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Abstract: An abstract, quantitative theory which connects elements of information —key ingredients in
the cognitive proces—is developed. Seemingly unrelated results are thereby unified. As an indication
of this, consider results in classical probabilistic information theory involving information projections
and so-called Pythagorean inequalities. This has a certain resemblance to classical results in geometry
bearing Pythagoras’ name. By appealing to the abstract theory presented here, you have a common
point of reference for these results. In fact, the new theory provides a general framework for the
treatment of a multitude of global optimization problems across a range of disciplines such as geometry,
statistics and statistical physics. Several applications are given, among them an “explanation” of Tsallis
entropy is suggested. For this, as well as for the general development of the abstract underlying theory,
emphasis is placed on interpretations and associated philosophical considerations. Technically, game
theory is the key tool.
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1. Introduction

Originally, the driving force behind this study was to extend the clear and convincing operational
interpretations associated with classical information theory as developed by Shannon [1] and followers,
to the theory promoted by Tsallis for statistical physics and thermodynamics, cf., [2,3]. That there are
difficulties is witnessed by the fact that, despite its apparent success, some well known physicists still
find grounds for criticism. Evidence of this attitude may be found in Gross [4].

A possible solution to the problem is presented towards the end of our study, in Theorem 18. It is
based on the idea that, possibly, what the physicist perceives as the essence in a particular situation
could be a result of both the true state of the situation and the physicists preconceptions as expressed
by his beliefs. In case there is no deformation from truth and belief to perception, i.e., if “what you see
is what is true”, you regain the classical notions of Boltzmann, Gibbs and Shannon.

The approach indicated in Theorem 18 rests on philosophical considerations and associated
interpretations. As it turns out, this approach is applicable in a far more abstract setting than needed
for the discussion of the particular problem. As a result, a general abstract, quantitative theory is
developed. This theory, presented in Section 2, with its many subsections is the main contribution of
our research. A number of possible applications, including Theorem 18, are listed in Section 3, which
has a number of sub-sections covering applications from different areas. They serve as justification
for the work which has gone into the development of the general abstract theory. The conclusions are
collected in Section 4.

The theory may be seen as an extension of classical Shannon theory. One does not achieve the
same degree of clarity as in the classical theory, where coding provides a solid reference. However,
the results developed in Sections 2 and 3 demonstrate that the extension to a more abstract framework
is meaningful and opens up for new areas of research. In addition, previous results are consolidated
and unified.

The theory of Section 2 is an abstract theory of information without probability. Inspiration from
Shannon Theory and from the theory of inference within statistics and statistical physics is apparent.
However, the ideas are presented here as an independent theory.

Previous endeavours in the direction taken include research by Ingarden and Urbanik [5]
who wrote “... information seems intuitively a much simpler and more elementary notion than that of
probability ... [it] represents a more primary step of knowledge than that of cognition of probability ...”. We also
point to Kolmogorov, cf., [6,7] who in the latter reference (but going back to 1970, it seems) stated
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“Information theory must precede probability theory and not be based on it”. The ideas by Ingarden and
Urbanik were taken up by Kampé de Fériet, see the survey in [8]. The work of Kampé de Fériet is
rooted in logic. Logic is also a key ingredient in comprehensive studies over some 40 years by Jaynes,
collected posthumously in [9]. Although many philosophically-oriented discussions are contained
in the work of Jaynes, the situations he deals with are limited to probabilistic models and intended
mainly for a study of statistical physics.

The work by Amari and Nagaoka in information geometry, cf., [10], may also be viewed as a broad
attempt to free oneself from a tie to probability. There are many followers of the theory developed
by Amari and Nagaoka. Here we only mention the recent thesis by Anthonis [11] which has a base
in physics.

In complexity theory as developed by Solomonoff, Kolmogorov and others, cf., the recent survey [12]
by Rathmanner and Hutter, we have a highly theoretical discipline which aims at inference not
necessarily tied to probabilistic modeling. The Minimum Description Length Principle may be considered
an important spin-off of this theory. It is mainly directed at problems of statistical inference and was
developed, primarily, by Rissanen and by Barron and Yu, cf., [13]. We also point to the treatise [14]
by Grünwald. In this work you find discussions of many of the issues dealt with here, including a
discussion of the work of Jaynes.

Still other areas of research have a bearing on “information without probability”, e.g., semiotics,
philosophy of information, pragmatism, symbolic linguistics, placebo research, social information and
learning theory. Many areas within psychology are also of relevance. Some specific works of interest
include Jumarie [15], Shafer and Vovk [16], Gernert [17], Bundesen and Habekost [18], Benedetti [19]
and Brier [20]. The handbook [21] edited by Adriaans and Bentham and the encyclopaedia article [22]
by Adriaans collect views on the very concept of “information”. Over the years, an overwhelming
amount of thought has been devoted to that concept in one form or another. Most of this bulk of
material is entirely philosophical and not open to quantitative analysis. Part of it is impractical and
presently mainly of theoretical interest. Moreover, some is far from Shannon’s theory which we hold
as a cornerstone of quantitative information theory. In fact, we consider it a requirement of any
quantitative theory of information to be downward compatible with basic parts of Shannon theory.
This requirement is largely respected in the present work, but not entirely. For example, we do not
know if one can meaningfully lift the concept of coding as known from Shannon theory to a more
abstract level.

In many respects, our endeavours go “beyond Shannon”. So does, e.g., Brier in his development
of cybersemiotics, cf., [20,23]. Brier goes deeper into some of the philosophical aspects than we do
and also attempts a broad coverage by incorporating not only the exact natural sciences but also life
science, the humanities and the social sciences. Though not foreign to such a wider scope, our study
aims at more concrete results by basing the study more directly on quantitative elements. Both studies
emphasize the role of the individual in the cognitive process.

A special feature of our development is the appeal to game theoretical considerations, cf.,
especially Sections 2.10, 2.12 and 2.13. To illuminate the importance we attach to this aspect we
quote from Jaynes’ preface to [9] where he comments on the maximum entropy principle, the central
principle of inference promoted by Jaynes:

“... it [maximum entropy] predicts only observable facts (functions of future or past observations)
rather than values of parameters which may exist only in our imagination ... it protects us against
drawing conclusions not warranted by the data. But when the information is extremely vague,
it may be difficult to define any appropriate sample space, and one may wonder whether still more
primitive principles than maximum entropy can be found. There is room for much new creative
thought here.”

This is one central place where game theory comes in. It represents a main addition, so we
claim, to Jaynes’ work In passing, it is noted that at the conference “Maximum Entropy and Bayesian
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Methods”, Paris 1992, the author had much hoped to discuss the impact of game theoretical reasoning
with professor Jaynes. Unfortunately, Jaynes, who died in 1998, was too ill at the time to participate.
He never incorporated arguments such as those in [24] which can be conceived as supportive of his
own theory.

The merits of game theory in relation to information theoretical inference were first indicated in
the probabilistic, Shannon-like setting, independently of each other, by Pfaffelhuber [25] and by the
author [26]. More recent references include Harremoës and Topsøe [27], Grünwald and Dawid [28],
Friedman et al. [29] (a utility-based work) and Dayi [30]. As sources of background material [31–33]
may be helpful.

The quantitative elements we work with are brought into play via a focus on description effort—or
just effort. From this concept, general notions of entropy and redundancy (and the close to equivalent
notion of divergence) are derived. The information triples we shall take as the key object of study are
expressions of the concepts effort/entropy/redundancy (or effort/entropy/divergence). By a “change of sign”,
the triples may, just as well, concern utility/max-utility/divergence.

Apart from introducing game theory into the picture, a main feature of the present work lies in its
abstract nature with a focus on interpretations rather than on axiomatics which was the emphasis of
many previous authors, including Jaynes.

The set of interpretations we shall emphasize in Section 2 is not be the only one possible. Different
sets of interpretations are briefly indicated in Appendices B and C. Though some of this played a role
in the development, in statistics, of the notion of properness, we have relegated the material to the
appendices, not to disturb the flow of presentation and also as we consider this material to be of lesser
significance when comparing it with the main line of thought.

Section 3 may be viewed as a justification of the partly speculative deliberations of Sections 2.1–2.16.
Also, in view of the rather elaborate theory of Section 2 with many new concepts and unusual notation,
it may well be that occasional reference to the material in Section 3 will ease the absorption of the
theoretical material.

In Section 3.1, the natural building stones behind the information triples is presented. This is
closely related to the well-known construction associated with Bregman’s name. The construction
may be expanded by allowing non-smooth functions as “generators”. Pursuing this leads to situations
where the standard notion of properness breaks down and needs a replacement by weaker notions.
Such notions are introduced at the end of Section 2.10 but may only be appreciated after acquaintance
with the less abstract material in Appendix A.

The applications presented—or indications of potential applications—come from combinatorial
geometry, probabilistic information theory, statistics and statistical physics. For most of them, we focus
on providing the key notions needed for the theory to work, thus largely leaving concrete applications
aside. The aim is to provide enough details in order to demonstrate that our modeling can be applied in
quite different contexts. For the case of discrete probabilistic models we do, however, embark on a more
thorough analysis. The reason for this is, firstly, that this is what triggered the research reported on and,
secondly, with a thorough discussion of modeling in this context, virtually all elements introduced in
the many sub-sections of Section 2 have a clear and natural interpretation. In fact, full appreciation of
the abstract theory may only be achieved after reading the material in Sections 3.6 and 3.7.

Our treatment is formally developed independently of previous research. However, unconsciously
or not, it depends on earlier studies as referred to above and on the tradition developed over time.
More specifically, we mention that our focus on description effort, especially the notion of properness,
cf., Section 2.6, is closely related to ideas first developed for areas touching on meteorology, statistics
and information theory.

Previous relevant writings of the author include [34–38]. The present study is here published as
a substantial expansion of the latter. For instance, elements related to control—modeling an observer’s
active response to belief—and a detailed discussion of Jensen-Shannon divergence as well as more
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cumbersome technical details were left out in [38]. Thus, [38] may best serve as an easy-to-read
appetizer to the present more heavy and comprehensive theory.

2. Information without Probability

2.1. The World and You

By Ω we denote the actual world, perhaps one among several possible worlds. Two fictitious persons
play a major role in our modeling, “Nature” and “Observer”. These “persons” behave quite differently
and, though stereotypical, the reader may associate opposing sexes to them, say female for Nature,
male for Observer. The interplay between the two takes place in relation to studies of situations from
the world. Observer’s aim is to gain insight about situations studied. It may be helpful to think of
Observer as “you”, say a physicist, psychologist, statistician, information theoretician or what the case
may be. Nature is seen as an expression of the world itself and reflects the rules of the world. Mostly,
such rules may be identified with laws of nature. However, we shall consider models where the rules
express an interplay between Nature and Observer and as such may not be absolutes, independent of
observer’s interference.

The insight or knowledge sought by Observer will be focused on inference concerning particular
situations under study. A different form of inference not focused on any particular situation may also
be of relevance if Observer does not know which world he is placed in. Of course, the actual world is
a possible world or it could not exist. So Observer may, based on experience gained from situations
encountered, attempt to ascertain which one out of a multitude of possible worlds is actualized.

The notions introduced are left as loose indications. They will take more shape as the modeling
progresses. The terminology chosen here and later on is intended to provoke associations to common
day experiences of the cognitive process. In addition, the terminology is largely consistent with usage
in philosophy.

2.2. Truth and Belief

Nature is the holder of truth. Observer seeks the truth but is relegated to belief. However, Observer
possesses a conscious and creative mind which can be exploited in order to obtain knowledge as
effortlessly as possible. In contrast, Nature does not have a mind—and still, the reader may find it
helpful to think of Nature as a kind of “person”!

We introduce a set X, the state space, and a set Y, the belief reservoir. Elements of X, generically
denoted by x, are truth instances or states of truth or just states, whereas elements of Y, generically
denoted by y, are belief instances. We assume that Y ⊇ X. Therefore, in any situation, it is conceivable
that Observer actually believes what is true. Mostly, Y = X will hold. Then, whatever Observer
believes, could be true.

