
u n i ve r s i t y o f co pe n h ag e n

Computability in the lattice of equivalence relations

Moyen, Jean-Yves; Simonsen, Jakob Grue

Published in:
Proceedings 8th Workshop on Developments in Implicit Computational Complexity and 5th Workshop on
Foundational and Practical Aspects of Resource Analysis

DOI:
10.4204/EPTCS.248.8

Publication date:
2017

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY-NC

Citation for published version (APA):
Moyen, J-Y., & Simonsen, J. G. (2017). Computability in the lattice of equivalence relations. In G. Bonfante, & G.
Moser (Eds.), Proceedings 8th Workshop on Developments in Implicit Computational Complexity and 5th
Workshop on Foundational and Practical Aspects of Resource Analysis (pp. 38-46). Open Publishing
Association. Electronic Proceedings in Theoretical Computer Science, Vol.. 248
https://doi.org/10.4204/EPTCS.248.8

Download date: 08. apr.. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Copenhagen University Research Information System

https://core.ac.uk/display/269289913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4204/EPTCS.248.8
https://curis.ku.dk/portal/da/persons/jakob-grue-simonsen(833c3e76-0bbe-4624-b1a9-9f0764fa69d0).html
https://curis.ku.dk/portal/da/publications/computability-in-the-lattice-of-equivalence-relations(c32336a4-b937-45f4-bd04-f8d55c4a8bdd).html
https://doi.org/10.4204/EPTCS.248.8

G. Bonfante, G. Moser (Eds.): 8th Workshop on Developments in

Implicit Computational complExity and 5th Workshop on Foundational

and Practical Aspects of Resource Analysis (DICE-FOPARA 2017)

EPTCS 248, 2017, pp. 38–46, doi:10.4204/EPTCS.248.8

This work is licensed under the Creative Commons

Attribution-Noncommercial License.

Computability in the Lattice of Equivalence Relations

Jean-Yves Moyen∗ Jakob Grue Simonsen†

Department of Computer Science, University of Copenhagen (DIKU)
Njalsgade 128-132, 2300 Copenhagen S, Denmark

Jean-Yves.Moyen@univ-paris13.fr simonsen@diku.dk

We investigate computability in the lattice of equivalence relations on the natural numbers. We

mostly investigate whether the subsets of appropriately defined subrecursive equivalence relations

–for example the set of all polynomial-time decidable equivalence relations– form sublattices of the

lattice.

1 Introduction

1.1 Motivation

As there are uncountably many properties of programs (because each set of programs is a property), most

properties must be undecidable. A celebrated negative result shows that there are even further barriers

to decidability: Rice’s Theorem [10] states that every non-trivial, extensional property on programs is

undecidable. An extensional property is one that depends solely on the (input-output) function computed

by the program.

While Rice’s theorem is six decades old, it still spurs new research trying to find the boundary of

decidable progam properties, for example Asperti’s work on complexity cliques [1]. Such properties

can be studied fruitfully by viewing results such as Rice’s and Asperti’s as assertions about equivalence

relations; indeed, any program property is an equivalence relation that has at most two classes: the

class of programs having the property and the class of programs not having it. In this view, Rice’s

Theorem studies the extensional equivalence, R, where two programs are equivalent if and only if they

compute the same function. Rice’s theorem thus states that no non-trivial equivalence class or union of

equivalence classes in R is decidable.

Rather than studying individual equivalences such as R, it is interesting to look at the set of all

equivalences between programs and at subsets of equivalences sharing certain properties. The set of all

equivalence relations between programs has a very natural complete lattice structure. With this order,

taking the union of some classes yields a larger equivalence relation and Rice’s Theorem says that any

class of any non-trivial equivalence relation in the principal filter at R is undecidable.

The fact that Rice’s Theorem is so neatly expressed in the lattice language hints that we can gain

knowledge by studying it. One way is to look at other equivalences that the extensional one [1, 5].

Another is to look at the lattice structure itself. Since there are uncountably many equivalences, the

lattice is hard to study and we want to find a good way to approximate it in a manageable way. For this

reason, we study subsets of equivalences and how they interact with the lattice structure.

