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a  b  s  t  r  a  c  t

Evaluation  of GC–MS  data  may  be  challenging  due  to  the  high  complexity  of data  including  overlapped,
embedded,  retention  time  shifted  and  low  S/N  ratio  peaks.  In this  work,  we demonstrate  a new  approach,
PARAFAC2  based  Deconvolution  and  Identification  System  (PARADISe),  for processing  raw  GC–MS  data.
PARADISe  is  a  computer  platform  independent  freely  available  software  incorporating  a  number  of  newly
developed  algorithms  in  a  coherent  framework.  It offers  a  solution  for analysts  dealing  with  complex
chromatographic  data.  It allows  extraction  of  chemical/metabolite  information  directly  from  the  raw
data.  Using  PARADISe  requires  only  few  inputs  from  the analyst  to process  GC–MS  data  and  subsequently
converts  raw  netCDF  data  files  into  a compiled  peak  table.  Furthermore,  the  method  is generally  robust
towards  minor  variations  in the  input  parameters.  The  method  automatically  performs  peak  identification
based  on  deconvoluted  mass  spectra  using  integrated  NIST  search  engine  and  generates  an  identification
report.  In  this  paper,  we  compare  PARADISe  with  AMDIS  and  ChromaTOF  in  terms  of  peak  quantification

and  show  that  PARADISe  is  more  robust  to  user-defined  settings  and  that  these  are  easier  (and  much
fewer)  to  set.  PARADISe  is based  on non-proprietary  scientifically  evaluated  approaches  and  we  here
show  that  PARADISe  can  handle  more  overlapping  signals,  lower  signal-to-noise  peaks  and  do  so  in  a
manner  that  requires  only  about  an  hours  worth  of  work  regardless  of  the  number  of  samples.  We  also
show  that  there  are  no non-detects  in  PARADISe,  meaning  that all compounds  are  detected  in  all  samples.

ublis
© 2017  The  Authors.  P

. Introduction

In chromatographic methods, such as gas or liquid chromatog-
aphy coupled with mass spectrometry detectors, the goal is to
dentify compounds and compare their concentrations across and

ithin samples. To achieve this goal, data processing must fulfil
wo criteria: (I) it must correctly determine the mass spectrum
f the individual compounds for identification and; (II) it must
ccurately calculate the abundance of chromatographic peaks cor-
esponding to those compounds in each sample. These two tasks
re often challenging and time consuming mainly due to the co-
lution of chromatographic peaks within a single chromatogram, as
ell as retention time (RT) shift of peaks across samples. These two

hallenges lead to mixed mass spectra and complicates compound
dentification and quantification. For these reasons processing of
C–MS data is challenging using currently available techniques that

ay  perform inadequately both with respect to identification and

uantification leading to compounds being wrongly interpreted or
imply left undetected.
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Most traditional vendor software quantifies compounds based
on peak area or height using total ion count (TIC), base peak chro-
matogram (BPC) or from the extracted ion chromatogram (EIC)
by selecting m/z value(s) typical for the given compound. These
approaches are susceptible to co-eluting compounds since a con-
tribution to the signal from other compounds is not adequately
handled and may  significantly affect both quantitative and quali-
tative results. Furthermore, it is challenging to estimate baseline
contributions and this may  also lead to errors in quantification.
Most of currently applied approaches use simple subtraction of
background from nearby baseline or a shoulder of a given peak
of interest. Often this is not sufficient to handle overlapping and/or
co-eluting peaks.

A more recent approach dealing with overlapping signals is to
model the signals using e.g. Gaussian curves [1]. However, these
models are not unique [2], instead, a number (actually infinitely
many) of completely different sets of Gaussian peaks can model
the data equally well. Hence, the solution becomes arbitrary. The
development of the software package Automatic Mass spectral
Deconvolution and Identification System (AMDIS) [3] was a big step

towards resolving complex data. AMDIS automatically calculates
the area of the deconvoluted component in terms of the area of
the reconstructed total ion current (TIC) chromatogram. AMDIS is
freely available standalone software, and is also implemented in
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ommercial software like Masshunter (Agilent Technologies, USA).
nother commercial software is ChromaTOF (LECO Inc., USA) that
ecame a common tool to process GC–MS data based on a Time-
f-Flight (TOF) mass analyser. Like in AMDIS, ChromaTOF performs
utomatic deconvolution of peaks from each sample separately and
ompares the deconvoluted spectra against integrated libraries.
stimation of the peak area in ChromaTOF can either be based on
he TIC, BPC, deconvoluted mass spectra or any m/z  ion(s) that are
efined by the user. ChromaTOF utilises a proprietary deconvolu-
ion technique, but it requires several input parameters, concerning
oise level, peak width, retention time shift allowance and more, to
e set by the user depending on the sample type and data quality.
fter peak detection, ChromaTOF can generate the final metabo-