Typically, in any situation, we imagine that Nature chooses a state and that Observer chooses
a belief instance. This leads to the introduction of certain games which will be studied systematically
later on, starting with Section 2.10.

Though there may be no such thing as absolute truth, it is tempting to imagine that there is and to
think of Natures choice as an expression of just that. This then helps to maintain a distinction between
Nature and Observer. However, a closer analysis reveals that what goes on at Natures side is most
correctly thought of as another manifestation of Observer. Thus the two sides cannot be separated.
Rather, a key to our modeling is the interplay between the two.

For some models it may be appropriate to introduce a set X0 ⊆ X of realistic states. States not in X0

are considered unrealistic, out of reach for Observer, typically because they would involve availability
of unlimited resources. Moreover, some models involve a set Ydet ⊆ Y of certain beliefs. Beliefs from
Ydet are chosen by Observer if he is quite determined on what is going on—but of course, he could be
wrong. If nothing is said to the contrary, you can take X0 = X and Ydet = ∅.

In a specific situation, Nature’s choice may not be free within all of X. Rather, it may be restricted to
a non-empty subset P of X, the preparation. The idea is that Observer, perhaps a physicist, can “prepare”
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a situation, thereby forcing Nature to restrict the choice of state accordingly. For instance, by placing
a gas in a heat bath, Nature is restricted to states which have a mean energy consistent with the
prescribed temperature.

A situation is normally characterized by specifying a preparation P . A state x is consistent—viz.,
consistent with the preparation P of the situation—if x ∈ P . Later on, we shall consider preparation
families which are sets, generically denoted by P, whose members are preparations.

Faced with a specific situation with preparationP , Observer speculates about the state of truth chosen
by Nature. Observer may express his opinion by assigning a belief instance to the situation. If this
is always chosen from the preparation P , Observer will only believe what could be true. Sometimes,
Observer may prefer to assign a belief instance in Y\P to the situation. Then this instance cannot
possibly be one chosen by Nature. Nevertheless, it may be an adequate choice if an instance inside P
would contradict Observer’s subjective beliefs. Therefore, the chosen instance may be the “closest”
to the actual truth instance in a subjective sense. Anyhow, Observer’s choice of belief instance is
considered a subjective choice which takes available information into account such as general insight
and any prior information. Qualitatively, these thoughts agree with Bayesian thinking, and as such enjoy
the merits, but are also subject to the standard criticism, which applies to this line of thought, cf., [12,39].

2.3. A Tendency to Act, a Wish to Control

Two considerations will lead us to new and important structural elements.
First, we point to the mantra that belief is a tendency to act. This is a rewording taken from Good [40]

who suggested this point of view as a possible interpretation of the notion of belief. In daily life,
action appears more often than not to be a spontaneous reaction in situations man is faced with,
rather than a result of rational considerations. Or reaction depends on psychological factors or brain
activity largely outside conscious control. In contrast, we shall rely on rational thinking based on
quantitative considerations. As a preparation we introduce a set Ŷ, the action space, and a map from Y
into Ŷ, referred to as response. Elements of Ŷ are called actions. We use the notation ŷ to indicate the
action which is Observer’s response in situations where Observer’s belief is represented by the belief
instance y. Note that as we have assumed that X ⊆ Y, x̂ is well defined for every state x.

Response need not be injective, thus it is in general not possible to infer Observer’s belief from
Observer’s action. Response need not either be surjective, though for most applications it will be so.
Actions not in the range are idle for the actual model under discussion but may become relevant if the
setting is later expanded.

Belief instances, say y1 and y2, with the same response are response-equivalent, notationally written
y1∼̂y2.

If the model contains certain beliefs, i.e., if Ydet 6= ∅, we assume that Ŷ contains a special element,
the empty action, and that this action is chosen by Observer in response to any certain belief instance.
In such cases, Observer sees no reason to take any action. If Observer finds several actions equally
attractive, one could allow response to be a set-valued map. However, for the present study we insist
that response is an ordinary map defined on all of Y. This will actually be quite important.

For a preparation P , P̂ denotes the set of x̂ with x ∈ P .
Let us turn to another tendency of man, the wish to control. This makes us introduce a set W,

the control space. The elements of W are referred to as controls. For the present modeling, this will
not, formally, lead to further complications as we shall take W and Ŷ to be identical: W = Ŷ.
This simplification may be defended by taking the point of view that in order to exercise control,
you have to act, typically by setting up appropriate experiments. Moreover, you may consider it the
purpose of Observer’s action to exercise control. Thus, in an idealized and simplified model as here
presented, we simply identify the two aspects, action and control. Later elaborations of the modeling
may lead to a clear distinction between action and the more passive concept of control. As Ŷ and W
are identified, we shall often use w as a generic element of Ŷ = W and we shall denote the empty
action—the same as the empty control—by w∅.
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The simplest models are obtained when response is an injection or even a bijection. Moreover,
simplest among these models are the cases when Y = Ŷ = W and response is the identity map. This
corresponds to a further identification of belief with action or control. Even then it makes a difference
if you think about an element as an expression of belief, as an expression of action or as an expression
of control.

Although many models do not need the introduction of Ŷ (or W), the further development will
to a large extent refer first and foremost to Ŷ-related concepts. Technically, this results in greater
generality, as response need not be injective. Belief-type concepts, often indicated by referring to the
“Y-domain”, will then be derived from action- or control-based concepts, often indicated by pointing
to the “Ŷ-domain”. The qualifying indication may be omitted if it is clear from the context whether we
work in the one domain or the other.

2.4. Atomic Situations, Controllability and Visibility

Two relations will be introduced. Controllability is the primary one from which the other one,
visibility, will be derived. These relations constitute refinements which may be disregarded at
a first reading. This can be done by taking the relations to be the diffuse relations , in notation below,
X ⊗ Ŷ = X × Ŷ and X ⊗ Y = X × Y. The reader may recall that in general mathematical jargon,
a diffuse relation is one without restrictions, i.e., one for which any element is in relation to any
other element.

Pairs of states and belief instances or pairs of states and controls are key ingredients in situations
from the world. However, not all such pairs will be allowed. Instead, we imagine that offhand,
Observer has some limited insight into Natures behaviour and therefore, Observer takes care not to
choose “completely stupid” belief instances or controls, as the case may be.

We express these ideas in the Ŷ-domain by introducing a relation from X to Ŷ, called controllability
and denoted X⊗ Ŷ. Thus X⊗ Ŷ is a subset of the product set X× Ŷ. Elements of X⊗ Ŷ are atomic
situations (in the Ŷ-domain). If a preparation P is given, it may suffice to consider the restriction P ⊗ Ŷ
which consists of all atomic situations (x, w) with x ∈ P .

For an atomic situation (x, w), we write w � x and say that w controls x or that x can be controlled
by w. An atomic situation (x, w) is an adapted pair if w is adapted to x in the sense that w = x̂.

For a preparation P we write w � P , and call w a control of P , if w controls every state in P
(∀x ∈ P : w � x). We also express this by saying that w controls P . By ˆ[P ] we denote the set of all
controls of P . We write ˆ[x] if P is the singleton set {x}. In case X⊗ Ŷ is the diffuse relation, ˆ[P ] = Ŷ
for any preparation P .

ForQ ⊆ Ŷ, ]Q[ denotes the control region ofQ, the set of x ∈ X for which w � x for some w ∈ Q.
We write ]w[ if Q is the singleton set {w}. Clearly, the statements w ∈ ˆ[P ], w � P and P ⊆]w[

are equivalent.
We assume that the following conditions hold:

∀x ∈ X : x̂ � x , (1)

∀w ∈ Ŷ : ]w[ 6= ∅ , (2)

and normally also that
∃y ∈ Y : ŷ � X. (3)

The first condition is essential and the second one is rather innocent. The third condition is
introduced when we want to ensure that X (or Y) is not “too large”. Models where (3) does not hold
are considered unrealistic, beyond what man (Observer) can grasp. If response is surjective, it amounts
to the condition ˆ[X] 6= ∅. It is illuminating to have models of classical Shannon theory in mind,
cf., Section 3.7.
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For a preparation P , we define the centre of P (Ŷ-domain) as the set of controls in P̂ which
control P :

ctrˆ(P) = P̂ ∩ ˆ[P ]. (4)

From controllability we derive the relation of visibility for the Y-domain, denoted X ⊗ Y,
and given by

X⊗Y = {(x, y) ∈ X×Y|ŷ � x} . (5)

Restrictions P ⊗Y = {(x, y) ∈ X⊗Y|x ∈ P} are at times of relevance.
If (x, y) ∈ X⊗Y, we say that (x, y) is an atomic situation (in the Y-domain) and write y � x. Such a

situation is an adapted pair if (x, ŷ) is so in the Ŷ-domain, i.e., if y∼̂x and (x, y) is a perfect match if y = x.
The two notions coincide if response is injective. An atomic situation (x, y) is certain if y ∈ Ydet.

Note that we use the same sign, �, for visibility and for controllability. The context will have
to show if we work in the Y- or in the Ŷ-domain. We see that y � x if and only if ŷ � x. If this is so,
we also say that y covers x or that x is visible from y.

By (1) and by the defining relation (5), x � x for all x ∈ X, thus X⊗Y contains the diagonal X×X.
The outlook (or view) from y ∈ Y is the set ]y[= {x|y � x}. Clearly, ]y[=]ŷ[. By (2) and (5), this set is
non-empty and, when (3) holds, for at least one belief instance, the outlook is all of X.

For a preparation P we write y � P , and call y a viewpoint of P , if y � x for every x ∈ P . The set
of all viewpoints of P is denoted [P ]. We write [x] if P is the singleton P = {x}. By ctr(P), the centre of
P (Y-domain), we denote the set of viewpoints in the preparation:

ctr(P) = P ∩[P ]. (6)

Note that ctr (̂P) = {x̂|x ∈ ctr(P)}.
In any situation, Observer should ensure that from his chosen belief instance, every state which

could conceivably be chosen by Nature is visible. Therefore, in a situation where the preparation P is
known to Observer, Observer should only consider belief instances in [P ].

In the sequel we shall often consider bivariate functions, generically denoted by either f̂
(Ŷ-domain) or by f (Y-domain). The f̂ -type functions are defined either on X⊗ Ŷ or on some subset
of the form P ×ˆ[P ] for some preparation P . The range of f̂ may be any abstract set but will often be
a subset of the extended real line. Given f̂ , it is understood that f without the hat denotes the derived
function defined by f (x, y) = f̂ (x, ŷ) for pairs (x, y) for which (x, ŷ) is in the domain of definition of f̂ .
The domain of definition of the derived function is either X⊗Y or the set P × [P ] if f̂ is defined on
P × ˆ[P ].

Every derived function depends only on response in the sense that f (x, y1) = f (x, y2) if only
y1∼̂y2. If response is a surjection, there is a natural one-to-one relation between Ŷ-type functions and
Y-type functions which depend only on response.

Consider an f -type function defined on all of X⊗Y. For y ∈ Y, f y denotes the marginal function
given y, defined on ]y[ by f y(x) = f (x, y). The marginal function given x ∈ X is the function fx defined by
fx(y) = f (x, y) for y ∈ [x]. We write f y < ∞ on P to express, firstly, that y � P so that f y is well defined
on all of P and, secondly, that this marginal function is finite on P . We write f y < ∞ if f y < ∞ on X.

2.5. Knowledge, Perception and Deformation

Observer strives for knowledge, conceived as the synthesis of extensive experience. Referring to
probabilistic thinking, we could point to situations where accidental experimental data are smoothed
out over time as you enter the regime of the law of large numbers. However, Observer’s endeavours
may result in less definitive insight, a more immediate reaction which we refer to as perception. It reflects
how Observer perceives situations from the world or, with a different focus, how situations from the
world are presented to Observer.
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In the same way as we have introduced truth- and belief instances, we consider knowledge
instances, also referred to as perceptions. Typically, they are denoted by z and taken from a set denoted Z,
the knowledge base or perception base.

A simplifying assumption for our modeling is that the rules of the world Ω contain a special
function, Π̂, which maps X⊗ Ŷ into Z, generically,

z = Π̂(x, w). (7)

The derived function, Π, then maps X⊗Y into Z. Both functions are referred to as the deformation.
The context will show which one we have in mind, Π̂ or Π.