∗Supported by the Marie Skłodowska–Curie action “Walgo”, program H2020-MSCA-IF-2014, number 655222
†Partially supported by the Danish Council for Independent Research Sapere Aude grant “Complexity via Logic and Alge-

bra” (COLA).

http://dx.doi.org/10.4204/EPTCS.248.8
http://creativecommons.org
http://creativecommons.org/licenses/by-nc/3.0/

J.-Y. Moyen & J. G. Simonsen 39

The lattice-theoretic properties of Equ(S) are well-understood; basic facts can be gleaned from the

papers [8, 11] and the textbooks [2, §8-9] [3, Sec. IV.4]. As the lattice structure of Equ(S) is isomorphic

to Equ(T) for any sets S and T of identical cardinality, we may without loss of generality consider the

set of equivalences over the natural numbers, Equ(N). That is, we work modulo an unspecified encoding

of programs.

Because Rice’s Theorem is all about computability, we are interested here in the subsets of equiv-

alences that are defined in term of computability (e.g. the set of decidable equivalences) or complexity

(e.g. the set of equivalences decidable in polynomial time). Rice’s Theorem can thus be expressed as

saying that the intersection of the principal filter at R and the set of decidable equivalences is reduced to

the trivial equivalence with one class containing everything.

Finding a subset of equivalences that is manageable but still retain most of the order-theoretic prop-

erties of the whole lattice provides a way to approximate Equ(N) (as Q approximates R) and allows for

a more focused and systematic study.

1.2 Equivalence relations and Lattice

We consider the set Equ(N) of all equivalences over natural numbers. If E is an equivalence, we write

mE n to say that m and n are equivalent. Equ(N) is ordered by E ≤ E ′ iff mE n ⇒ mE ′n. Note that this is

exactly the subset ordering ⊆ on N×N. We can easily see that E ≤ E ′ iff each class of E ′ is the union

of one or more classes of E .

(Equ(N),≤) is a lattice with the following operations:

• The meet (greatest lower bound) of E and F is G = E ∧F such that mG n iff mE n and mFn.

In this case, the classes of G are exactly the (non-empty) intersections of one class of E and one

class of F .

• The join (lowest upper bound) of E and F is G = E ∨F such that mG n iff there exists a finite

sequence a1, . . . ,ak such that mE a1Fa2E . . .Fn.

Note that the join is much harder to express (and compute) than the meet. This will be reflected in

the results. Indeed closure for meet usually boils down to closure under intersection, but closure for join

is far from closure under union.

Standard results for Equ(N) were laid out by Ore [8]. It is known that Equ(N) is, among others:

• bounded with minimal element ⊥ being the equivalence where each class is a singleton (no two

different elements are equivalent) and the maximal element ⊤ being the equivalence with a single

class containing every elements (any two elements are equivalents);

• complete, that is closed under arbitrary join and meet (and not only under finite ones);

• atomistic, each element is the join of atoms, where atoms are successors of ⊥, that is equivalences

with one class containing two elements and the other are singletons;

• relatively complemented (hence complemented), for each E , there exists F such that E ∨F =⊤
and E ∧F =⊥; non ⊤ or ⊥ equivalences have infinitely many complements, most have uncount-

ably many.

An equivalence relation E where exactly one class is not a singleton is called singular.

Lemma 1.1 (Complements to singular equivalence relations). Let E be a singular equivalence relation

with non-singleton class E. F is one of its complement iff each class of F contains exactly one element

of E.

To avoid confusion with meet and join, we note && and || the logical conjunction and disjunction.

We note n the binary representation of n.

40 Computability in the Lattice of Equivalences

1.3 Computability and complexity

We refer to standard textbooks convering computability and complexity theory (e.g., [4]).

Unless otherwise stated, all Turing Machines are multi-tape machines with two designated read-only

input tapes, one write-only output tape, and any number of work tapes. Machines are deterministic unless

otherwise stated.

Equivalences relations are then classified in the natural way with respect to the Turing Machine

deciding them. That is, for example, “polynomial time relations” or “recursively enumerable relations”

are defined in the straightforward way.

1.4 Results

The paper considers three broad categories: automatic, subrecursive, and arithmetical equivalence rela-

tions and how they interact with the basic properties of the entire lattice of equivalence relations, namely

meet, join and complements. The results are summarised here.

