell diagrams give rise to a variety of new

phenomena that include: a number of codimension-one boundaries that can differ from the

total number of Plücker coordinates in the denominator, poles at which no (single) Plücker

coordinate vanishes, boundary operator that does not square to zero, multiple ways of

accessing a boundary from a diagram one dimension above, the appearance of square roots

in the volume form when expressing it in term of Plücker coordinates, and the signal of

possible poles at infinity. These novelties suggest that much further work needs to be

done to understand the systematics of what is possible for the on-shell varieties beyond the

case of G(3, 6).

There are various clear directions for future research. It would be interesting to study

the translation between the on-shell forms that result from our classification and config-

urations of points in momentum twistor space. Another natural question is whether the

combination of non-equivalent on-shell varieties define some interesting region in G(k, n)

or whether it tiles it completely. Finally, it would be very interesting to understand the in-

finite dimensional symmetries of non-planar on-shell functions that generalize the Yangian

(along the lines of [63]). The answers to these and similar questions will likely shed light on

the application of on-shell diagrams to computation of non-planar scattering amplitudes.

Acknowledgments

We are grateful for helpful discussions with Jaroslav Trnka, Alexander Postnikov, and

Lauren Williams, and for the hospitality of the University of California, Davis. This work

was funded in part by the Danish National Research Foundation (DNRF91) and the Danish

Council for Independent Research (JLB); and by the US National Science Foundation under

grant PHY-1518967 and a PSC-CUNY award (SF).

– 17 –



J
H
E
P
1
0
(
2
0
1
6
)
0
0
3

A Representative on-shell diagrams for top-forms of G(3, 6)

We have found 24 permutation (and parity) inequivalent, top-dimensional on-shell varieties

for G(3, 6). These forms, labeled Ωi, are given below together with the stratification

numbers and representative on-shell diagrams for each. Machine-readable details for each

archetype are provided as part of this work’s submission files to the arXiv, in the file

g36 top form data.txt.

Ω1 strat. numbers: {1,6,21,56,114,180,215,180,90,20} χ = 1

1

(123)(234)(345)(456)(561)(612)

Ω2 strat. numbers: {1,7,27,83,166,239,249,190,90,20} χ = 6

(235)

(123)(136)(156)(234)(245)(256)(345)

Ω3 strat. numbers: {1,8,30,98,198,274,268,195,90,20} χ = 8

(235)2

(123)(135)(156)(234)(236)(245)(256)(345)

Ω4 strat. numbers: {1,8,34,116,215,282,271,196,90,20} χ = 11

(135)(145)

(123)(125)(134)(136)(156)(245)(345)(456)

Ω5 strat. numbers: {1,9,36,138,252,315,288,201,90,20} χ = 16

(135)3

(123)(125)(134)(136)(145)(156)(235)(345)(356)

Ω6 strat. numbers: {1,9,38,122,236,309,285,199,90,20} χ = 9

(145)(235)2

(123)(125)(135)(156)(234)(236)(245)(345)(456)
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Ω7 strat. numbers: {1,8,36,102,189,256,257,192,90,20} χ = 5

(16(23)
⋂

(45))

(123)(126)(136)(156)(234)(245)(345)(456)

Ω8 strat. numbers: {1,10,45,142,267,334,297,202,90,20} χ = 8

(16(23)
⋂

(45))2

(123)(126)(136)(146)(156)(234)(235)(245)(345)(456)

Ω9 strat. numbers: {1,6,25,78,158,231,245,189,90,20} χ = 5

(125)

(123)(134)(156)(245)(256)(16(25)
⋂

(34))

Ω10 strat. numbers: {1,7,29,107,209,280,271,196,90,20} χ = 10

(234)(235)

(123)(134)(236)(245)(256)(345)(14(23)
⋂

(56))

Ω11 strat. numbers: {1,7,33,104,194,261,260,193,90,20} χ = 7

(126)(235)