Thus knowledge can be derived deterministically from truth and belief alone, and as far as belief
is concerned, we only have to know the associated response. In terms of perception, Observer’s
perception z of an atomic situation (x, y) is given by z = Π(x, y) = Π̂(x, ŷ).

In our modeling, the world is characterized by the deformation. We may thus talk about the world
with deformation Π, Ω = ΩΠ. The rules of the world may contain other structural elements, but such
elements are not specified in the present study. Possibilities which could be considered in future
developments include context, noise from the environment, and dynamics. To some extent, such features
can be expressed in the present modeling by defining X, Y and Z appropriately and by introducing
suitable interpretations.

In case response is a bijection and Z contains X as well as Y we may consider the deformations
Π1 and Π0 defined by Π1(x, y) = x, respectively Π0(x, y) = y. The associated worlds are Ω1 = ΩΠ1

and Ω0 = ΩΠ0 . In Ω1, “what you see is what is true”, whereas in Ω0, “you only see what you believe”—or,
in some interpretations, you only see what you want to see. The world Ω1 is the classical world where,
optimistically, truth can be learned, whereas, in Ω0, you cannot learn anything about truth. We refer to
Ω0 as a black hole. It is a narcissistic world, a world of extreme scepticism, only reflecting Observer’s
beliefs and bearing no trace of Nature. If Z is provided with a linear structure, we can consider further
deformations Πq depending on a parameter q by putting Πq(x, y) = qx + (1− q)y. Worlds associated
with deformations of this type are denoted Ωq. These are the worlds we find of relevance for the
discussion of Tsallis entropy, cf., Section 3.6.

The simplest world to grasp is the classical world, but also the worlds Ωq and even a black
hole contain elements which are familiar to us from daily experience, especially in relation to certain
psychological phenomena. In this connection we point to placebo effects, cf., Benedetti [19], and to visual
attention, cf., Bundesen and Habekost [18]. Presently, the relevance of our modeling in relation to these
phenomena is purely qualitative.

Considering examples as indicated above, it is natural to expect that knowledge is of a nature
closely related to the nature of truth and of belief. A key case to look into is that Z = X = Y.
However, we shall not make any general assumption in this direction. What we shall do is to follow
the advice of Shannon, as far as possible avoiding assumptions which depend on concrete semantic
interpretations. As a consequence we shall only in Section 3.6 introduce more specific assumptions
about the representation of knowledge.

2.6. Effort and Description

We turn to the introduction of the key quantitative tool we shall work with. In so doing, we will
be guided by the view that perception requires effort. Expressed differently, knowledge is obtained at a cost.
Since, according to the previous section, knowledge can be derived from truth and belief alone, or from
truth and action, no explicit reference to knowledge is necessary. Instead, we model effort (in the
Ŷ-domain) by a certain bivariate function, the effort function, defined on X⊗ Ŷ.

The rules of the world Ω may not point directly to an effort function which Observer can favorably
work with. Or there may be several sensible functions to choose from. The actual selection is considered
a task for Observer.
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Effort, description, experiment and measurement are related concepts. We put emphasis on the
notion of description, which is intended to aid Observer in his encounters with situations from the
world. Logically, description comes before effort. Effort arises when specific ideas about description
are developed into a method of description, which you may here identify with an experiment.
The implementation of such a method or the performance of the associated experiment involves
a cost and this is what we conceive as specified quantitatively by the effort function.

Description depends on semantic interpretations and is often thought of in loose qualitative
terms. However, in order to develop precise concepts which can be communicated among humans,
quantitative elements will inevitably appear, typically through a finite set of certain real-valued
functions, descriptors. The descriptors of Section 3.6 give an indication of what could be involved.

Imagine now that somehow Observer has chosen all elements needed—response, actions,
experiments—and settled for an effort function, Φ̂ = Φ̂(x, w) defined on X⊗ Ŷ. Let us agree on what a
“good” effort function should mean. Generally speaking, Observer should aim at experiments with
low associated effort. Consider a fixed truth instance x and the various possible actions, in principle
free to be any action which controls x. It appears desirable that the action adapted to x should be the
one preferred by Observer. Thus effort should be minimal in this case, i.e., Φ̂(x, w) ≥ Φ̂(x, x̂) should
hold. Further, if the inequality is sharp except for the adapted action, this will have a training effect
which, over time, will encourage Observer to choose the optimal action, x̂.

Formally, we define an effort function (in the Ŷ-domain) as a function Φ̂ on X⊗ Ŷ with values in
]−∞,+∞] such that, for all x ∈ X and all w � x,

Φ̂(x, w) ≥ Φ̂(x, x̂). (8)

Thus, for all x ∈ X, x̂ ∈ arg min Φ̂x. The minimal value of Φ̂x is the entropy of x for which we use

the notation H(x):
H(x) = Φ̂(x, x̂) . (9)

This quantity will be discussed more thoroughly in the sequel. If w∅ ∈ Ŷ, it is to be expected that
Φ̂(x, w∅) = 0 when w∅ � x.

The effort function is proper, if, for any x ∈ X with H(x) < ∞, the minimum of Φ̂x is only
achieved for the control x̂ adapted to x. As opposed to this notion we have the notion of a degenerate
effort function which is one which only depends on the first argument x, i.e., for all x ∈ X, Φ̂x is
a constant function.

Note that effort may be negative (but not −∞). This flexibility will later be convenient as it will
allow us to pass freely from notions of effort to notions of utility by a simple change of sign. However,
for more standard applications, effort functions will be non-negative.

The set of effort functions and the set of proper effort functions over X⊗ Ŷ are ordered positive
cones in a natural way. You may note that if, in a sum of effort functions, one of the summands is
proper, so is the sum. Two effort functions Φ̂1 and Φ̂2, which only differ from each other by a positive
finite factor are scalarly equivalent. If an effort function is proper, so is every scalarly equivalent one.
There may be many non-scalarly equivalent effort functions. The choice among scalarly equivalent
ones amounts to a choice of unit.

Proper effort functions could have been taken as the key primitive concept on which other
concepts, especially response, can be based. To illustrate this, assume that Y = X and consider
a function Φ̂ : X ⊗ Ŷ 7→]−∞, ∞] such that, for every state x for which Φ̂x is not identically +∞,
arg min Φ̂x is a singleton. The minimal value of Φ̂x is again the entropy H(x) and we may define the

set of realistic states by X0 = {H < ∞} and, more importantly, response x 7→ x̂ by the requirement that
Φ̂(x, x̂) = min Φ̂x. This defines response uniquely on X0 and for x /∈ X0, the definition of x̂ is really
immaterial and any element in Ŷ which controls x will do.
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Turning to the Y-domain, we define an effort function (Y-domain), as a function
Φ : X⊗Y 7→]−∞, ∞] such that

Φ(x, y) ≥ Φ(x, x) for all (x, y) ∈ X⊗Y . (10)

Entropy is given by H(x) = Φ(x, x). If there are certain atomic situation, it is natural to expect
that effort vanishes for such situations. The effort function is proper if equality in (10) only holds if
either H(x) = ∞ or else y = x. We also express this by saying that Φ satisfies the perfect match principle.
An effort function is degenerate if, for every (x, y) ∈ X⊗Y, Φ(x, y) = H(x).

The notions just introduced were defined directly with reference to the Y-domain. However, it lies
nearby also to consider functions which can be derived from Ŷ-effort functions Φ̂. They are derived
effort functions and, in case Φ̂ is proper, proper derived effort functions. The two strategies for definitions,
intrinsic and via derivation, give slightly different concepts. In case response is injective, the resulting
notions are equivalent. In general, derived effort functions depend only on response, i.e., if y1 � x
and y2 � x and if y1∼̂y2 then Φ(x, y1) = Φ(x, y2). In the other direction, for a proper derived effort
function, you can only conclude response-equivalence, y∼̂x, if Φ(x, y) = H(x) and H(x) < ∞.

Formally, the definitions related to Y-effort functions may be conceived as a special case of the
definitions pertaining to the Ŷ-domain (put Ŷ = Y and take the identity map as response).

We shall talk about effort functions without a qualifying prefix, Ŷ or Y, if it is clear from the
context what we have in mind. We shall always point out if we have derived functions in mind.

The effort functions introduced determine net effort. However, the implementation of the method
of description—which we imagine lies behind—may, in addition to a specific cost, entail a certain
overhead and, occasionally, it is appropriate to include this overhead in the effort. We refer to Section 3.6
for instances of this.

We imagine that the choice of effort function involves considerations related to knowledge and
to the rules of the world. However, once Φ̂, hence also Φ are fixed, these other elements are only
present indirectly. The ideas of Section 2.5 have thus mainly served as motivation for the further
abstract development. The ideas will be taken up again when in Section 3.6 we turn to a study of
probabilistic models.

The author was led to consider proper effort functions in order to illuminate certain aspects of
statistical physics, cf., [34,37]. However, the ideas have been around for quite some time, especially
among statisticians. For them it has been more natural to work with functions taken with the reverse
sign by looking at “score” rather than effort. Our notion of proper effort functions, when specialized to
a probabilistic setting, matches the notion of proper scoring rules as you find it in the statistical literature.
As to the literature, Csiszár [41] comments on the early sources, including Brier [42], a forerunner of
research which followed, cf., Good [40], Savage [43] (see e.g., Section 9.4) and Fischer [44]. See also the
reference work [45] by Gneiting and Raftery. For research of Dawid and collaborators—partly in line
with what you find here—see [28,46–48].

2.7. Information Triples

As advocated in the last section, effort is a notion of central importance. However, this notion
should not stand alone but be discussed together with other fundamental concepts of information.
This point of view will be emphasized by the introduction of a notion of information triples, the main
notion of the present study. We start by philosophizing over the very concept of information.

Information in any particular situation concerns truth. If P is a preparation, “x ∈ P” signifies that
the true state is to be found among the states in P . If P is a singleton, we talk about full information and
use the notation “x” rather than “x ∈ {x}”; otherwise, we talk about partial information.

We shall not be concerned with how information can be obtained—if at all. Perhaps, Observer
only speculates about the potential possibility of acquiring information, either through his own activity
or otherwise, e.g., via the involvement of an aid or a third party, an informer.
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Information will be related to quantitatively defined concepts. As our basis we take a proper effort
function Φ̂. Following Shannon we disregard semantic content. Instead, we focus on the possibility
for Observer to benefit from information by a saving of effort. Accordingly, we view Φ̂(x, w) as
the information content of “x” in an atomic situation with x as truth instance and w as action or
control—indeed, if you are told that x is the true state, you need not allocate the effort Φ̂(x, w) to the
situation which you were otherwise prepared to do. The somewhat intangible and elusive concept of
“information” is, therefore, measured by the more concrete and physical notion of effort, hence the
unit of information is the same as the unit used for effort.

There is a huge literature elucidating what information really “is”. Suffice it here to refer to [21]
and, as an example of a discussion more closely targeted on our main themes, we refer to Caticha [49]
who maintains that “Just as a force is defined as that which induces a change in motion, so information is that
which induces a change in beliefs”. One may just as well—or even better—focus on action. Then we can
claim that “information” is that which induces a change of action.

The central concept of the theory developed by Shannon is that of entropy. This concept was
already introduced in the preceding section. Here, we elaborate on possible interpretations. One view
is that entropy is guaranteed saving of effort. With effort given by Φ̂ we are led to define the entropy
H(x) associated with the information “x” as the minimum over w of Φ̂(x, w). Thus, by (8), (9) holds.

The considerations above make most sense if, one way or another, Observer eventually obtains
full information about the true state. However, if, instead, you view entropy as necessary allocation of
effort, understood as the effort you have to allocate in order to have a chance to obtain full information,
it does not appear important actually to obtain that information. In passing, one may think that a more
neutral terminology such as “necessity” could have been chosen in place of “entropy”. That could be
less awkward when you turn to other applications of the abstract theory than classical Shannon theory
or statistical physics.

As yet a third route to entropy we suggest to view it as a quantitative expression of the complexity
of the various states, maintaining that to evaluate complexity, Observer may use minimal accepted effort,
the effort he is willing to allocate to the various states in order to obtain the information in question.