ite table by aligning peaks across samples based on user defined
arameters such as RT shift window, noise level, spectral similar-

ty and how often peaks are detected among investigated samples.
oth AMDIS and ChromaTOF perform calculations on each sample

ndependently of the other samples.
A completely different approach for handling co-elution and

etention time shifts, is to use the so-called PARAllel FACtor anal-
sis2 (PARAFAC2) model [2,4]. PARAFAC2 is able to deconvolute
o-eluted, retention time shifted and low signal-to-noise (S/N)
atio chromatographic peaks for all investigated samples in a given
etention time region simultaneously [2]. In contrast to other meth-
ds, the PARAFAC2 approach only requires a single parameter to
e set by the user prior to achieving sufficient data processing for
he given retention time region of the chromatogram. This param-
ter is the number of factors (or real chemical compounds) in
he investigated region of the chromatogram. There are simple

ethods for determining this number as will be explained later.
ARAFAC2 modelling allows extraction of the pure spectra of co-
luting compounds as well as it simultaneously computes their
eak areas (relative concentrations). The compounds are quan-
ified using the entire pure spectrum and retention time region
orresponding to a specific peak. It has previously been shown
hat PARAFAC2 is superior to commercial solutions [5,6]. How-
ver, current implementations of PARAFAC2 are not accessible for
on-mathematical users and requires extensive coding for efficient
se. Here, we develop an integrated approach called PARAFAC2
ased Deconvolution and Identification System (PARADISe), which
ombines workflow from raw data inspection to metabolite (rela-
ive) quantification and identification in a graphical user interface
GUI). Within the PARADISe approach, we included tools required
n all steps of the GC–MS data processing; 1) data visualization, 2)
ivision of data into retention time intervals, 3) PARAFAC2 based
econvolution of peaks, 4) validation and extraction of deconvo-

uted peaks, 5) identification of compounds from raw as well as
econvoluted mass spectra using NIST search engine and NIST mass
pectra library and/or any other libraries in NIST format, 6) genera-
ion of the final metabolite table. In the following sections, several
xamples are provided illustrating the power and limits of PAR-
DISe.

. Materials and methods

.1. Preparation of a standard mixture sample

Ten chemical compounds including valine, alanine, serine, thre-
nine, gamma-aminobutyric acid (GABA), ascorbic acid, fumaric
cid, citric acid, gallic acid and p-hydroxyphenylacetic acid were
sed to prepare a standard mixture sample. Compounds were pur-

hased from Sigma-Aldrich (Sigma-Aldrich Denmark A/S, DK) at
he highest available purity. The standard mixture sample was  pre-
ared by mixing equal volumes of 20.0 mM solutions of compounds

n milliQ water. Thus, in the final standard mixture sample the
gr. A 1503 (2017) 57–64

concentration of each compound was  2.0 mM,  which was used for
preparation of ten different dilution series samples where concen-
tration of each compound ranged from 0.05 to 0.6 mM.