(123)(136)(156)(234)(245)(256)(16(25)
⋂

(34))

Ω12 strat. numbers: {1,8,35,120,231,299,279,197,90,20} χ = 8

(134)2(456)

(123)(124)(145)(146)(345)(346)(356)(14(23)
⋂

(56))

Ω13 strat. numbers: {1,9,40,147,271,332,294,201,90,20} χ = 13

(145)2(234)2

(123)(124)(134)(146)(235)(245)(345)(456)(14(23)
⋂

(56))
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Ω14 strat. numbers: {1,7,25,93,186,259,260,193,90,20} χ = 10

(125)3

(123)(124)(135)(156)(245)(256)(4(12)
⋂

(35)(16)
⋂

(25))

Ω15 strat. numbers: {1,7,29,103,206,281,272,196,90,20} χ = 9

(125)(235)2

(123)(135)(156)(234)(245)(256)(6(15)
⋂

(23)(25)
⋂

(34))

Ω16 strat. numbers: {1,5,26,94,187,259,260,193,90,20} χ = 7

(123)(146)

(124)(165)(236)(14(23)
⋂

(56))(6(14)
⋂

(23)(15)
⋂

(34))

Ω17 strat. numbers: {1,6,31,116,220,288,275,197,90,20} χ = 10

(124)(234)(235)

(123)(134)(245)(256)(14(23)
⋂

(56))(6(14)
⋂

(23)(25)
⋂

(34))

Ω18 strat. numbers: {1,7,39,151,280,341,299,202,90,20} χ = 12

(123)2(145)(146)2(234)

(124)(134)(156)(236)(14(23)
⋂

(56))(6(14)
⋂

(23)(15)
⋂

(24))(6(14)
⋂

(23)(15)
⋂

(34))

Ω19 strat. numbers: {1,8,36,117,223,293,277,197,90,20} χ = 8

(6(12)
⋂

(34)(14)
⋂

(23))2

(123)(124)(125)(146)(236)(346)(6(14)
⋂

(23)(15)
⋂

(34))(6(14)
⋂

(23)(25)
⋂

(34))
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Ω20 strat. numbers: {1,3,15,66,153,231,246,189,90,20} χ = 4

(124)(236)

2z∆(123̂)(146)(256)(56(14)
⋂

(23̂))

3̂ ≡ 3 +z 6

z ≡ (234)/(246)−∆/a

∆≡
√

(146)(236)(245)(256)(46(34)
⋂

(12))

a ≡ (146)(246)(256)

Ω21 strat. numbers: {1,6,28,108,216,289,276,197,90,20} χ = 9

(124)(23̂6)

z∆(123)(146)(256)(56(14)
⋂

(23̂))

3̂ ≡ 3 +z 1

z ≡ (b−∆)/a

∆≡
√
b2 − 4 c

a ≡ 2 (124)(125)(146)

b ≡ (6(14)
⋂

(23)(14)
⋂

(25))− (124)(16(25)
⋂

(34))

c ≡ (124)(125)(146)(6(23)
⋂

(14)(25)
⋂

(34))

Ω22 strat. numbers: {1,9,38,132,236,298,279,198,90,20} χ = 13

(124)(2̂36)

z∆(123)(146)(2̂56)(56(14)
⋂

(̂23))

2̂ ≡ 2 +z 1

z ≡ (b+ ∆)/a

∆≡
√
b2 − 4 c

a ≡ 2 (134)2(156)

b ≡ (6(14)
⋂

(23)(15)
⋂

(34))− (134)(16(25)
⋂

(34))

c ≡ (134)2(156)(6(23)
⋂

(14)(25)
⋂

(34))

Ω23 strat. nos: {1,12,54,166,348,420,339,210,90,20} χ = −4

(61(25)
⋂

(34))3

(125)(126)(134)(136)(146)(156)(234)(235)(245)(256)(345)(346)

Ω24 strat. nos: {1,6,21,74,157,232,246,189,90,20} χ = 6

(456)2

∆(145)(164)(245)(256)(364)(356)

∆≡
√
b2 − 4 c

b ≡ (124)(356) + (146)(235)− (156)(234)

c ≡ (126)(145)(234)(356)

B Leading singularities and residue theorems in G(3, 6)

In this appendix, we provide representatives of all inequivalent 8-dimensional on-shell va-

rieties of G(3, 6). There are only 10 of these — generated as co-dimension one boundaries

of the top-forms given above.