Finite Arithmetical Arbitrary

∧ ∨ ∧ ∨ ∧/∨ complements

Automatic Yes Yes No Yes No/Yes N/A

Subrecursive Yes No† ? No† No ≥ PSPACE

Σ
0
k Yes Yes No Yes No No

Π
0
k Yes No Yes No No ?

∆
0
k Yes No No No No Yes

†: for LOGSPACE or larger classes.

Note that a “Yes” entry does not imply any results concerning actual computation of the operation

–it merely implies that the subset of equivalence relations is closed under the operation considered– but

the actual computation involved in the operation may require resources beyond those implied by the

subset. If we consider a subset S of equivalences and an operation on the equivalences, there are four

possibilities:

1. S is not closed under this operation, that is there exist elements in S such that, when applying the

operation to them we can obtain an element not in S. This is the canonical meaning of “No” in the

above table.

2. S is closed under the operation (i.e., there is a “Yes” in the above table), and either

(a) the operation is computable within the resource requirements defining the class, e.g. polytime

computable for the set of polytime decidable equivalence relations.

(b) the operation is computable, but not within the resource requirements defining the class.

(c) the operation is not computable.

2 Automatic equivalence relations

There are several “natural” ways to define equivalence relations decidable by finite automata. The one we

consider here uses a single, two-way input tape with two inputs separated by a special symbol; another

natural variation would have the two inputs on two separate tapes, or a single tape but two heads. Unlike

Turing machines, the class of sets decidable by finite automata properly increases with the number of

input tapes and tape heads; it is therefore quite conceivable that simple variations of the class we consider

would have different properties.

J.-Y. Moyen & J. G. Simonsen 41

We consider two-way finite automata that have only a single tape where both inputs are encoded. We

believe the most natural form to be a�b where a,b ∈ {0,1}+ and � is a separator symbol (“blank”). We

denote Equ(N)AUT the set of automatic equivalence relations, that is such that the language {m�n : mE n}
is accepted by a two-way non-deterministic finite automaton. By standard results, this language is thus

regular. That is, 2-way Non-Deterministic Automata recognise exactly the same languages as 1-way

Deterministic Automata.

Once such an automaton is fixed, for any integer m we note qm the state reached after reading m�.

Proposition 2.1. Let E ∈ Equ(N)AUT. It has finitely many equivalence classes.

The proof uses an argument taken from the Myhill-Nerode Theorem [7].

Sketch of proof. The automaton must accept m�m by reflexivity of equivalences. Hence, by determinism,

if qn = qm, the automaton must also accept n�m and nE m. Thus, there can be at most as many classes as

states.

Note that Proposition 2.1 implies that some very simple equivalence relations are not elements of

Equ(N)AUT; for example, ⊥ /∈ Equ(N)AUT (that is, {n�n} is not a regular language, a well-known fact).

Since the number of classes in any equivalence of Equ(N)AUT is finite but unbounded, given such

an equivalence, it is always possible to find a class with several elements and create a new equivalence

by taking one element out of this class and making a new singleton class. This new equivalence is

smaller than the initial one and is still single-tape automatic. Hence, Equ(N)AUT is neither bounded, nor

complete.

Moreover, let E and F be two equivalences, each with finitely many classes E1, . . . ,Em and F1, . . . ,Fn.

Since the classes of E ∧F are exactly the non-empty Ei

⋂
Fj, there are at most n×m such classes, that

is, a finite number, thus it cannot be ⊥ and F cannot be a complement to E .

Hence, no complement of a single-tape automatic equivalence is single-tape automatic.

Theorem 2.2. Equ(N)AUT is a lattice.

Sketch of proof. The language for the meet is the intersection of both languages and regular languages

are closed under intersection.

In order to build an automaton recognising the join, we first start by finding representatives of each

class of both equivalences : m1, . . . ,me and n1, . . . ,n f ; this is doable by standard search in minimal DFA.

Next we precompute which mi and n j are related in E ∨F ; this is doable because the finite number of

classes implies a bounded length for the chain when unfolding the join definition.

Lastly, we can build an NFA with ε-transitions that first check which unique mi is such that mE mi

(ε-transitions to e copies of the first automaton); and then check if n is such that nFn j for one of the n j

related to mi (correct number of ε-transitions to copies of the second automata).

Thus, not only is Equ(N)AUT a lattice, but both the meets and the joins are effectively computable.