2.2. GC–MS analysis of standard mixture samples

Prior to GC–MS analysis 30 �L of each dilution series sam-
ples were dried using ScanVac (Labogene, DK) at 40 ◦C inside
150 �L glass inserts, sealed with air tight magnetic lids into GC–MS
vials and derivatized by addition of 30 �L trimethylsilyl cyanide
(TMSCN) [7]. All steps involving sample derivatization and injection
were automated using a Dual-Rail MultiPurpose Sampler (MPS)
(Gerstel, GmbH & Co. KG, DE). Following reagent addition, the sam-
ple was  transferred into the agitator of the MPS and incubated at
40 ◦C for 40 min  at 750 rpm. This procedure ensures precise deriva-
tization time and reproducible sample injection. Immediately after
derivatization, 1 �L of the derivatized sample was injected into a
cooled injection system (CIS4, Gerstel, GmbH & Co. KG, DE) port in
splitless mode. The septum purge flow and purge flow to split vent
at 2.5 min  after injection were set to 25 and 15 mL min−1, respec-
tively. Initial temperature of the CIS port was 40 ◦C, and heated at
12 ◦C s−1 to 320 ◦C (after 30 s of equilibrium time), where it was  kept
for 5 min. After heating, the CIS port was gradually cooled to 250 ◦C
at 5 ◦C s−1, and this temperature was kept constant during the run. A
GC–MS consisted of an Agilent 7890 B gas chromatograph (GC) and
a high-throughput Pegasus GC-TOF-MS mass spectrometer (LECO
Inc. USA). More details of GC oven and cooled injection system
(CIS4) condition were the same as previously described [7]. Mass
spectra were recorded in the m/z range of 45–600 with a scanning
frequency of ten scans sec−1, and the MS  detector and ion source
were switched off during the first 4.5 min  of solvent delay time.
The transfer line and ion source temperature were set to 280 ◦C and
250 ◦C, respectively. The mass spectrometer was  tuned according
to manufacturer’s recommendation using perfluorotributylamine
(PFTBA). The MPS  and GC–MS was  controlled using vendor soft-
ware Maestro (Gerstel, GmbH & Co. KG, DE) and ChromaTOF (LECO
Inc., USA). Samples were randomised prior to derivatization and
GC–MS analysis, and a blank sample containing only derivatization
reagent, and an alkane mixture standard (all even C10-C40 alkanes
at 50 mg  L−1 in hexane) were analysed at least between five real
samples prior to monitor GC–MS performance.

2.3. Analysis of complex samples

The dataset investigated in this study consisted of 69 samples
including blank samples and pooled quality control samples. The
complex samples are media samples obtained from fermentation
of CHO cells in complex media, the cells are removed by filtration
and the spent media is kept on −20 ◦C until the time of derivati-
zation. Prior to the analysis, the samples were derivatized using
a procedure based on the protocol described by Smart et al. [8].
All samples were analysed in a randomised order. A 6890N GC in
conjunction with a 5975 B quadrupole mass spectrometer (Agilent
Technologies, USA) were used to analyse the samples. The system
was controlled by ChemStation (Agilent Technologies, USA).

3. Theory

PARADISe is based on PARAFAC2 modelling, which allows
simultaneous deconvolution of pure mass spectra of peaks and inte-

gration of areas of deconvoluted peaks for all samples. Resolved
peaks are identified using their deconvoluted pure mass spectra
and the final peak table is generated. Thus, PARADISe is based on
five major steps:
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. Define intervals

. Resolve compounds

. Validate models

. Identify compounds

. Create peak table

PARADISe, integrates all these as outlined below.
Intervals are selected manually through an interactive TIC plot

n such a way that approximate baseline-resolved intervals, with
referably less than six peaks, are obtained. As will be illustrated

ater, the specific definition of the intervals is not critical (within
eason). Having defined each interval, the PARAFAC2 model can
esolve the underlying and possibly overlapping compounds in
ach of these intervals. For each interval, a separate PARAFAC2
odel is built. To do so, the number of chemical compounds

including baseline) must be defined for the specific PARAFAC2
odel. PARADISe will by default calculate models with one to eight

omponents, and it is the user that must decide which of the mod-
ls to use. Automated methods exist for determining the number of
omponents [5] but in PARADISe, the user has to do this. Normally,
he number of components is set to the highest number that still

aintains a sufficiently high core consistency (above 50%). Visu-
lizations of the models can be used for intervals that may  pose
pecial problems to further guide the user but this is mostly not crit-
cal. Once the model for a given interval is determined, compounds
f interest can be tagged (e.g. compounds that are not baseline or
ails from peaks surrounding the interval) and only these com-
ounds will be included in the final report. For a more thorough
escription of the theory behind PARAFAC2 the reader is referred
o the supplementary material.

The PARAFAC2 model of each compound provides the relative
oncentration (peak area) directly and users can evaluate elution
rofiles of deconvoluted peaks. Identification is also a crucial part
f the chromatographic analysis, and PARADISe enables the user
o make library lookups of both mass spectra from raw data and
ARAFAC2 deconvoluted mass spectra (pure compound spectra).
he lookup is performed by exporting relevant spectra to the NIST
Ssearch, which therefore must be installed prior to use the library

ookup function. The user can then perform the evaluation of any
ibrary hits directly in the MSsearch software.