These on-shell varieties are of particular interest in physics, corresponding to leading

singularities of 6-particle ‘NMHV’ loop amplitudes. On-shell functions are represented by

on-shell varieties as follows:

f(λ, λ̃, η̃) =

∫
ΩC δ3×4

(
C ·η̃

)
δ3×2

(
C ·λ̃

)
δ2×3

(
λ·C⊥

)
. (B.1)
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Here, the volume form Ω is that of some cluster variety of G(3, 6); when integrated against

the kinematical δ-functions, these forms become ordinary (rational) functions of λ, λ̃, η̃, the

kinematical data describing the external particles. We will not review the details of this

story here, but only note that the 12 (bosonic) δ-functions in (B.1) impose 8 independent

constraints on C together with the 4 constraints of momentum conservation, δ2×2
(
λ · λ̃

)
.

Thus, the volume-form of any 8-dimensional variety is converted via (B.1) to a rational

function of the kinematical data.

When there is a unique solution to the δ-functions constraints, C 7→C∗, the on-shell

function is directly a rational function of C∗(λ, λ̃). This is the case for 7 of the 10 inequiv-

alent functions, allowing us to write explicit formulae for each in terms of (λ, λ̃). For the

remaining 3, we provide a concrete coordinate chart for the variety, in terms of which the

function is represented according to (B.1).

f1≡
∮

(123)=0

Ω1 =
δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

(234)(345)(456)(561)(612)

∣∣∣∣∣
C∗

C∗≡

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5 λ1

6

λ2
1 λ2

2 λ2
3 λ2

4 λ2
5 λ2

6

0 0 0 [56] [64] [45]



=
δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

〈23〉[56]〈3|4+5|6]s456〈1|5+6|4]〈12〉[45]

f2≡
∮

(123)=0

Ω2 =
(235) δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

(136)(156)(234)(245)(256)(345)

∣∣∣∣∣
C∗

C∗≡

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5 λ1

6

λ2
1 λ2

2 λ2
3 λ2

4 λ2
5 λ2

6

0 0 0 [56] [64] [45]


=

〈23〉[64] δ3×4
(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

〈13〉[45]〈1|5+6|4]〈23〉[56]〈2|4+5|6]〈2|5+6|4]〈3|4+5|6]

f3≡
∮

(123)=0

Ω4 =
(145) δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

(124)(136)(156)(245)(345)(456)

∣∣∣∣∣
C∗

C∗≡

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5 λ1

6

λ2
1 λ2

2 λ2
3 λ2

4 λ2
5 λ2

6

0 0 0 [56] [64] [45]



=
〈1|4+5|6] δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

〈12〉[56]〈13〉[45]〈1|5+6|4]〈2|4+5|6]〈3|4+5|6]s456

f4≡
∮

(123)=0

Ω5 =
(135) δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

(124)(145)(156)(236)(345)(356)

∣∣∣∣∣
C∗

C∗≡

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5 λ1

6

λ2
1 λ2

2 λ2
3 λ2

4 λ2
5 λ2

6

0 0 0 [56] [64] [45]


=

〈13〉[64] δ3×4
(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

〈12〉[56]〈1|4+5|6]〈1|5+6|4]〈23〉[45]〈3|4+5|6]〈3|5+6|4]

f5≡
∮

(123)=0

Ω9 =
(125) δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

(134)(156)(245)(256)(16(25)
⋂

(34))