Entropy may also be obtained with reference only to the Y-domain. Indeed, with Φ the derived
effort function, for each state x, H(x) = Φ(x, x).

Whichever route to entropy you take—including the game theoretical route of Section 2.10—it
appears that subjective elements are involved, typically through Observer’s choice of description and
associated experiments. If, modulo scalar equivalence, the actual world only allows one proper effort
function, then entropy and notions related to entropy are of a more objective nature. We shall later
see examples of such worlds but also for such worlds subjective elements may enter if Observer is
considering which world is the actual one.

Apart from effort itself, and the derived notion of entropy, we turn to the introduction of two other
basic concepts which make sense in our abstract setting, viz., redundancy for the Ŷ-domain and its
counterpart, divergence, for the Y-domain.

To define redundancy, consider an atomic situation (x, w) ∈ X⊗ Ŷ. Then redundancy D̂ between x
and w is measured by the difference between actual and minimal effort, i.e., ideally, as

D̂(x, w) = Φ̂(x, w)−H(x) . (11)

Assume, for a moment, that entropy is finite-valued. Then redundancy in (11) is well defined.
Furthermore, redundancy is non-negative and only vanishes if (x, w) is an adapted pair.

However, we find it important to be able to deal with models for which entropy may be infinite.
We do that by simply assuming that appropriate versions of redundancy and divergence exist with
desirable properties. The simple device we shall apply in order to reach a sensible definition is to
rewrite the defining relation (11), isolating effort on the left hand side.

With the above preparations, we are ready to introduce the key concepts of our study. We start
with concepts for the Ŷ-domain and follow up after that by parallel concepts for the Y-domain.
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We consider certain triples (Φ̂, H, D̂) of functions taking values in ]−∞, ∞] with Φ̂ and D̂ defined
on X⊗ Ŷ and H defined on X. If need be we may talk about triples over X⊗ Ŷ or we may point to the
Ŷ-domain. Such triples must satisfy special conditions in order to be of interest. The most important
properties to consider are the following four:

Φ̂(x, w) = H(x) + D̂(x, w) (linking identity, L); (12)

D̂(x, w) ≥ 0 (fundamental inequality, F); (13)

D̂(x, x̂) = 0 (soundness, S); (14)

w 6= x̂⇒ D̂(x, w) > 0 (properness, P). (15)

The properties (12), (13) and (15) are considered for all (x, w) ∈ X ⊗ Ŷ and (14) for all x ∈ X.
The linking identity (12) may be written shortly as Φ̂ = H+ D̂ or, formally correct with p̂r the projection
of X⊗ Ŷ onto X, as Φ̂ = H ◦ p̂r+ D̂.

An information triple is a triple (Φ̂, H, D̂) which satisfies the three first conditions (L, F and S).
For such triples the function Φ̂ is the associated effort function, H the associated entropy and D̂ the
associated redundancy. This does not conflict with previous terminology. In particular, the associated
effort function is indeed an effort function in the sense of Section 2.6.

Information triples with the same redundancy are said to be equivalent. Equivalent triples may
have quite different properties and one may search for representatives with good properties.

A proper information triple in the Y-domain is an information triple for which redundancy is proper,
i.e., (15) holds. Clearly, the effort function of a proper information triple is proper in the sense of
Section 2.6. Moreover, if a triple is proper, so is any equivalent one.

An information triple is degenerate if redundancy vanishes: D̂(x, w) = 0 for all (x, w) ∈ X⊗ Ŷ.
The effort function of a degenerate information triple is degenerate.

Among the four defining properties, the last three (FSP) only involve redundancy. Accordingly,
a function D̂ defined on X⊗ Ŷ is a general redundancy function if it satisfies the fundamental inequality
as well as the requirements of soundness and properness. Note that for such a redundancy function,
(D̂, 0, D̂) is a proper information triple and that any equivalent information triple may be obtained
from (D̂, 0, D̂) by a natural process of addition related to any function on X with values in ]−∞, ∞],
taking this function as the entropy function. To be precise, what is involved structurally is that you
add information triples, one of which is proper and the other degenerate, viz., you add (D̂, 0, D̂) and
(H, H, 0). For further details on this theme, see Section 3.1.

Normally, given a proper effort function Φ̂, there is a natural way to extend the redundancy
function as defined by (11) when H(x) < ∞, so that a proper information triple emerges. For this
reason, we may talk about the information triple generated by Φ̂. Then, the problem of indeterminacy
of redundancy disappears. The slightly strengthened assumption that redundancy can be defined
“appropriately” on all of X⊗ Ŷ will, as it turns out, present no limitation in concrete cases of interest.

We turn briefly to Y-type triples. They are triples (Φ, H, D) with Φ and D defined on X ⊗ Y
and H defined on X. Key properties to consider are quite parallel to what we have discussed for
the Ŷ-domain:

Φ(x, y) = H(x) +D(x, y) (linking identity, L); (16)

D(x, y) ≥ 0 (fundamental inequality, F); (17)

D(x, x̂) = 0 (soundness, S); (18)

y 6= x⇒ D(x, y) > 0 (properness, P). (19)

An information triple in the Y-domain is a triple which satisfies the conditions L, F and S. For such
triples, Φ is the associated effort, H the associated entropy and D the associated divergence.

A proper information triple is one for which divergence is proper. Such triples are intrinsically
defined in the sense that they do not depend on any action space or response function. If divergence
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vanishes, the triple is degenerate. The effort function of a proper information triple is proper in the
sense of Section 2.6 and the effort function of a degenerate triple is degenerate.

A triple (Φ, H, D) is a derived information triple, respectively a derived proper information triple, if there
exists a triple (Φ̂, H, D̂) satisfying the corresponding properties for the Ŷ-domain such that Φ is derived
from Φ̂ and D from D̂. Note that a derived proper information triple need not be a proper information
triple according to the intrinsic definition. Indeed, from D(x, y) = 0 you can only conclude that x and y
are response equivalent. Of course, if response is injective, the two types of proper information triples
for the Y-domain—intrinsically defined or defined via derivation—are equivalent concepts.

A general divergence function D on X ⊗ Y is a function on X ⊗ Y which satisfies the F, S and
P-requirements. Note that we include the property of properness in the definition. A general derived
divergence function is one which can be derived from a general redundancy function.

For the Y-domain, notions of equivalence (same divergence!) and of addition of information
triples are defined in the obvious manner.

Instead of taking triples as introduced above as the basis, it is quite often more natural to focus on
triples of the “opposite nature”. This refers to situations where it is appropriate to focus on a positively
oriented quantity such as utility or pay-off rather than on effort. Typically, this is the case for studies
of economy, meteorology and statistics where one also meets the notion of “score” as previously
indicated. In order to distinguish the two types of triples from each other, we may refer to them as
being effort-based, respectively utility-based.

For the Ŷ-domain, (Û, M, D̂) is a utility-based information triple if (−Û,−M, D̂) is so as an effort-
based triple and, for the Y-domain, (U, M, D) is a utility-based information triple if (−U,−M, D) is so as
an effort-based triple. Properness and other concepts introduced for effort-based triples carry over in
the obvious way to utility-based triples.

For utility-based triples, Û and U are called utility, M is called max-utility. As for effort-based
triples, D̂ is redundancy and D divergence. The linking identity takes the form Û = M−D̂ (U = M−D)
which can never result in the indeterminate form ∞−∞ since, by definition, Û and U, hence also M,
can never assume the value +∞.

In view of the main examples we have in mind, we have found it most illuminating to take
effort rather than utility as the basic concept to work with, and hence to develop the main results for
effort-based quantities. Anyhow, even if you are primarily interested in considerations based on effort,
you are easily led to consider also utility-based quantities as we shall see right away in the next section.

The concept of proper information triples is, except for minor technical details, equivalent
to the concept of proper effort functions. Apart from a slight technical advantage, the triples
constitute a preferable base for information theoretical investigations as the three truly basic notions
of information are all emphasized together with their basic interrelationship—the linking identity.
Historically, the notions arose for classical probabilistic information theoretical models, cf., Section 3.7.
Effort functions go back to Kerridge [50] who coined the term inaccuracy, entropy goes back to
Shannon [1] and divergence to Kullback [51]. The term “redundancy” which we have used for another
side of divergence, corresponds to one usage in information theory, though there the term is used in
several other ways which are not expressed in our abstract setting.

As an aside, it is tempting for the author to point to the pioneering work of Edgar Rubin going
back to the twenties. Unfortunately, this was only published posthumously in 1956, cf., [52–54]. Rubin
made experiments over human speech and focused on what he called the reserve of understanding.
This is a quantitative measure of the amount you can cut out of a persons speech without seriously
disrupting a listeners ability to understand what has been said. It can be conceived as a forerunner of
the notion of redundancy.

Our way to information triples was through effort and one may ask why we did not go directly to
the triples. For one thing, triples lead to a smooth axiomatic theory, as will be demonstrated in the
present research, compare also with our previous contribution [55]. However, though axiomatization
can be technically attractive, we find that a focus on interpretation as in our more philosophical and
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speculative approach, is of primary importance and contributes best to an understanding of central
concepts of information. Axiomatics only comes in after basic interpretations are in place.

A comment on the choice of terminology in relation to the concept of properness is in place.
This concept is at times considered to be unnecessarily strong and we shall later, at the end of
Section 2.10 and in Appendix A, develop weaker notions. When only a redundancy function or a
divergence function is given and not a full information triple, we have chosen to incorporate the
requirement of properness in its usual form in the definition of what we understand by a general
redundancy function or a general divergence function.

2.8. Relativization, Updating

In this section we shall work entirely in the Y-domain. We start by considering a proper
effort-based information triple (Φ, H, D) over X⊗Y. Often, it is natural to measure effort relative to
some standard performance rather than by Φ itself. An especially important instance of this kind of
relativization concerns situations where Observer originally fixed a prior, say y0 ∈ Y, but now wants to
update his belief by replacing y0 with a posterior y. Perhaps Observer—through his own actions or via
an informer—has obtained the information “x ∈ P” for some preparation P . If y0 /∈ P , Observer may
want to replace y0 by a posterior y ∈ P . In a first attempt of a reasonable definition, the associated
updating gain is given by the quantity U|y0

obtained by comparing performance under the posterior
with performance under the prior:

U|y0
(x, y) = Φ(x, y0)−Φ(x, y) . (20)

A difficulty with (20) concerns the possible indeterminate form ∞−∞. If we ignore the difficulty
and apply the linking identity (16) to both terms in (20), entropy H(x) cancels out and we find
the expression

U|y0
(x, y) = D(x, y0)−D(x, y) . (21)

This is less likely to be indeterminate. When not of the indeterminate form ∞−∞, we therefore
agree to use (21) as the formal definition of updating gain, more precisely of relative updating gain with
y0 as prior. For the present study, we shall only work with updating gain when the marginal function
Dy0 (defined in accordance with concepts and notation introduced in Section 2.4) is finite on some
preparation P under consideration. Assuming that this is the case, we realize that

(U|y0
, Dy0 , D) (22)

is a proper utility-based information triple over P ⊗Y. For such triples we put Ydet = {y0}, i.e., we take
y0 as the only certain belief instance. Max-utility is identified as the marginal function Dy0 on P and
divergence is the original divergence function restricted to P ⊗Y.

It is important to note that the triples which occur in this way by varying y0 and P do not require
the full effort function Φ in order to make sense. It suffices to start out with a general divergence
function on X⊗Y. When the construction is based on a general divergence function D, we refer to (22)
as the updating triple generated by D and with y0 as prior.

Though rather trivial, the observations regarding updating gain are important as they show
that results in that setting may be obtained from results based on effort. To emphasize this,
we introduce—based only on a general divergence function D—the effort-based information triple
associated with (22) as the triple

(Φ|y0
,−Dy0 , D) (23)

with Φ|y0
given by

Φ|y0
(x, y) = D(x, y)−D(x, y0) . (24)
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This is a perfectly feasible effort-based triple over P ⊗Y whenever Dy0 is finite on P . Clearly,
it is proper.