Computing these, however, cannot be performed by a DFA (this is case 2b of the discussion after the

results Table).

Proposition 2.3. Let k ≥ 1. The meet of a Σ
0
k set of automatic equivalence relations is not necessarily

automatic.

Proof. Let, for each i ≥ 1, Ei be the automatic equivalence relation containing the two classes {i} and

N\{i}. Then,
∧

Ei =⊥, which is not automatic.

Lemma 2.4. Equ(N)AUT is upward closed.

42 Computability in the Lattice of Equivalences

Proof. Let E ∈ Equ(N)AUT and E ≤ F . By definition, the classes of F are unions of classes of E and

because there are only finitely many classes in E , these are finite unions. Thus, building a DFA for F is

possible.

Proposition 2.5. Let A ⊆ Equ(N)AUT be non-empty. Then,
∨

A ∈ Equ(N)AUT.

Proof. Because E ≤
∨

A for any E ∈ A.

As mentioned at the beginning of the Section, the expressive power of automata varies with the

number of tapes or heads. Hence, small variations of the model can drastically change the property of

the corresponding subset of equivalences. For example, two-tape automata can test whether both tape

contain the same word and thus decide ⊥.

Even the choice of representation of inputs may affect the expressive power. For example, instead

of sequencing the inputs (m�n), it is possible to interleave them (m1n1m2n2 . . .mini . . .�nk if n is longer

than m). This representation allows an automaton to decide ⊥ (note that the Myhill-Nerode argument

does not work in this case).

Moreover, when working with multi-tape automata, the question of synchronicity arises: should the

tapes be “at the same position” on each tape, or can the heads move independently?

Thus, we have only studied one particular class of automata with one particular way of representing

equivalences. Equ(N)AUT hence enjoys properties that other classes of “automatic” relation may or

may not have. While the class of single-tape, single-head DFAs studied above is the simplest kind of

finite automaton –hence most apt to study first– it remains to perform a systematic study of equivalence

relations decidable by other, more particular, kinds of automata.

3 Subrecursive equivalence relations

We now treat classes of equivalence relations decidable within bounds on their resources. The def-

inition of such classes are simply the standard definitions of computational complexity theory using

Turing machines with two input tapes. The sets of equivalence relations on N consisting of LOGSPACE-,

PTIME-, PSPACE-, EXPTIME-, primitive recursive, . . . decidable equivalence relations are denoted by

Equ(N)LOGSPACE, Equ(N)PTIME, Equ(N)PSPACE, Equ(N)EXPTIME, Equ(N)p.r., . . . The notation is extended

in straightforward ways and we collectively call these “subrecursive” sets of equivalences.

Lemma 3.1. The subrecursive sets of equivalences are closed under finite meet.

Proof. m(E ∧F)n iff mE n && mFn, and the subrecursive classes are closed under &&.

Proposition 3.2. There exist two equivalence relations, decidable in logarithmic space, whose join is

undecidable.

Thus, the subrecursive sets of equivalences are not closed under join and are not sublattices.

Sketch of proof. Let M be a deterministic Turing Machine. We define the clocked one-step relation by

(n,c)→ (n′,c′) iff n′ = n+1 and c
′ is the (representation of the) configuration resulting from executing

one step M from c; or if c is a final configuration and (n′,c′) = (0,0). → is decidable in logarithmic

space by standard techniques.

J.-Y. Moyen & J. G. Simonsen 43

We now define →even (resp. →odd) as the restriction of → for even (resp. odd) n; and ≈even (resp.

≈odd) as the reflexive, transitive, symmetric closure of →even (resp. →odd). Because of the parity restric-

tion, it is not possible to have (n0,c0) →even (n1,c1) →even (n2,c2) and thus ≈even is also decidable in

logarithmic space.

Let ≈= (≈even ∨ ≈odd). The computation starting at c terminates iff (n,c)≈ (0,0). Hence, ≈ is not

decidable.

Theorem 3.3. Let A be a (deterministic) subrecursive set of equivalences larger than Equ(N)PSPACE

(included) and E ∈ A. There is at least one complement to E in A.

Sketch of proof. Let F be the singular equivalence whose non-singleton class, F , contains exactly the

least element of each class of E . It is a complement to E by Lemma 1.1. Because the deterministic

subrecursive sets are closed under complement, E ∈ A.