∣∣∣∣∣
C∗

C∗≡

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5 λ1

6

λ2
1 λ2

2 λ2
3 λ2

4 λ2
5 λ2

6

0 0 0 [56] [64] [45]


=

〈12〉[64] δ3×4
(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

〈13〉[56]〈1|5+6|4]〈2|4+5|6]〈2|5+6|4]
(
〈23〉[56]〈1|5+6|4]−〈12〉[45]〈3|4+5|6]

)
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C∗≡

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5 λ1

6

λ2
1 λ2

2 λ2
3 λ2

4 λ2
5 λ2

6

0 0 0 [56] [64] [45]


f6≡

∮
(123)=0

Ω12 =
(134)2(456) δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

(124)(145)(146)(156)(234)(345)(346)(356)

∣∣∣∣∣
C∗

=
〈13〉2s456 δ

3×4
(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

〈12〉〈1|4+5|6]〈1|4+6|5]〈1|5+6|4]〈23〉〈3|4+5|6]〈3|4+6|5]〈3|5+6|4]

f7≡
∮

(123)=0

Ω13 =
(145)2 δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

(125)(134)(146)(156)(245)(345)(456)

∣∣∣∣∣
C∗

C∗≡

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5 λ1

6

λ2
1 λ2

2 λ2
3 λ2

4 λ2
5 λ2

6

0 0 0 [56] [64] [45]



=
〈1|4+5|6]2 δ3×4

(
C∗·η̃

)
δ2×2

(
λ·λ̃
)

〈12〉[64]〈13〉[56]〈1|4+6|5]〈1|5+6|4]〈2|4+5|6]〈3|4+5|6]s456

f8≡
∮

(14(23)
⋂

(56))=0

Ω16 =

∫
dα1

α1
∧· · ·∧ dα8

α8
δ3×4

(
C(α)·η̃

)
δ3×2

(
C(α)·λ̃

)
δ2×3

(
λ·C⊥(α)

)

C(α)≡

 1 α6 α6 α7 0 0 α1

0 1 α5 +α7 0 α2 α2 α4

α8 0 0 1 α3 α3 α4



f9≡
∮

(14(23)
⋂

(56))=0

Ω18 =

∫
dα1

α1
∧· · ·∧ dα8

α8
δ3×4

(
C(α)·η̃

)
δ3×2

(
C(α)·λ̃

)
δ2×3

(
λ·C⊥(α)

)

C(α)≡

 1 α5 α7 0 0 α1

0 1 α4 0 α2 α2 α6

α8 0 0 1 α3 α3 α6



f10≡
∮

z = 0

Ω20 =

∫
dα1

α1
∧· · ·∧ dα8

α8
δ3×4

(
C(α)·η̃

)
δ3×2

(
C(α)·λ̃

)
δ2×3

(
λ·C⊥(α)

)

C(α)≡

α6 α8 α1 1 α6 α1 α7 0

α8 0 0 1 α5 α4

α3 α2 0 0 α2 α7 1


It is worth mentioning that it is not difficult to express f8, f9, f10 directly as (sums of)

rational functions of the kinematical data. To do this, we make use of the global residue

theorems from Ω9, Ω10, and Ω15, respectively. (For the first identity, we also relabel the

legs; for the last, we relabel the legs and use parity.) The resulting expressions are:

f8 (1 2 3 4 5 6) ≡ f1 (3 2 1 6 5 4)− f1 (4 5 6 3 2 1)− f2 (3 6 2 1 4 5)

− f̃2 (5 3 6 2 1 4) + f5 (4 3 5 6 2 1)
. (B.2)

f9 (1 2 3 4 5 6) ≡− f2 (1 2 3 4 5 6) + f2 (2 3 6 1 4 5)− f̃3 (1 3 4 5 6 2)