In Sections 2.13 and 2.15 we shall derive results about minimum divergence (information
projections) from results about maximum entropy by exploiting the simple facts here uncovered.

As we have seen, natural information triples may be derived from a general divergence function
by a simple process of relativization. While we are at it, we note that in case Y = X, also reverse
divergence (x, y) 7→ D(y, x) defines a genuine divergence function on X ⊗ Y (in contrast, reverse
description effort need not define a genuine effort function). Therefore, if Dy0 < ∞ and we put
Φr
|y0
(x, y) = D(y, x)−D(y0, x), (

Φr
|y0
(x, y),−D(y0, x), D(y, x)

)
(25)

defines a genuine proper information triple (when restricting the variables x and y appropriately).
However, these triples are not found to be that significant.

2.9. Feasible Preparations, Core and Robustness

We claim that description is a key to obtainable information, to what can be known. Not every
possible information “x ∈ P” for any odd preparation P can be expected to reflect a realistic situation.
The question we ask is “what can Observer know?” or “what kind of information can Observer hope
to obtain?”. We thus want to investigate “limits to knowledge” and “limits to information”. In order
to provide an answer, we shall identify classes of preparations which represent feasible information.
These classes will be defined with reference to an effort function Φ̂. For this section, Φ̂ need not
be proper.

Given w ∈ Ŷ and a level h < ∞, we define the level set Pw(h) and the sub level set Pw(h↓) by

Pw(h) = {Φ̂w = h} ; Pw(h↓) = {Φ̂w ≤ h} , (26)

i.e., as the set of states which are controlled by w, either at the level h or at the maximum level h. These sets
are genuine preparations whenever they are non-empty. When w is the response of a state x ∈ X,
Pw(h↓) is non-empty whenever h ≥ H(x). As level- and sub level sets for other functions will appear
later on, cf., Section 2.14, we may for clarity refer to Pw(h) and to Pw(h↓) as, respectively, Φ̂w-level sets
and Φ̂w-sub level sets.

The preparations in (26) we call primitive strict, respectively primitive slack preparations. A general
strict, respectively a general slack preparation is a finite non-empty intersection of primitive strict,
respectively primitive slack preparations. The genus of these preparations is the smallest number of
primitive preparations (either strict or slack as the case may be) which can enter into the definition just
given. Thus primitive preparations are of genus 1.

If w = (w1, · · · , wn) are elements of Ŷ and h = (h1, · · · , hn) are real numbers, the sets

Pw(h) =
⋂
i≤n
Pwi(hi) and Pw(h↓) =

⋂
i≤n
Pwi(h↓i ) (27)

define strict, respectively slack preparations of genus at most n whenever they are non-empty. The set
Pw(h) is the corona of Pw(h↓) whenever it is non-empty.

The preparations introduced above via the representation (27) are those we consider to be feasible
and we formally refer to them as the feasible preparations. They provide the answer to the question
about what can be known. They are the key ingredients in situations which Observer can be faced with.
In any such situation a main problem concerns inference, an issue we shall take up in the next section.

Often, families of feasible preparations are of interest. Given w = (w1, · · · , wn), we denote by Pw,
respectively Pw↓, the families which consist of all preparations Pw(h), respectively Pw(h↓), which
can be obtained by varying h.
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Clearly, the feasible preparations can also be expressed by reference to the derived effort function
Φ rather than Φ̂. We use the notation Py(h) and Py(h↓) for, respectively, the Φy-level set {Φy = h}
and the Φy-sub level set {Φy ≤ h}. If ŷ = w, Py(h) = Pw(h) and Py(h↓) = Pw(h↓) (note that for
an expression such as Pq(h), the nature of q determines if this is a Φ̂- or a Φ-level set). For finite
sequences y = (y1, · · · , yn) of elements of Y and h = (h1, · · · , hn) of real numbers, the sets Py(h) and
Py(h↓) are defined in the obvious manner as are the families of preparations Py, respectively Py↓.

The level sets may be used to define certain special belief instances or controls which will later,
theoretically as well as for applications, play a significant role. Given is a certain preparation P . Then,
the core of P consists of all belief instances y for which the effort Φ(x, y) is finite and independent of
x as long as x is consistent. This notion, appropriately adjusted, also makes sense for the Ŷ-domain.
Notation and defining requirements are given as follows:

core(P) = {y � P|∃h < ∞ : P ⊆ Py(h)}, (28)

core ˆ(P) = {w � P|∃h < ∞ : P ⊆ Pw(h)}. (29)

If y ∈ core(P), respectively w ∈ core (̂P), we also say that y, respectively w, is robust.
We shall refine the notions above in two ways. Firstly, for a family P of preparations—such as

a family of the form Pw defined above—the core is defined as the intersection of the individual cores:

core(P) =
⋂
P∈P

core(P), (30)

coreˆ(P) =
⋂
P∈P

coreˆ(P) . (31)

The second refinement we have in mind depends on on an auxiliary preparation E , assumed to be
a subset of the given preparation P . For the Ŷ-domain, a control w∗ � P is a (E ,P)-robust strategy for
Observer if there exists a finite constant h, such that the following two conditions hold:

Φ̂(x, w∗) = h for all x ∈ E , (32)

Φ̂(x, w∗) ≤ h for all x ∈ P (33)

When E = P we recover the original notion of robustness. The similar notion for belief instances
is defined in the obvious way. Notation and defining relations for the corresponding adjustments of
the notion of core are as follows:

core(E|P) = {y � P|∃h < ∞ : E ⊆ Py(h), P ⊆ Py(h↓)}, (34)

core ˆ(E|P) = {w � P|∃h < ∞ : E ⊆ Pw(h), P ⊆ Pw(h↓)}. (35)

From a formal point of view, it does not matter if we use Pw-type sets or Py-type sets as the basis
for the definition of feasible preparations. However, entering into more speculative interpretations,
the Pw-type sets which emphasize control seem preferable. Individual controls w ∈ Ŷ or a collection
of such controls point to experiments which Observer may perform. An experimental setup identifies
a certain preparation, and thus determines what is known to Observer. Determining all preparations
which can arise in this way, we are led to the class of feasible preparations as defined above.

As to the nature of the various controls, we imagine that they are derived from description.
To control a situation, you must be able to describe it, and with a description you have the key to
control. We may imagine that, corresponding to a control w, Observer can realize a certain experimental
setup consisting of various parts – measuring instruments and the like. In particular, there is a special
handle which is used to fix the level of effort. If the level, perhaps best thought of as a kind of
temperature, is fixed to be h, the states available to Nature are those in the appropriate feasible
preparation. Several experiments can be carried out with the same equipment by adjusting the setting
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of the handle. If Observer wants to constrain the states by other means, he can add equipment
corresponding to another control w′ and choose a level h′ for the experimental setup constructed based
on w′. The result is a restriction of the available states to the intersection of the two preparations
involved. If the preparation is Pw(h↓) and the actual state is not inside this preparation, you may
imagine that the result is overheating and breakdown of the experimental setup! Thus you must keep
the state inside the preparation and this may well be what requires an effort as specified by Φ̂.

2.10. Inference via Games, Some Basic Concepts

For this section, (Φ̂, H, D̂) is an effort-based information triple over X ⊗ Ŷ and (Φ, H, D) the
derived triple over X ⊗ Y. Further, a preparation P is given, conceived as the partial information
“x ∈ P”. In practice, P will be a feasible preparation, but we need not assume so for this section.

The process of inference concerns the identification of “sensible” states in P—ideally only one
such state, the inferred state. In many cases, this can be achieved by game theoretical methods involving
a two-person zero-sum game. As it turns out, this will result in double inference where also either control
instances or belief instances will be identified—ideally, only one such instance, the inferred control or
the inferred belief instance as the case may be.

An inferred state, say x∗, brings Observer as close as possible to the truth in a way specified by
the method applied. The same may be said about an inferred belief instance—or you may find it more
appropriate to view an inferred belief instance as a final representation of Observers subjective views
and conviction. Turning to controls, an inferred control is conceived as an invitation to Observer to
act, say regarding the setup of experiments and performance of subsequent observations. In this way,
actions by Observer as dictated by an inferred control w∗ is conceived as that which is needed for
Observer in order to justify the inference x∗ about truth. In short, double inference gives Observer
information both about what can be inferred about truth and how.

Given P , we shall study two closely related two-person zero-sum games, the control game γ̂(P),
and the belief game γ(P), also referred to as the derived game. If need be, we may write γ̂(P |Φ̂) and
γ(P |Φ). The games have Nature and Observer as players and Φ̂, respectively Φ as objective function.
Nature is understood to be a maximizer, Observer a minimizer. For both games, strategies for Nature
involve the choice of a consistent state. Observer strategies for γ̂(P) are controls from which every
state in P can be controlled. For γ(P), Observer strategies are belief instances from which every state
in P is visible, in other words, they are viewpoints of P . Thus pairs of permissible strategies for
the two games are either pairs (x, w) with x ∈ P and w � P (with the understanding that w ∈ Ŷ)
or pairs (x, y) with x ∈ P and y � P (with the understanding that y ∈ Y). In consistency with the
discussion in Section 2.4, an observer strategy may be thought of as a strategy which is not “completely
stupid” whatever the strategy of Nature, as long as that strategy is consistent. The choice of strategy
for Observer may be a real choice, whereas, for Nature, it is often more appropriate to have a fictive
choice in mind which reflects Observer’s speculations over what the truth could be.

A remark is in order regarding models where it is unnatural to work with controls and only belief
is involved. Then the basis will be an effort-based information triple (Φ, H, D) over X⊗Y and only one
type of game, γ(P) will be involved. Formally, this may be considered a derived game by artificially
introducing Ŷ = Y, X⊗ Ŷ = X⊗Y, by taking response to be the identity map and by taking (Φ̂, H, D̂)

to be identical with (Φ, H, D) Thus the approach we shall take with a primary focus on the control
games, based on objects for the Ŷ-domain is, formally, the more general one.

Following standard philosophy of game theory, Observer should always be prepared for a choice
by Nature which is least favourable to him. One can argue that in our setting anything else would
mean that Observer would not have used all available information. The line of thought goes well with
Jaynes thinking as collected in [9], though there you find no reference to game theory.

In order for our exposition to be self-contained and also because our games are slightly at variance
with what is normally considered, we shall here give full details regarding definitions and proofs.
As references to game theory and applications to the physical sciences, ref. [32,56,57] may be useful.
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Let us introduce basic notions for the control game and then comment more briefly on the derived
game. The two values of γ̂(P) are, for Nature,

sup
x∈P

inf
w�x

Φ̂(x, w) (36)

and, for Observer,
inf

w�P
sup
x∈P

Φ̂(x, w) . (37)

Note the slight deviation from usual practice in that w in the infimum in (36) varies over ˆ[x] and
not just over ˆ[P ] or some other set independent of x. Philosophically, one may argue that Nature does
not know of the restriction to P—this is something Observer has arranged—and hence cannot know of
any restriction besides the natural one w � x. As the infimum in (36) is nothing but the entropy H(x),
the value for Nature is the maximum entropy value, also referred to as the MaxEnt-value:

Hmax(P) = sup
x∈P

H(x) . (38)

Problems on the determination of Hmax(P) and associated strategies are classical problems known
from information theory or statistical physics. If x∗ ∈ P and H(x∗) = Hmax(P), x∗ is an optimal strategy
for Nature, also referred to as a MaxEnt-state or MaxEnt-strategy. The archetypal concrete problems of
this nature are discussed in Section 3.7.

As to the value for Observer, we identify the supremum in (37) with the risk associated with the
strategy w and denote it by R̂i(w| P):

R̂i(w| P) = sup
x∈P

Φ̂(x, w) . (39)

The value for Observer then is the minimal risk of the game, also referred to as the MinRisk-value:

R̂imin(P) = inf
w�P

R̂i(w| P) . (40)

An optimal strategy for Observer is a control w∗ � P with R̂i(w∗| P) = R̂imin(P), also referred to as
a MinRisk-control or a MinRisk-strategy. Note the general validity of the minimax inequality:

Hmax(P) ≤ R̂imin(P) . (41)

Indeed, for arbitrary x ∈ P and arbitrary w � P ,

H(x) = Φ̂(x, x̂) ≤ Φ̂(x, w) ≤ R̂i(w|P)

and taking supremum over x and infimum over w, (41) follows. If (41) holds with equality and defines
a finite quantity, the game is said to be in game theoretical equilibrium, or just in equilibrium, and the
common value of Hmax(P) and R̂imin(P) is the value of the game.