To decide if mFn, proceed as follows: (i) if m= n, accept; (ii) if there exists k < m with kE m, reject;

(iii) if there exists k′ < n with k
′E n, reject; (iv) if not rejected yet, accept.

Step (ii) is done by checking if for all k < m, kE m and requires O(|m|) working space for writing k,

hence at least linear space. It also loops over m = 2|m| values and thus needs exponential time.

It is tempting to conjecture that there are equivalences in Equ(N)PTIME with no complement in

Equ(N)PTIME. However if that were the case, we would have Equ(N)PTIME 6= Equ(N)PSPACE, and by us-

ing a polynomial-time pairing function N2 −→N, existence of P ∈ Equ(N)PSPACE\Equ(N)PTIME entails

existence of a set in PSPACE \ PTIME, and hence PSPACE 6= PTIME; hence, the conjecture will be ex-

ceedingly hard to prove. On the other hand, It is not clear that equality of Equ(N)PTIME and Equ(N)PSPACE

would entail PSPACE = P.

4 Arithmetical equivalence relations

We now investigate closure properties of sets of arithmetical equivalence relations. Closure under finite

meet is immediate as the arithmetical sets are also closed under finite intersections.

Lemma 4.1. For every k ≥ 1, the set of equivalence relations in Σ
0
k is closed under finite join.

The join of any two Π
0
k equivalence relations is in Σ

0
k+1.

Proof. Let x and y be two integers. By definition, x(E ∨F)y iff there exists a1, . . . ,an such that

xE a1F . . .E anFy. That is ∃n,a1, . . . ,an.xE a1 && a1Fa2 && . . .&& anFy, which is Σ
0
k (resp. Σ

0
k+1) if

E and F are both Σ
0
k (resp. Π

0
k).

Proposition 4.2. For any k ≥ 1, the set of equivalence relations in ∆
0
k is not closed under finite join.

Idea of proof. The proof is essentially the same as for Proposition 3.2. The “hard” problem cannot stay

the classical halting problem and must be replaced by the halting problem for machines with oracle in

∆
0
k .

Proposition 4.3. For every n ≥ 1, the set of equivalence relations in Π
0
n is not closed under finite join.

Proof. Because ∆
0
k = Σ

0
k ∩Π

0
k is not, but Σ

0
k is.

Theorem 4.4. For every k ≥ 1, there are equivalence relations in Σ
0
k none of whose complements are in

Σ
0
k .

44 Computability in the Lattice of Equivalences

Sketch of proof. Let E be a Σ
0
k set whose complement is not Σ

0
k , and E be the singular equivalence with

non-singleton class E . Let F be a complement to E , each of its class intersects E in exactly one point,

hence x ∈ E iff ∃e.e 6= x && e ∈ E && eFx, and F cannot be Σ
0
k .

Theorem 4.5. Let k ≥ 0. Every equivalence relation in ∆
0
k has at least one complement in ∆

0
k .

The proof is essentially the same as for Theorem 3.3.

5 Infinite meet and join

Recall that the upper set ↑ {n} contains n and all the elements greater than n. We say that an equivalence

is small if it has finitely many classes. Note that small singular equivalence relations have finitely many

singleton classes, whose largest element is N and the non-singleton class is thus the union of a finite set

and the upper set ↑ {N +1}.

Proposition 5.1. Let I ⊆ N, there is a set of small singular equivalences whose meet is singular with

non-singleton class I. Thus, none of the subrecursive or arithmetical sets of equivalences are closed

under arbitrary meet.

Sketch of proof. Let I ⊆N. Let (fi)i∈N be a strictly increasing sequence and let Fi = I
⋂
[0; fi[and F+

i =
(Fi

⋃
↑ { fi}). Note that I =

⋂
i F

+
i . Let Fi be the small singular equivalence with non-singleton class

F+
i .

∧
Fi is the singular equivalence whose non-singleton class is I.

Proposition 5.2. Let I ⊆ N. There exists a set of atoms whose join is singular with non-singleton class

I.

Thus, none of the arithmetical sets of equivalences are closed under arbitrary join.

Proof. Because the lattice is atomistic. Atoms (singular equivalences whose non-singleton set has only

two elements) are decidable in zero space and linear time (by encoding the two elements in the states of

the machine).