+ f̃3 (6 2 5 4 1 3)− f5 (4 2 5 6 3 1) + f5 (5 3 4 1 2 6)
. (B.3)

f10(1 2 3 4 5 6) ≡− f̃1 (6 4 1 2 5 3)− f2 (6 3 4 1 2 5)− f̃2 (5 6 3 4 1 2)

− f̃5 (2 6 1 4 5 3)− f̃5 (6 5 4 3 2 1)− f̃7 (5 2 3 6 1 4)
. (B.4)
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Here, we have used f̃i to denote the parity conjugate of the on-shell function fi. It is worth

making clear that the above expressions eliminate any ambiguity about the overall signs

of these functions — being determined by the signs (conventionally fixed) for the rational

functions fi given above.

In fact, every top-dimensional form Ωi (except Ω24) generates an identity among the

on-shell functions fi via the global residue theorem. And it is worthwhile to give these

identities explicitly (with signs fixed by the definitions given above):∮
Ω 1 = 0 = f1 (1 2 3 4 5 6)− f1 (2 3 4 5 6 1) + f1 (3 4 5 6 1 2)− f1 (4 5 6 1 2 3)

+ f1 (1 6 5 4 3 2)− f1 (2 1 6 5 4 3)
(B.5)

∮
Ω 2 = 0 = f2 (1 2 3 4 5 6) + f̃3 (4 2 5 6 1 3) + f̃3 (4 2 3 1 6 5) + f1 (2 4 3 1 6 5)

+ f1 (2 4 5 6 1 3) + f2 (5 2 6 1 3 4) + f̃2 (1 2 6 5 4 3)
(B.6)

∮
Ω 3 = 0 = f2 (1 2 3 4 5 6) + f4 (3 1 5 4 2 6)− f7 (5 1 6 2 3 4)− f1 (2 4 3 1 5 6)

+ f2 (2 3 6 1 5 4) + f̃2 (1 6 3 2 4 5)− f4 (2 6 5 1 3 4) + f̃2 (2 1 6 5 4 3)
(B.7)

∮
Ω 4 = 0 = f3 (1 2 3 4 5 6)− f̃2 (3 6 4 5 2 1) + f4 (1 3 4 2 5 6)− f3 (1 3 6 4 5 2)

+ f̃2 (3 2 4 5 6 1) + f3 (5 2 4 3 1 6)− f4 (3 4 5 2 1 6)− f3 (5 4 6 3 1 2)
(B.8)

∮
Ω 5 = 0 = f4 (1 2 3 4 5 6)− f4 (1 2 5 4 3 6)− f4 (1 4 3 2 5 6) + f4 (1 6 3 2 5 4)

+ f4 (1 4 5 2 3 6)− f4 (1 6 5 2 3 4) + f4 (3 2 5 4 1 6)− f4 (3 4 5 2 1 6)

+ f4 (3 6 5 2 1 4)

(B.9)

∮
Ω 6 = 0 = f3 (1 2 3 4 5 6) + f̃2 (3 6 4 5 1 2) + f̃2 (2 6 4 5 1 3)− f7 (5 1 6 2 3 4)

+ f3 (4 2 3 1 5 6) + f̃6 (1 5 4 2 3 6) + f̃2 (1 6 3 2 4 5) + f̃2 (1 6 2 3 4 5)

− f7 (5 4 6 2 3 1)

(B.10)

∮
Ω 7 = 0 = f3 (1 2 3 4 5 6)− f1 (2 1 6 5 4 3)− f1 (3 1 6 5 4 2) + f̃3 (4 2 3 1 6 5)

− f3 (4 2 3 1 6 5) + f1 (2 4 5 6 1 3) + f1 (3 4 5 6 1 2)− f̃3 (1 2 3 4 5 6)
(B.11)

∮
Ω 8 = 0 = f7 (1 2 3 4 5 6) + f̃3 (3 4 5 6 1 2) + f̃3 (2 4 5 6 1 3)− f̃3 (5 2 3 1 6 4)