A further notion of equilibrium is attached to Nash’s name. It should, however, be said that for
the relatively simple case here considered (two players, zero sum), the ideas we need originated with
von Neumann, see [58,59] and, for a historical study, Kjeldsen [60]. A pair of permissible strategies
(x∗, w∗) is a Nash equilibrium pair for γ̂(P) if, with these strategies, none of the players have an incentive
to change strategy—provided the opponent does not do so either. This means, for Nature, that

∀x ∈ P : Φ̂(x, w∗) ≤ Φ̂(x∗, w∗) , (42)

and, for Observer, that
∀w � P : Φ̂(x∗, w) ≥ Φ̂(x∗, w∗) . (43)
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The inequalities (42) and (43) constitute a special case of the celebrated saddle-value inequalities of
game theory. Note that, in our case, one of these inequalities (43), is automatic if (x∗, w∗) is an adapted
pair. This implies that x∗ ∈ ctr(P) and that w∗ ∈ P̂ as follows from the following trivial observation:

Proposition 1. If x∗ and w∗ are permissible strategies for the two players in γ̂(P) and if w∗ is adapted to x∗,
then x∗ ∈ ctr(P) and w∗ ∈ ctr (̂P).

Proof. By hypothesis, x∗ ∈ P , w∗ � P and w∗ = x̂∗, hence w∗ ∈ P̂ ∩ ˆ[P ] = ctrˆ(P), equivalent to the
statement x∗ ∈ ctr(P).

Key notions and definitions for the belief game γ(P) are quite parallel to what we have
discussed for the control game. Briefly, the values of γ(P) are supx∈P infy�x Φ(x, y) (for Nature)
and infy�P supx∈P Φ(x, y) (for Observer) and notions of strategies and optimal strategies are defined
in an obvious manner. We notice that the value for Nature in γ(P) is Hmax(P), the same as the value
for Nature in γ̂(P) and that the notion of optimal strategies for Nature in the two games are equivalent
notions. We use Ri as notation for risk in γ(P), i.e., for y � P

Ri(y|P) = sup
x∈P

Φ(x, y). (44)

Clearly, for any y � P ,
Ri(y|P) = R̂i(ŷ|P). (45)

Therefore, if y1∼̂y2 and one of these belief instances is a viewpoint of P , then so is the other and
the associated risks are the same. The value for Observer in γ(P) is

Rimin(P) = inf
y�P

Ri(y|P). (46)

The game γ(P) is in equilibrium if the two values of the game coincide and are finite. A pair (x∗, y∗)
of permissible strategies is a Nash equilibrium pair for γ(P) if the two saddle-value inequalities hold:

∀x ∈ P : Φ(x, y∗) ≤ Φ(x∗, y∗), (47)

∀y � P : Φ(x∗, y) ≥ Φ(x∗, y∗). (48)

Basic relationships between the values for the players in the belief game and the control game
may be summarized as follows.

Proposition 2. The values for Nature in γ(P) and in γ̂(P) coincide and are equal to the MaxEnt value
Hmax(P). The corresponding values for Observer in the two games are Rimin(P), respectively R̂imin(P).
In general,

Rimin(P) ≥ R̂imin(P). (49)

If response is surjective, equality holds in (49). Equality also holds if γ(P) is in equilibrium. In that case
also γ̂(P) is in equilibrium and the values for the two games coincide: Rimin(P) = R̂imin(P) = Hmax(P).

Proof. The first statement regarding the values for Nature is trivial and also noted above.
The inequality (49) follows by (45), which also implies that equality holds in case response is surjective.
If γ(P) is in equilibrium, apply the minimax inequality to γ̂(P), exploit equilibrium of γ(P) as well as
the inequality (49) and you find that

R̂imin(P) ≥ Hmax(P) = Rimin(P) ≥ R̂imin(P).

It follows that also γ̂(P) is in equilibrium. Clearly, the values for the two games coincide.
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As it will turn out, in a great many cases of relevance for the applications, it is possible rather
directly to identify optimal strategies for the players and to show that the games considered are in
equilibrium. Furthermore, in many cases there is a natural relationship between the γ̂- and the γ-type
games with the effect that, typically, there is a unique optimal strategy for Observer in γ̂(P) and this
strategy, a certain control, is adapted to any optimal strategy for Nature in the games γ̂(P) and γ(P).
Even more so, there is a tendency for the unique optimal control to be robust.

Results to support these claims will be taken up in Section 2.12. The results require that somehow
you have good candidates for the hoped-for optimal strategies. For this, the indicated tendency
towards robustness is a clue to how such candidates can actually be found in concrete cases of interest.
In fact, a search for optimal objects via robustness is very efficient and more natural than the usual
approach via the differential calculus as we shall also comment on in Section 2.12.

2.11. Refined Notions of Properness

The discussion to follow may appear unnecessary since normally, the standard notion of
properness will apply. However, there are interesting cases where this is not so. Therefore, there is
a need to look for suitable weaker notions which are still strong enough to have desirable consequences
especially regarding properties of optimal strategies. As justification of the good sense in considering
also the weaker notions of properness presented below we point to the general results of Section 2.12
and to the extended applicability of a a well-known construction due to Bregman, cf., Section 3.1 and
Appendix A.

With assumptions as in Section 2.10, let us assume that γ̂(P) is in equilibrium and, for simplicity,
that there is a unique MaxEnt-state x∗. Let us think of the system which Observer is studying as
a physical system subject to the laws of statistical physics. Then Observer will expect that after some
lead-in time, the system will stabilize and x∗ will represent the true state of the system. Observer
aims at choosing a control which is optimal and at the same time adapted to Natures choice, x∗.
Unfortunately, Observer does not know which state this is among the consistent states. So Observer
cannot just choose the control w∗ = x̂∗ adapted to x∗, but has to somehow choose some control of P ,
say w.

At this point we introduce a built-in learning mechanism operating over time which may lead
Observer in the right direction. The idea is illuminated by introducing an all-knowing being, Guru.
Guru will not reveal the truth to Observer directly but may respond to specific questions. With this
option, Observer may eventually end up by a choice of just the right control.

The three questions we shall consider all concern the entropy H(x∗) which Observer expects to be
the MaxEnt-value. The questions are all related to the inequality

Φ̂(x, w) ≤ H(x∗). (50)

The questions put higher and higher demands on the chosen control w and are as follows:

Q1: Does (50) hold for x = x∗?
Q2: Does (50) hold for all consistent x?
Q3: Does (50) even hold with equality for all consistent x?
With Question Q1, Observer wants to know if the effort he applies is minimal. Clearly, in view of

the linking identity and the fundamental inequality—and as H(x∗) < ∞ by the assumed equilibrium
of γ̂(P)—the question is equivalent to asking if D̂(x∗, w) = 0. If the reply is negative, Observer knows
that his choice cannot be optimal and he will then choose another control. But even with an affirmative
answer, i.e., when D̂(x∗, w) = 0, Observer may not be satisfied and may, therefore, continue the
questioning. If the information triple is proper, an affirmative answer to Q1 will tell Observer that
w = x̂∗ and he may be satisfied—even though it could still happen, as examples will show, that w is
not optimal. Further questioning may thus only be needed if the information triple is not proper—or
not known to be proper.
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For the second question, Q2, Observer is worried about his risk in case the state should somehow
change. The question is equivalent to asking if R̂i(w|P) ≤ H(x∗). With a negative reply, Observer
will dismiss the choice of w, if for no other reason, because w cannot be optimal then. If the reply is
positive, w is optimal and one may wonder if Observer will still find any further checking necessary.
The suggested third question Q3 reflects the ambition of Observer that he wants the control to be
robust at the level H(x∗).

Motivated by our considerations, we shall say that the information triple (Φ̂, H, D̂) is Q1, Q2 or
Q3-proper over P if, with x∗ ∈ P , we can conclude that w is adapted to x∗ from affirmative answers to,
respectively, question Q1, Q2 or Q3. If we just talk about, say Q2-properness, it is understood that the
conditions hold with P = X. If the entropy function is finite-valued, Q1-properness is equivalent to
(standard) properness.

Concerning questions being asked to Guru, one may wonder why Observer does not simply
ask directly either if the chosen control is optimal or if it is adapted to the truth. In this connection,
we remark that questions which can be asked to Guru must depend on the possibilities for Observer’s
communication with the system. For a further discussion of this, one should replace Guru with some
mathematically defined rules for this communication. Such rules may reflect the kind of experiments
and associated measurements which Observer can perform on the system.

2.12. Inference via Games, Some Basic Results

We shall investigate the possibility to identify optimal strategies based on a suggestion of possible
candidates. Moreover, when optimal strategies exist, we shall look at the ensuing consequences.
This approach will involve problems which are easy to handle technically and yet, it may be argued
that from an applied point of view the results obtained are of greater significance than theoretically
more sophisticated results, such as those developed in Section 2.16. Several examples illustrating this
point of view are listed in Section 3.

As in the previous section, an effort-based information triple (Φ̂, H, D̂) over X⊗ Ŷ, the underlying
triple, is given together with a preparation P .

When we speak about an optimal state without any further specification it is understood that we
have an optimal strategy for Nature in one of the games γ̂(P) or γ(P) in mind. As we observed in the
previous section it does not matter which game we think of. Moreover, when we speak of an optimal
belief instance, respectively an optimal control it is also clear what we have in mind, viz., an optimal
strategy for Observer in γ(P), respectively in γ̂(P).

In our first result we investigate situations where, in addition to a requirement of equilibrium,
there exist optimal strategies for both players.

Theorem 1 (Optimal strategies, basics). (i): If γ(P) is in equilibrium and both players have optimal strategies
in this game, then also γ̂(P) is in equilibrium and optimal strategies for both players in that game exist. Further,
the values of the two games agree and, if (x∗, y∗) are optimal strategies in γ(P), then (x∗, ŷ∗) are optimal
strategies in γ̂(P) (but there may be many other optimal strategies).

(ii): Now assume that (Φ̂, H, D̂) is proper. Then, if γ̂(P) is in equilibrium and both players have optimal
strategies, say x∗ and w∗, then x∗ ∈ ctr(P), w∗ ∈ ctr (̂P) and w∗ = x̂∗. It follows that the optimal control is
unique. Furthermore, also γ(P) is in equilibrium and both players have optimal strategies. A belief instance is
optimal in γ(P) if and only if it has w∗ as response. If response is injective, each of the three optimal strategies
associated with γ(P) and γ̂(P)—the optimal state x∗, the optimal belief instance y∗ and the optimal control
w∗—are unique and x∗ = y∗.

Proof. (i): Assume that γ(P) is in equilibrium and that (x∗, y∗) are optimal strategies for this game.
A bit parallel to the reasoning in the proof of Proposition 2, we find that under the stated conditions

Hmax(P) = H(x∗) = Ri(y∗|P) = R̂i(ŷ∗|P)
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and the claimed assertions follow readily.
(ii): Now assume that γ̂(P) is in equilibrium and that (x∗, w∗) are optimal strategies for this game.

By the defining relations (8) and (9), by the assumed equilibrium, by optimality of x∗ and of w∗ and by
the definition (39) of risk, we find that

Φ̂(x∗, w∗) ≥ Φ̂(x∗, x̂∗) = H(x∗) = Hmax(P) = R̂imin(P) = R̂i(w∗| P) ≥ Φ̂(x∗, w∗) , (51)

hence equality must hold throughout. Further, as H(x∗) < ∞, we conclude that D̂(x∗, w∗) = 0, hence by
properness that w∗ = x̂∗. Then, by Proposition 1, x∗ ∈ ctr(P) and w∗ ∈ ctr (̂P).

Since x∗ above was an arbitrary optimal strategy for Nature and w∗ an arbitrary optimal strategy
for Observer, and by the fact w∗ = x̂∗ just established, we conclude that the optimal Observer strategy
is unique and further, that all optimal strategies for Nature are response-equivalent, lie in ctr(P) and
have the optimal control as response.