The previous results assume that the set of equivalence relations may be chosen arbitrarily. Espe-

cially, it is based on a set I of arbitrary difficulty. This means that the results boil down to the fact that

there are uncountably many such I, while there are only countably many arithmetical relations.

We now look at what happens if the set of relations itself is to have some bound. Specifically, we are

concerned with the meet and join of a Σ
0
k set of equivalences. Σ

0
k (and especially, recursively enumerable)

is a sensible bound: It means that one can enumerate each of the equivalences (with a proper oracle, or

none for recursively enumerable) until all the needed ones have been found. On the other hand, a Π
0
k set

of equivalences would mean that one can enumerate (with oracle) the complement to this set, which is

less practical.

Proposition 5.3. For all k ≥ 1, the join of a Σ
0
k set of Σ

0
k equivalences is a Σ

0
k equivalence.

Proof. Let {Φi : i ∈ I } be a Σ
0
k set of Σ

0
k equivalences, that is I is a Σ

0
k set of integers and each Φi is a

Σ
0
k equivalence. Let E =

∨
Φi. By definition, we have xE y if and only if

∃n,a1, . . . ,an,x1, . . . ,xn. a1 ∈ I && . . .&& an ∈ I && xΦa1
x1 && x1Φa2

x2 && . . .&& xnΦan
y

J.-Y. Moyen & J. G. Simonsen 45

Note that because i ≤ j implies Σ
0
i ⊂ Σ

0
j , we immediately have that the join of a Σ

0
i set of Σ

0
j equiva-

lences is Σ
0
j . In particular, the join of a recursively enumerable set of Σ

0
j equivalences is a Σ

0
j equivalence

relation.

Proposition 5.4. For all positive integers n, there exists a Σ
0
n set of Σ

0
n equivalence relations whose meet

is not Σ
0
n.

Sketch of proof. We consider an encoding of formulae into numbers and let I be the set of encoding of

Σ
0
k formulae, it is decidable if the encoding allows to count quantifiers. Let Ak = { i ∈ I : Φi(k)} be the

set of Σ
0
n equivalence accepting k, it is Σ

0
n. Let Ak be the singular equivalence whose non-singleton set is

Ak, it is a Σ
0
k equivalence.

Now,
∧

Ak is singular with non-singleton class the (encoding of) Σ
0
k tautologies. This is a Π

0
k+1-

complete set.

Proposition 5.5. For all k, the meet of a Σ
0
k set of Π

0
k equivalence relations is Π

0
k .

Proof. Let {Φi : i ∈ I } be a Σ
0
k set of Π

0
k equivalences and E =

∧
Φi. By definition, xE y iff ∀i, i ∈ I ⇒

xΦiy, which is equivalent to ∀i, i /∈ I || xΦiy, a Π
0
k formula.

Here also, by inclusion of the hierarchy, i ≤ j implies that any Σ
0
i set of Π

0
j equivalence relations has

a Π
0
j meet. Especially, the set of Π

0
k equivalence relations is closed under recursively enumerable meet.

Proposition 5.6. There is an r.e. set of elements of Equ(N)LOGSPACE whose meet is not decidable.

Sketch of proof. Let En be the singular equivalence whose non-singleton set is the (representation of)

Turing Machines that do not halt in n or less step. It is a LOGSPACE equivalence by clever encoding of

TMs (see, e.g., [9, Ch. 3]), the main trick here being that we only need to simulate a fixed number of

steps (n) and this requires a fixed amount of extra space (plus logarithmic overhead for the simulation).

However,
∧

En is the singular equivalence whose non-singleton class is the Turing Machines who never

halt and is thus not decidable.

Corollary 5.7. The subrecursive sets of equivalences are not closed under arithmetical meets.

The sets of Π
0
k equivalences are not closed under arithmetical meets.

For the second point, the proof must be adapted using the halting problem for the correct class of

oracle machines.

6 Conclusion and Future Works

Out of the three classes of equivalences that we have considered, the automatic ones seem too few to be

of interest; the subrecursive ones do not form a sublattice, making them bad candidates for studying the

lattice structure; but the arithmetical ones seem more interesting. Notably, the Σ
0
k sets of equivalences do

keep the lattice structure and especially Equ(N)r.e. is worth more efforts.