− f̃3 (4 2 3 1 6 5) + f3 (4 2 3 1 6 5) + f3 (5 2 3 1 6 4)− f3 (2 4 5 6 1 3)

− f3 (3 4 5 6 1 2)− f7 (6 4 5 2 3 1)

(B.12)

∮
Ω 9 = 0 = f5 (1 2 3 4 5 6)− f1 (1 3 4 2 5 6)− f̃2 (3 2 4 5 6 1)− f2 (2 4 5 6 1 3)

+ f1 (2 5 6 4 3 1)− f8 (6 5 2 1 3 4)
(B.13)

∮
Ω10 = 0 = f2 (1 2 3 4 5 6)− f̃3 (6 2 5 4 1 3)− f2 (2 3 6 1 4 5) + f5 (4 2 5 6 3 1)

+ f̃3 (1 3 4 5 6 2)− f5 (5 3 4 1 2 6)− f9 (1 2 3 4 5 6)
(B.14)
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∮
Ω11 = 0 = f5 (1 2 3 4 5 6)− f1 (3 1 6 5 2 4)− f̃3 (4 2 3 1 6 5)− f1 (2 4 3 1 6 5)

− f3 (2 4 5 6 1 3)− f4 (2 5 6 1 3 4) + f8 (6 4 3 1 2 5)
(B.15)

∮
Ω12 = 0 = f6 (1 2 3 4 5 6)− f̃3 (3 5 6 2 1 4) + f2 (1 5 4 6 3 2) + f2 (1 6 4 5 3 2)

− f5 (3 4 5 6 1 2)− f5 (3 4 6 5 1 2) + f3 (3 5 6 4 1 2) + f9 (1 5 6 4 3 2)
(B.16)

∮
Ω13 = 0 = f7 (1 2 3 4 5 6) + f4 (2 1 4 3 5 6) + f4 (3 1 4 2 5 6) + f7 (4 1 6 2 3 5)

− f3 (5 2 3 1 4 6) + f5 (2 4 5 6 1 3) + f5 (3 4 5 6 1 2)− f̃3 (1 2 3 5 6 4)

+ f9 (1 2 3 4 5 6)

(B.17)

∮
Ω14 = 0 = f5 (1 2 3 4 5 6)− f2 (2 1 4 3 5 6)− f̃2 (2 6 4 1 3 5)− f̃2 (2 3 4 5 6 1)

− f2 (2 5 4 6 1 3) + f5 (5 2 6 4 1 3) + f̃10(1 3 4 6 5 2)
(B.18)

∮
Ω15 = 0 = f5 (1 2 3 4 5 6) + f̃2 (2 6 4 3 1 5) + f7 (5 1 6 2 3 4) + f1 (2 4 3 1 5 6)

+ f5 (2 5 4 6 1 3) + f2 (5 2 6 4 3 1)− f̃10(3 1 6 4 5 2)
(B.19)

∮
Ω16 = 0 = f5 (1 2 4 3 6 5)− f̃2 (2 4 3 6 5 1)− f2 (2 6 3 5 1 4) + f8 (1 2 3 4 5 6)

− f10(2 1 4 3 5 6)
(B.20)

∮
Ω17 = 0 = f5 (1 2 3 4 5 6) + f1 (3 1 4 2 5 6) + f5 (2 4 5 6 1 3) + f̃3 (1 3 4 6 5 2)

− f9 (6 2 3 5 4 1) + f10(1 2 3 4 5 6)
(B.21)

∮
Ω18 = 0 = f5 (1 2 4 3 6 5) + f5 (1 3 4 2 6 5)− f6 (1 5 6 2 3 4)− f̃6 (4 1 5 2 3 6)

+ f9 (1 2 3 4 5 6)− f10(3 1 4 2 5 6)− f10(2 1 4 3 5 6)
(B.22)

∮
Ω19 = 0 = f5 (3 1 2 5 6 4) + f5 (4 2 1 5 6 3) + f1 (1 5 2 3 6 4) + f2 (4 1 6 3 2 5)