PARADISe is built around two main interfaces; one, which is
sed for inspection of raw data and creation of intervals, and one,
hich is used to visualize and validate models prior to select decon-

oluted peaks and to create a final report. The software is compiled
ia Matlab and is thus platform independent and can work with-
ut NIST software. However, using the PARADISe without the NIST
oftware eliminates the possibility of performing library searches
f mass spectra. An overview of the full workflow is illustrated in
ig. 1.

Two formats of raw data can currently be imported; either data
n the cdf format for mass spectrometry, or for users who  are famil-
ar with Matlab, data can be imported from the Matlab format.

. Results

In the following we will illustrate the capabilities of PARADISe
hrough a number of small examples, each aimed at different typical
hallenges encountered in chromatographic data analysis.

.1. Quantification
Quantification is an important part of data analysis. To illustrate
he capabilities of PARADISe concerning quantitative determina-
ion of compounds, a dilution series of the standard mixture sample
ere analysed. The obtained data was processed using ChromaTOF,
Fig. 1. Flowchart illustrating the workflow in PARADISe; from loading of raw data to
generation of the final report with relative concentrations of detected compounds.

AMDIS and PARADISe (Fig. 2 and Fig. S2). All three software pack-
ages performed equally well when the S/N ratio of peaks was  high.
However, for the lower S/N ratio peaks, AMDIS and ChromaTOF
results were sensitive to the settings of the user-defined parame-
ters, while PARADISe performance was  more consistent regardless
of S/N ratio of peaks.

4.2. Co-elution

To demonstrate application of PARADISe to complex GC–MS
profiles, a data set obtained from GC −MS  analysis of spent media
from cell cultures grown in complex media was investigated. One
of the huge advantages of using PARADISe is its ability to deconvo-
lute overlapping peaks. An example of the deconvolution power is
illustrated in Fig. 3. The TIC of this data interval shows one peak, one
baseline and one tail from a neighbouring peak. Upon inspection of
the data using PARADISe, it becomes apparent that the interval is
covering not one but three peaks and the interval is therefore best
described with a five-component PARAFAC2 model: one compo-
nent describing baseline, one the tail and one for each of the three
peaks, respectively (see Fig. 3). Inspection of characteristic m/z  ions
(m/z 127, 216, and 130) of the deconvoluted peaks shows that the
three peaks can be recognised from the corresponding extracted
ion chromatograms (bottom plots in Fig. 3). It is worth to mention
here that PARADISe allows such a deconvolution and provides pure

spectra of deconvoluted peaks for even more complex chromato-
graphic data intervals, without any user defined settings, besides
the number of components.
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Fig. 2. Illustration of obtained relative concentrations from AMDIS, ChromaTOF and PARADISefrom dilution series analysis of GABA (red and blue correspond to replicates).
GABA was not detected by AMDIS in the most diluted samples. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this  article.)

Fig. 3. Top: TIC of the interval, row 2: obtained elution profiles from a five-component model, row 3: model spectra obtained from the five-component model. Row 4: EIC
of  characteristic masses from the model (extracted from raw data).
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Table  1
An overview of the data processing steps that require user defined parameters in three different GC–MS data processing software, AMDIS, ChromaTOF, and PARADISe. The
number  of hourglass indicates how many parameters must be set by the user in the given step of data proccessing, (−) indicates that this step is not performed by the
software, and empty cells illustrate steps that do not require any parameters to be set by users for the given software.

Data proccessing steps that
require parameters to be
set by the user

Software

AMDIS ChromaTOF PARADISe

1) Define RT intervals for
processing

– –

2) Deconvolution

3) Peak filtering and
removing baseline

4) Mass spectrometer
dependent parameters

5) Processed data
validation
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6) Alignment of peaks
across samples

–

.3. Low signal-to-noise

In contrast to other approaches, PARADISe is not so sensitive to
he S/N ratio of peaks and is able to deconvolute extremely small
eaks directly from the raw data (Figs. 4 and 5). In Fig. 4, the PAR-
DISe results reveal that the investigated noisy interval actually
ontains two overlapping peaks with a very low S/N ratio. Inspec-
ion of characteristic m/z values in the raw data confirms that,
ithin the given interval, two compounds are eluting with different
ass spectra. Subsequently, a four-component PARAFAC2 model

econvoluted two peaks corresponding to two chemicals plus two
omponents reflecting the background.