We leave it to the reader to establish the stated results for γ(P), say by noting that y � P is
equivalent with ŷ � P and that Ri(y|P) = R̂i(ŷ|P) and by using the first facts established.

In case response is injective, the uniqueness assertions are easily established and the identity of x∗

and y∗ follows as these belief instances are response-equivalent.

Some remarks are in order.

Remark 1. Simple and very concrete “toy examples” over discrete sets—either finite or countably infinite—may
be constructed to illuminate various assumptions and to investigate the limits of the conclusions. This involves
matrix games which are easy to visualize. In this way one realizes that the games may be in equilibrium and yet
there may be no optimal strategy for any of the players or there may be one or several optimal strategies for one
of the players and none for the other. Three such examples for games in equilibrium and with an underlying
proper information triple are indicated in Figure 1 where the rows are states and the columns controls (or belief
instances). In case (a) there is a unique optimal control but no optimal state, in case (b) there is a unique optimal
state but no optimal control and in case (c) all controls are optimal but there is no optimal state. It is also easy to
construct an example where all states are optimal but no control is so.

Remark 2. Regarding the necessity of injectivity of response in the last part of the theorem, note that if this
condition does not hold, there may be strategies for Nature with the optimal control w∗ as response which are not
optimal. Simple examples, say with “collapse of response”, i.e., with Ŷ a singleton, will demonstrate that.

0 2 2 2 2 · · ·

1 1
2 2 2 2 · · ·

1 2 2
3 2 2 · · ·

1 2 2 3
4 2 · · ·

1 2 2 2 4
5 · · ·

· · · · · · · ·

(a)
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2

4
3

5
4 · · ·

2 0 1 1 1 · · ·

1 1 0 1 1 · · ·

1 1 1 0 1 · · ·

1 1 1 1 0 · · ·

· · · · · · · ·

(b)

0 1 1 1 1 · · ·

1 1
2 1 1 1 · · ·

1 1 2
3 1 1 · · ·

1 1 1 3
4 1 · · ·

1 1 1 1 4
5 · · ·

· · · · · · · ·

(c)

Figure 1. Matrix games where one of the players does not have an optimal strategy.

Remark 3. Several remarks on the assumption of properness are in place. First note that we did not have to
assume that response is surjective in order to prove that the optimal strategy w∗ in the second part of the theorem
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is in the range of this map. The assumed properness takes care of that. However, we need not assume that
properness in its strongest form holds but may work with the weaker forms introduced in Section 2.11.

To make this more precise, first note that all assertions of the second part of Theorem 1 continue to hold if
properness is replaced by Q2-properness. This follows from the discussion in Section 2.11 by noting that from
the relations in (51) one can conclude, not only that D̂(x∗, w) = 0, but also that R̂i(w|P) ≤ H(x∗). In this
way some of the concrete models discussed in Appendix A, can be handled—but not all.

We add, without going through the details, that if we assume that the weaker Q3-properness holds in
conjunction with an assumption of robustness, viz., that all controls which are adapted to an optimal state are
robust, then uniqueness of a robust optimal control is secured. The robustness condition appears to be related to
a requirement that response be defined “appropriately”. For the models of Appendix A this requires that special
care is taken when defining response at boundary points of the state space.

In the sequel some results are proved under the assumption of Q2-properness. This is, so we claim, a simple,
worth while and natural extension over results proved only under an assumption of standard Q1-properness.
Even more general results involving also robustness as just indicated may well be possible. However, it seems that
before that will make much sense, one should develop results and constructions going beyond what is indicated
in Appendix A and in Corollary 6 further on.

Inspired by Theorem 1, a pair (x∗, w∗) of permissible strategies is said to be a bi-optimal pair,
if H(x∗) = R̂i(w∗|P) < ∞ and if w∗ is the only optimal control. As follows from the theorem and from
Remark 3, the required uniqueness property of w∗ is automatic under an assumption of Q2-properness
of the underlying information triple and further, w∗ must be adapted to x∗.

If we have only given a state x∗, we say that the state is bi-optimal if (x∗, w∗) is a bi-optimal pair
with w∗ adapted to x∗.

Whereas it may be difficult to find optimal strategies, it is often easy to check if given candidates
are in fact optimal:

Theorem 2. [Identification] Under the assumptions of Q2-properness, let x∗ be a state in ctr(P) with finite
entropy and let w∗ be a control of P .

Then a necessary and sufficient condition that the pair (x∗, w∗) is bi-optimal is that it is a Nash equilibrium
pair. If this is so, w∗ is adapted to x∗.

Proof. First note that (42) is equivalent with the requirement R̂i(w∗| P) ≤ Φ̂(x∗, w∗) and that, because
x̂∗ � P is known to hold (as x∗ � P), (43) is equivalent with the requirement Φ(x∗, w∗) ≤ H(x∗).

Thus, when (42) and (43) hold, we find, also invoking the minimax inequality, that

R̂i(w∗|P) ≤ Φ̂(x∗, w∗) ≤ H(x∗) ≤ R̂i(w∗|P)

hence, recalling that H(x∗) < ∞, both D̂(x∗, w∗) = 0 and R̂i(w∗|P) = H(x∗) follow. By Q2-properness,
we then realize that w∗ is adapted to x∗. Collecting facts established, we conclude that (x∗, w∗) is
a bi-optimal pair. This proves sufficiency.

The necessity and the last part of the theorem follow from Theorem 1 and the above noticed
equivalent forms of the saddle-value inequalities.

Elaborating slightly, we obtain the following corollary:

Corollary 1. Under the assumption of Q2-properness, if (x∗, w∗) are permissible strategies for γ̂(P) with
x∗ ∈ ctr(P), H(x∗) < ∞ and with w∗ adapted to x∗, then a necessary and sufficient condition that γ̂(P) and
γ(P) are in equilibrium with x∗ as bi-optimal state is that R̂i(w∗|P) ≤ H(x∗), i.e., that

∀x ∈ P : Φ̂(x, w∗) ≤ H(x∗) . (52)
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Proof. Under the conditions stated, (43) is automatic and (52) is a reformulation of (42). Thus (52)
implies that (x∗, w∗) is a Nash equilibrium pair and the result follows from Theorem 2.

An important and trivial consequence of the existence of a bi-optimal state is the validity of the
Pythagorean inequalities. Let x∗ be a bi-optimal state and w∗ its response. The direct Pythagorean inequality,
or just the Pythagorean inequality, is the inequality H(x) + D̂(x, w∗) ≤ H(x∗), typically considered for
x ∈ P . This is nothing but a trivial rewriting of (52). When it holds, H(x∗) = Hmax(P) and the inequality
for an individual state x ∈ P is, therefore, a sharper form of the trivial inequality H(x) ≤ Hmax(P).
The dual Pythagorean inequality is the inequality R̂i(w∗|P) + D̂(x∗, w) ≤ R̂i(w| P), typically considered
for w � P . When it holds, R̂i(w∗| P) = R̂imin(P), and the inequality for an individual strategy w � P
is, therefore, a sharper form of the trivial inequality R̂imin(P) ≤ R̂i(w| P).

Theorem 3. [Pythagorean inequalities] Under the assumption of Q2-properness, if γ(P) and γ̂(P) are in
equilibrium with x∗ as bi-optimal state then, with w∗ = x̂∗, the direct as well as the dual Pythagorean
inequalities hold:

∀x ∈ P : H(x) + D̂(x, w∗) ≤ H(x∗) , (53)

∀w � P : R̂i(w∗| P) + D̂(x∗, w) ≤ R̂i(w| P) . (54)

Proof. As to (53), this follows from Corollary 1. Also (54) must hold since, for w � P ,

R̂i(w∗| P) + D̂(x∗, w) = H(x∗) + D̂(x∗, w) = Φ̂(x∗, w) ≤ R̂i(w| P) .

The Pythagorean flavour of (53) is more pronounced when one turns to models of updating,
cf., Sections 2.13 and 3.2.

Let us elaborate on the direct Pythagorean inequality. First, let us agree that a control w of P is
a Pythagorean control for γ̂(P) if, for every x ∈ P ,

H(x) + D̂(x, w) ≤ Hmax(P) . (55)

This notion will be used whether or not γ̂(P) is in equilibrium and whether or not this game has
optimal strategies. In particular, it applies in cases when no MaxEnt-state exists. Of course, the notion
is only of interest if Hmax(P) < ∞.

Translating to the Y-domain, we say that y is a Pythagorean belief instance for γ(P) if y � P and if,
for every x ∈ P ,

H(x) + D(x, y) ≤ Hmax(P) . (56)

Theorem 4. Under the assumption of Q2-properness, assume that a MaxEnt-state exists for the preparation P
and that Hmax(P) < ∞. Then the following three conditions are equivalent:

• a Pythagorean control for γ̂(P) exists;
• a Pythagorean belief instance for γ(P) exists;
• The games γ̂(P) and γ(P) are in equilibrium and a bi-optimal state for these games exist.

If these conditions are fulfilled, the Pythagorean control, w∗, is unique and identical to the optimal strategy
for Observer in γ̂(P). Further, a belief instance, y∗ with y∗ � P is a Pythagorean belief instance if and only if it
has w∗ as response.

Proof. Assume that w is a Pythagorean control. Then, by (55), R̂i(w|P) ≤ Hmax(P). Choose a
MaxEnt-state x∗. Then Hmax(P) = H(x∗) < ∞ and (55) with x = x∗ implies that D̂(x∗, w) = 0.
As R̂i(w|P) ≤ H(x∗) also holds, Q2-properness shows that w = x∗. Then, by Corollary 1, γ̂(P) and
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γ(P) are in equilibrium with x∗ as bi-optimal state. Appealing also to previous results, all statements
of the theorem follow.

The three results to follow are often useful in applications.

Theorem 5. [Robustness theorem] Under the assumption of Q2-properness, let (x∗, w∗) be an adapted pair and
assume that w∗ is robust for γ̂(P), say at the level h of robustness, and that x∗ is consistent. Then γ̂(P) is
in equilibrium with h as value and with x∗ as bi-optimal state. Furthermore, for any x ∈ P , the Pythagorean
inequality holds with equality:

H(x) + D̂(x, w∗) = Hmax(P) . (57)

Similarly, if x∗ and y∗ are response-equivalent, if y∗ is robust for γ(P) and if x∗ is consistent, then γ(P)
is in equilibrium with x∗ as bi-optimal state and, for x ∈ P ,

H(x) + D(x, y∗) = Hmax(P) . (58)

The equality (57) or (58) for x ∈ P is the Pythagorean equality, here in an abstract version. A more
compact geometry flavored formulation of the first part of Theorem 5 in the direction of Corollary 1
runs as follows:

Corollary 2. Under the assumption of Q2-properness, if h is finite and x∗ ∈ P ⊆ P x̂∗(h), then h = H(x∗)
and γ̂(P) is in equilibrium with x∗ as bi-optimal state.

In case response is injective, the second part of Theorem 5 really only involves one element,
x∗, as the other element, y∗, has to be identical to x∗. The two essential conditions are one on x∗ as
a strategy for Nature, viz., that it is consistent, and one on x∗ as a strategy for Observer, viz., that it
is robust. There can only be one such element. If we drop the condition of consistency, there may be
many more such elements. They form the previously defined core of γ(P).

For preparation families we find the following result:

Theorem 6. Under the standard assumption on properness, consider a preparation family Py with
y = (y1, · · · , yn). Let x∗ be a state, put y∗ = x∗ and assume that y∗ ∈ core(Py|Φ). Further, put
h = (h1, · · · , hn) with hi = Φ(x∗, yi) for i = 1, · · · , n and assume that these constants are finite. Then
Py(h) ∈ Py and γ

(
Py(h)

)
is in equilibrium and has x∗ as bi-optimal state. In particular, x∗ is the MaxEnt

strategy for Py(h).

This follows directly from the involved definitions and from Theorem 5. The reader will easily
establish an analogous result for the Ŷ-domain.