+ f2 (3 2 6 4 1 5) + f7 (6 3 4 1 2 5) + f10(2 1 4 3 5 6) + f10(1 2 3 4 5 6)
(B.23)

∮
Ω20 = 0 = f10(1 2 3 4 5 6) + f10(3 2 1 6 5 4) + f10(1 6 5 4 3 2) (B.24)∮
Ω21 = 0 = f5 (1 2 3 4 5 6)− f5 (4 6 1 3 2 5)− f2 (2 6 5 3 1 4) + f̃2 (1 4 3 6 5 2)

− f10(3 5 4 1 6 2) + f10(1 2 3 4 5 6)
(B.25)

∮
Ω22 = 0 = f5 (1 3 2 5 4 6) + f̃3 (3 5 6 2 1 4) + f1 (1 2 5 3 6 4) + f5 (4 1 6 3 2 5)

+ f5 (4 6 1 2 3 5) + f5 (3 4 5 6 1 2) + f3 (6 3 4 1 2 5) + f1 (5 3 6 4 1 2)

− f10(1 2 3 4 5 6)

(B.26)

∮
Ω23 = 0 = f7 (1 2 5 3 4 6)− f7 (2 1 6 3 4 5)− f7 (1 3 4 2 5 6) + f7 (3 1 6 2 5 4)

+ f7 (4 1 6 2 5 3)− f7 (5 1 6 3 4 2) + f7 (2 3 4 1 6 5)− f7 (3 2 5 1 6 4)

− f7 (4 2 5 1 6 3) + f7 (6 2 5 3 4 1) + f7 (5 3 4 1 6 2)− f7 (6 3 4 2 5 1)

(B.27)
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∮
Ω24 = 0 ≡ f5 (4 5 1 2 6 3)− f5 (4 5 1 2 6 3) + f5 (4 6 1 3 5 2)− f5 (4 6 1 3 5 2)

+ f5 (5 4 2 1 6 3)− f5 (5 4 2 1 6 3) + f5 (5 6 2 3 4 1)− f5 (5 6 2 3 4 1)

+ f5 (6 5 3 2 4 1)− f5 (6 5 3 2 4 1) + f5 (6 4 3 1 5 2)− f5 (6 4 3 1 5 2)

(B.28)

Using these identities, one can eliminate all appearances of f8, f9, and f10. From the

seven rational functions, we may expect 10,080 different functions through permutations

and parity; however, only 3,000 of these are distinct. The identities above span a space of

2,566 independent identities, leaving a space of only 434 linearly-independent combinations

of on-shell functions.

Notice that the last identity for Ω24, (B.28), is trivial: the 12 on-shell functions along

its boundary come in 6, mutually canceling pairs. This follows from the interpretation that

each removable edge should contribute one configuration to the boundary — despite the

appearance of move-equivalent configurations.

C Representative lower dimension on-shell varieties of G(3, 6)

For the sake of reference and completeness, in this appendix we provide representative

on-shell diagrams for each class of inequivalent on-shell varieties of dimension 7 and 6.

On-shell varieties of lower dimension are all planar, representatives of which can easily be

generated by the Mathematica package positroids described in [59].

At dimension 7, there are seven inequivalent on-shell varieties — three of which are

planar varieties. Representatives of these are as follows:

(C.1)

At dimension 6, there are six inequivalent on-shell varieties — all but one of which are

planar. The non-planar variety corresponds to the unique non-planar variety in G(2, 5),

with an additional zero-dimensional component corresponding to a ‘hanging’ leg in the
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on-shell diagram. Representatives of these six on-shell varieties are:

(C.2)

All on-shell varieties below dimension 6 admit a planar embedding on the disk, and

therefore correspond to familiar positroids. The numbers of such varieties are listed in

table 1. We should remind the reader that we count only those classes of varieties inequiv-

alent under parity and relabeling of the external legs.
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