The second example (Fig. 5) shows how well the mass spectra
rom a low S/N ratio peak is modelled using PARADISe. Despite
xtreme low S/N ratio of this peak, its deconvoluted mass spectrum
llowed identification using the NIST mass spectral library, found as
imethyl malonic acid. The identity of this compound was validated
ith an authentic standard, which was found to have the same

etention time and mass spectrum.

.4. Baseline

Baseline contributions present in a raw GC–MS data heav-
ly influence both peak identification and quantification, thus it
s important that data processing techniques can remove base-
ine contributions. In the model illustrated in Fig. 4 two different
aselines are present and shows that it is possible to automati-
ally remove these artefacts using PARADISe. It is often seen that
he baseline is modelled using more than one PARAFAC2 factor,
ecause the background is often a mixture of several contribu-
ions (e.g. column bleed, derivatization reagent, mobile phase, or
lectronic noise) All models presented in this paper illustrate how
he PARADISe approach removes baseline contributions as separate
ARAFAC2 components from eluting compounds eliminating any
eed for raw data pre-treatment.

.5. Retention time drift
In the examples illustrated throughout this paper, differ-
nt degrees of shift in RT are present (see Figs. 3–5). In all
ases, PARADISe handles the drift without any prior assumptions
about maximum allowed shift. PARADISe is also able to correctly
determine peaks that have severe RT shifts across samples that
sometimes result in complete cross RT shifts with nearby eluting
peaks as well as with co-eluting peaks. This is only possible due
to the unique mass spectrum of each compound and flexibility of
deconvolution engine, PARAFAC2. However, in order to correctly
determine all peaks present in a given chromatographic data inter-
val, the width of the interval must be wide enough to cover RT
shifts.

4.6. Limitations

There are two major cases when PARADISe fails to deconvolute
GC–MS peaks: 1) when a GC–MS data interval contains two or more
peaks with identical mass spectra, 2) when a GC–MS data inter-
val contains two  or more peaks that co-vary completely in their
concentrations. In both cases PARADISe will find those co-varying
peaks as a single compound. In the example illustrated in Fig. 6, two
of the four peaks are lumped into one common component (Elution
profile 4). This happens regardless of how many PARAFAC2 compo-
nents are included in the model. Inspection of the raw data reveals
that the two peaks have identical mass spectra (Top two  rows, right
in Fig. 6). It is a premise of PARAFAC2 that each chemical compound
in a given interval must have at least slightly different spectral sig-
nature. Hence, when two compounds have identical spectra as here,
they cannot be separated in a PARAFAC2 model. The only alter-
natives then are either 1) to split the data in between the two
peaks, or 2) try to separate the peaks by other means (chemically
or mathematically).

One can also choose either to exclude the compound from the
final data set, or to use it, bearing in mind, that the reported concen-
tration profile/spectra will be a combination of both peaks. Working
within smaller retention time intervals minimizes the risk of mod-
elling problems if different peaks co-vary across samples.

5. Discussion
PARADISe excels in simplicity because only little input is needed
from the user to obtain valid models of the compounds and the
inputs typically have a feasible range of settings so that the exact
choice is not critical. The data must be split into retention time
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Fig. 4. Top left: TIC from raw data. Top right: EIC from raw data of selected m/z. Middle: elution profiles obtained from a four-component model. Elution profile 3 and 4
represent baseline. Bottom: spectra obtained from a four-component model.

F mpon
s

i
d
t

ig. 5. Top: TIC from raw data, Elution profiles and spectra obtained from a two-co
pectra  of dimethyl malonic acid. Profile 2 is representing baseline.
ntervals with approximate baseline separation. The interval bor-
ers should be determined in a reasonable manner, meaning that
he peaks of interest should be included in the interval without
ent model. Bottom: comparison between the model spectra 1 and the NIST library
cutting off any tailing or fronting. Even tails from peaks adjacent to
the intervals, as shown in Fig. S1, does not pose a problem. Further,
as few compounds as possible should be included when selecting
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ig. 6. Top left: TIC from raw data. Top 2 rows, right: spectra obtained from three
lution profiles obtained from a four-component model. Bottom row: spectra obtai

ntervals. Selecting a simpler (fewer compounds) interval reduces
omputation time and prevents small errors accumulating in more
omplicated models with many compounds.