In addition to being the smallest Σ
0
k set of equivalences, Equ(N)r.e. is also linked back to the starting

point via the Rice-Shapiro’s Theorem [6, 12]: while R /∈ Equ(N)r.e., we already know something about

equivalences in the intersection of Equ(N)r.e. and the principal filter at R.

Since there are equivalences in Equ(N)r.e. with no complements in it, we do not get all the basic

lattice property (the sublattice is not complemented). Thus, we may still want to find other sublattices

defined by other criteria.

46 Computability in the Lattice of Equivalences

Other questions raised by this work include a more systematic study of the subsets decided by

various kind of automata; and trying to build, for each equivalence in Equ(N)PTIME, a complement in

Equ(N)PTIME.

References

[1] Andrea Asperti (2008): The Intensional Content of Rice’s Theorem. In: Proceedings of the 35th Annual
ACM SIGPLAN - SIGACT Symposium on Principles of Programming Languages (POPL 2008), doi:10.

1145/1328438.1328455.

[2] Garrett Birkhoff (1940): Lattice Theory. Colloquium Publications 25, American Mathematical Society.

[3] George Grätzer (2003): General Lattice Theory, second edition. Birkhäuser.

[4] Neil D. Jones (1997): Computability and Complexity, from a Programming Perspective. MIT press.

[5] J.-Y. Moyen & J. G. Simonsen (2016): More intensional versions of Rice’s Theorem. In D. Mazza, editor:

Developments in Implicit Computational Complexity, DICE’16, Eindhoven, Netherlands.

[6] John R. Myhill & John Cedric Shepherdson (1955): Effective operations on partial recursive functions.

Zeitschrift für mathematische Logik und Grundlagen der Mathematik 1, pp. 310–317, doi:10.1002/malq.

19550010407.

[7] Anil Nerode (1958): Linear Automaton Transformations. Proceedings of the American Mathematical Society
9(4), pp. pp. 541–544, doi:10.1090/S0002-9939-1958-0135681-9. Available at http://www.jstor.

org/stable/2033204.

[8] Øystein Ore (1942): Theory of equivalence relations. Duke Mathematical Journal 9(3), pp. 573–627, doi:10.

1215/S0012-7094-42-00942-6.

[9] Christos H. Papadimitriou (1994): Computational Complexity. Addison-Wesley.

[10] Henry Gordon Rice (1953): Classes of Recursively Enumerable Sets and Their Decision Prob-

lems. Transactions of the American Mathemathical Society 74, pp. 358–366, doi:10.1090/

S0002-9947-1953-0053041-6.

[11] Ivan Rival & Miriam Stanford (1992): Algebraic Aspects of Partition Lattices. In Neil White, editor: Matroid
Applications, Encyclopedia of Mathematics and its Applications 40, Cambridge University Press, pp. 106–

122, doi:10.1017/CBO9780511662041.006.

[12] Normann Shapiro (1956): Degrees of computability. Transactions of the AMS 82, pp. 281–299, doi:10.

1090/S0002-9947-1956-0085187-3.

http://dx.doi.org/10.1145/1328438.1328455
http://dx.doi.org/10.1145/1328438.1328455
http://dx.doi.org/10.1002/malq.19550010407
http://dx.doi.org/10.1002/malq.19550010407
http://dx.doi.org/10.1090/S0002-9939-1958-0135681-9
http://www.jstor.org/stable/2033204
http://www.jstor.org/stable/2033204
http://dx.doi.org/10.1215/S0012-7094-42-00942-6
http://dx.doi.org/10.1215/S0012-7094-42-00942-6
http://dx.doi.org/10.1090/S0002-9947-1953-0053041-6
http://dx.doi.org/10.1090/S0002-9947-1953-0053041-6
http://dx.doi.org/10.1017/CBO9780511662041.006
http://dx.doi.org/10.1090/S0002-9947-1956-0085187-3
http://dx.doi.org/10.1090/S0002-9947-1956-0085187-3

	1 Introduction
	1.1 Motivation
	1.2 Equivalence relations and Lattice
	1.3 Computability and complexity
	1.4 Results

	2 Automatic equivalence relations
	3 Subrecursive equivalence relations
	4 Arithmetical equivalence relations
	5 Infinite meet and join
	6 Conclusion and Future Works