Unlike some tools for processing of GC–MS data, the same model
escribes all samples when using PARADISe. This means that if

 model is accepted as valid, all samples are well described in
hat particular interval and the developed method can routinely
e applied to new samples without any user interaction.

An added benefit from using PARADISe is that there will not be
ny non-detects. In many methods, the user must specify param-
ters used to define a peak (e.g. peak width, signal to noise levels
tc.). This means that if a peak does not match these criteria they
ill appear as “not detected”. In most cases this will be due to a peak

eing lower than the limit of detection. These missing values will

ause problems if the data is to be used in either classical statistics
9] or multivariate statistics. In more severe cases, a peak may  actu-
lly be present but not fulfilling the initially set parameters. If the
ent samples of the two peaks eluting at 13.58 and 13.62 min, respectively. Row 3:
om a four-component model.

user does not recognize this, it will most likely be wrongly inter-
preted. In PARADISe there are no assumptions made about peak
shape, signal-to-noise ratio or expected retention time shifts. When
peaks are deconvoluted there will always be an estimate of the con-
centration (also in cases with signal being lower than the limit of
detection), and the problems with missing values are therefore not
an issue. In essence, the problem of non-detects is moved to the
subsequent data analysis. All peaks are quantified and the possible
decision of where to set the limit of detection can be decided after
the quantification has been performed.

PARADISe cannot process one sample at a time but requires sev-
eral samples prior to processing any dataset. It is not enough to
analyse the same sample several times or to make dilutions of the
samples and analyse these. If one wants to use PARADISe at least

five samples with independent variations must be included in the
sample set and preferably more.



6 omato

A
fi

1

2

3

4

5

t

t
I
i
t
p
p
t

6

t
(
r
c
v
I
e
d

[

[

[

[

[

[

[

[
for metabolome analysis of microbial cells using methyl chloroformate
derivatization followed by gas chromatography-mass spectrometry, Nat.
4 L.G. Johnsen et al. / J. Chr

To be able to compare the user-friendliness of the software
MDIS, ChromaTOF and PARADISe, we divide the workflow into
ve parts below for easier comparison:

) Define RT intervals for processing. Division of the chromato-
graphic data into smaller RT intervals is needed for reducing
complexity when processing data using PARADISe prior to
obtain reliable deconvolution.

) Deconvolution. The deconvolution step in AMDIS and Chro-
maTOF requires parameters such as peak width, resolution,
sensitivity, and shape to be set by users. The number of com-
ponents must be determined in PARADISe.

) Peak filtering and removing baseline. The peak filtering step
requires parameters like S/N ratio, mass threshold, baseline off-
set, minimum abundance in AMDIS and ChromTOF.

) Mass spectrometer dependent parameters. Mass spectrometer
dependent parameters such as m/z  range, scan direction, instru-
ment type, file format, threshold are also crucial when using
AMDIS.

) Alignment of peaks across samples. Several parameters such as
maximum allowed RT shift, spectral similarity, detection fre-
quency (e.g., a peak must be present at least in 50% of samples)
are required in ChromaTOF when aligning peaks across samples
prior to a final metabolite table.

In Table 1 a summary is given, indicating how many parameters
he user needs to set for each step.

PARADISe can be used for targeted analysis, where only the
arget compounds are processed, as well as untargeted analysis.
n cases with routine targeted high-throughput GC–MS methods,
nterval-files can be predefined and reused. However, it is impor-
ant to stress that the user should still inspect the raw data before
rocessing the data. This is, in fact, underestimated in many data
rocessing software packages, but we strongly advice data inspec-
ion prior to use PARADISe.

. Conclusions

We  have demonstrated a new approach called PARAllel fac-
or analysis 2 based Deconvolution and Identification System
PARADISe), integrating multi-way modelling for processing of
aw GC–MS data from several samples simultaneously. PARADISe
ombines entire workflow from raw data inspection to peak decon-

olution and metabolite identification in a graphical user interface.
t allows handling very complex situations with severe co-elution
ven with resolution close to zero. With PARADISe, a single stan-
alone platform is presented covering the entire workflow from

[

gr. A 1503 (2017) 57–64

inspecting raw data to identification, including deconvolution of
peaks across all samples simultaneously, determination of relative
concentrations and compilation of a compound table. The ability to
export mass spectra, deconvoluted (pure) as well as raw, to spectral
databases can save large amounts of time and will increase the hit
quality.
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