The notions of robustness and core also make sense for games defined in terms of proper or just
Q2-proper utility-based information triples. If (U, M, D) is such a triple, we simply apply the above
definitions to the associated effort-based triple (−U,−M, D).

Theorem 2 points to a strategy which is often fruitful in the search for a MaxEnt-strategy, viz.,
first to determine the core of the given preparation and then to select that element (if any) in the core
which is consistent. This route to determine MaxEnt strategies does not involve the infinitesimal
calculus, in particular, it does not need the use of Lagrange multipliers. Researchers of statistical
physics may claim that you need the Lagrange multipliers as they are of special physical significance,
see e.g., Kuic [61]. In that connection, one will find that these quantities turn up anyhow and in a more
natural way if you follow the approach via robustness, cf., [62].

The notion of robustness has not received much attention in a game theoretical setting. It is implicit
in [26,63] and perhaps first formulated in [24]. Apparently, the existence of suitable robust strategies is
a strong assumption. However, for typical models appearing in applications, the assumption is often
fulfilled when optimal strategies exist. Results from [27] point in that direction.
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Dual versions of the notions and results indicated above could be introduced, depending on (54)
rather than on (53). However, it seems that the notions related to the direct Pythagorean inequality are
the more useful ones.

For the result to follow we need an abstract version of Jeffrey’s divergence given, for two states x1

and x2, by
J(x1, x2) = D(x1, x2) + D(x2, x1) . (59)

Corollary 3. [transitivity inequality] Assume that (Φ, H, D) is a Q2-proper information triple. If γ(P) is
in equilibrium with x∗ as a bi-optimal state, then, for every state x ∈ P and every belief instance y � P ,
the inequality

H(x) + D(x, x∗) + D(x∗, y) ≤ Ri(y| P) (60)

holds. In particular, for every x ∈ ctr(P),

H(x) + J(x, x∗) ≤ Ri(x| P). (61)

Proof. First note that also γ̂(P) is in equilibrium with x∗ as bi-optimal state. Then, putting w∗ = x̂∗,
(53) and (54) hold. Therefore, and as H(x∗) = R̂i(w∗|P), for x ∈ P and w � P ,

H(x) + D̂(x, w∗) + D̂(x∗, w) ≤ R̂i(w|P) . (62)

To a given belief instance y with y � P we then apply (62) with w = ŷ. As D̂(x, w∗) = D(x, x∗),
D̂(x∗, w) = D(x∗, y) and R̂i(w|P) = Ri(y|P), (60) follows.

We refer to (60) as the transitivity inequality. It is a sharper version of the minimax inequality
H(x) ≤ Ri(y| P). It combines both Pythagorean inequalities and these are easily derived from it.
If Ri(y| P) < ∞, the inequality holds with equality if and only if both Pythagorean inequalities (53)
and (54) hold with equality.

As to the last part of Corollary 3, we note that if you put r = Ri(x| P)−H(x), then the bi-optimal
state has Jeffrey divergence at most r from x.

For the final result of this section we shall work in the Y-domain based on the derived
triple (Φ, H, D).

First we point to an extra property of bi-optimal states which follows from (53). In order to
formulate this in a convenient way we need some definitions. A sequence (xn) of states converges in

divergence to the state x, written xn
D→ x, if limn→∞ D(xn, x) = 0. This requires that (xn, x) ∈ X⊗Y

for all n (or for all n sufficiently large). If xn ∈ P for all n, we say that (xn) is asymptotically optimal,
more precisely asymptotically optimal for Nature in the game γ(P), if H(xn) → Hmax(P) as n → ∞.
Finally, a state x (not necessarily in P) is a maximum entropy-attractor for P with respect to convergence in

divergence, more briefly, a Hmax-attractor for P wrt D-convergence, if xn
D→ x for every asymptotically

optimal sequence (xn).
We can now state a trivial corollary to Theorem 3 (transformed to the Y-domain):

Corollary 4. Any bi-optimal state x∗ for a game γ(P) in equilibrium, is a Hmax-attractor forP wrt D-convergence.

We shall later demonstrate the existence of attractors in certain cases when the bi-optimal state
may not exist. However, that will also involve a variant of the notion of attractor which relates to
a different kind of convergence, convergence in Jensen-Shannon divergence, rather than convergence in
divergence. The two concepts are identical in key cases as we shall later demonstrate (discussion after
the proof of Theorem 11).
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2.13. Games Based on Utility, Updating

In the previous section we investigated games related to an effort-based information triple. Similar
notions and results apply when we start-out with a utility-based triple. Let us work in the Y-domain
and base the first part of our discussion on a proper utility-based information triple (U, M, D) over
X⊗Y. Then, given a preparation P , the associated game γ(P) = γ(P |U) has Observer as maximizer
and Nature as minimizer and the two values of the game are, for Nature, the minimax utility Mmin(P):

Mmin(P) = inf
x∈P

sup
y�x

U(x, y) = inf
x∈P

U(x, x) = inf
x∈P

M(x) (63)

and, for Observer, the corresponding maximin value

sup
y�P

inf
x∈P

U(x, y) . (64)

For y � P , the infimum occurring here is the guaranteed utility associated with the strategy y.
We denote it Gtu(y| P). The maximin value (64) is also referred to as the maximal guaranteed utility.
We denote it Gtumax(P):

Gtumax(P) = sup
y�P

Gtu(y| P) = sup
y�P

inf
x∈P

U(x, y) . (65)

Notions and results, e.g., related to equilibrium, to optimal or bi-optimal states etc. are developed
in an obvious manner, either by following Section 2.12 in parallel or by applying the results of
Section 2.12 to the effort-based triple (−U,−M, D). The reader who wishes so will also be able to relax
the assumption of properness to Q2-properness.

Here, we limit the discussion to an elaboration of the important case of updating, cf., Section 2.8.
For updating, according to Section 2.8, we do not need a full information triple. Therefore, for the
remainder of the section we take as our basis a general divergence function D on X⊗Y, a preparation
P and a prior y0 with Dy0 < ∞ on P . The game associated with the utility-based information triple
(U|y0

, Dy0 , D) we denote γ(P ; y0). According to (63), the value for Nature in this game is infx∈P Dy0(x),
also denoted Dmin(P ; y0) and referred to as the minimum divergence value or the MinDiv-value:

Dmin(P ; y0) = inf
x∈P

D(x, y0) . (66)

An optimal strategy for Nature is here called a D-projection of y0 on P . Consider an Observer
strategy y � P , i.e., a possible posterior. We use the same notation as in the general case, “Gtu” ,
to indicate Observer’s evaluation of the performance of the posterior. Incidentally, the letters can here
be taken to stand for “guaranteed updating (gain)”. Thus

Gtu(y| P ; y0) = inf
x∈P

U|y0
(x, y) = inf

x∈P

(
D(x, y0)−D(x, y)

)
(67)

is the guaranteed updating gain associated with the choice of y as posterior, and

Gtumax(P ; y0) = sup
y�P

Gtu(y| P ; y0) (68)

is Observer’s value of the game, the maximum guaranteed updating gain, or the MaxGtu-value of γ(P ; y0).
The basic results for the updating game may be summarized as follows:

Theorem 7. Let D be a general divergence function on X⊗Y, P a preparation and y0 a belief instance with
Dy0 < ∞ on P . Consider the updating game γ = γ(P ; y0).
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If x∗ ∈ ctr(P), then γ is in equilibrium with x∗ as bi-optimal state if and only if the Pythagorean inequality

D(x, y0) ≥ D(x, x∗) +D(x∗, y0) (69)

holds for every x ∈ P . Moreover, if this condition is satisfied, x∗ is the D-projection of y0 on P . Furthermore,
the dual Pythagorean inequality

Gtu(y| P ; y0) +D(x∗, y) ≤ Gtu(x∗| P ; y0) (70)

holds for every y � P .

The proof can be carried out by applying Corollary 1 and Theorem 3 to the effort function Φ|y0

associated with the updating game considered, cf., (24). Details are left to the reader.
The concept of attractors also makes sense for updating games. Then the relevant notion is that

of a relative attractor given y0, also referred to as the Dy0
min-attractor, which is defined as a state x∗ such

that, for every sequence (xn) in P with D(xn, y0)→ Dmin(P ; y0) it holds that xn
D→ x∗. In the situation

covered by Theorem 7—assuming also that limit states for convergence in divergence are unique—the
relative attractor exists and coincides with the bi-optimal state.

The Pythagorean inequality originated with Chentsov [64] and Csiszár [63] where updating in
a probabilistic setting was considered. Further versions, still probabilistic in nature can be found in
Csiszár [65] and in Csiszár and Matús [66]. In [67] these authors present a general abstract study,
adapting a functional analytical approach building technically on meticulous exploitation of tools of
convex analysis, partly developed by the authors. This source may also be consulted for information
about the historical development and related works. As a work depending on a reversed Pythagorean
inequality related to the triple (25), we mention Glonti et al. [68].

The reader should be aware that our notation deviates from what is most commonly found in
the literature and promoted by Csiszár, mainly for classical Shannon Theory. Thus a relative attractor
is mostly called a generalized I-projection (information projection). We have chosen to stick to the
terminology with attractors, partly as their discussion is based on the primary results involving
MaxEnt-analysis for which a terminology of projection is less natural.

2.14. Formulating Results with a Geometric Flavour

The results of Section 2.12 are formulated analytically. In this section we make a translation to
results which have a certain geometric flavour. We shall work entirely in the Y-domain. No mention
of controls or response will occur. This corresponds to a model with Ŷ = Y = X and where response
is the identity map. Throughout the section results are based on a proper effort-based information
triple (Φ, H, D).

In the previous sections, we had a fixed preparation in mind. Here, we shall also discuss to which
extent you can change a preparation without changing the optimal strategy.

Sub Level sets of the form {Φy ≤ a} play a a key role. These sets appeared before as primitive
feasible preparations. Here they have a different role and we prefer to use the bracket notation as above.

Proposition 3. Let x∗ be a state with finite entropy h = H(x∗). Then, given a preparation P , the necessary
and sufficient condition that the game γ(P) is in equilibrium with x∗ as bi-optimal state is that P is squeezed
in between {x∗} and {Φx∗ ≤ h}, i.e., that x∗ ∈ P ⊆ {Φx∗ ≤ h}. In particular, {Φx∗ ≤ h} is the largest
such preparation.

This follows directly from Theorem 2 and Corollary 1.
For a fixed preparation P , we can express the two values of γ(P), Hmax(P) and Rimin(P), in a

geometrically flavoured way. This can be done whether or not the game is in equilibrium and the
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result can thus be used to check if the game is in fact in equilibrium. It is convenient to introduce some
preparatory terminology.

Firstly, a subset of X is an entropy sub level set if it is a (non-empty) set of the form {H ≤ a}.
The size of such a set is the smallest number a which can occur in this representation, clearly equal
to the MaxEnt-value associated with the preparation {H ≤ a}. Given a preparation P , the associated
enveloping entropy sub level set is the smallest entropy sub level set containing P .

Secondly, and quite analogously in view of (38) and (39), we introduce the size of the Φy-sub level
set {Φy ≤ a} as the smallest number a which can occur in this representation. And we define the
enveloping Φy-sub level set associated with P to be the smallest Φy-sub level set containing P .

Proposition 4. Consider the game γ(P) associated with a preparation P . Then:

(i) The MaxEnt-value Hmax(P) is the size of the enveloping entropy sub level set associated with P ;
(ii) For fixed y � P , Ri(y| P) is the size of the enveloping Φy-sub level set associated with P .

(iii) The MinRisk-value Rimin(P) is the infimum over y � P of the sizes of the enveloping Φy-sub level sets
associated with P .

In view of (38)–(40), this is obvious. Some comments on the result are in order. In (i) it is
understood that the size is infinite if no entropy sub level set exists which contains P . A similar
convention applies to (ii). Also note that the result gives rise to a simple geometrically flavoured proof
of the minimax inequality (41) by noting that for each y � P and each h, {Φy ≤ h} ⊆ {H ≤ h}.

There are two families of sets involved in Proposition 4, the entropy sub level sets and the Φy-sub
level sets. As the proposition shows, both families give valuable information about the games we
are interested in. From the second family alone, one can in fact obtain rather complete information.
Indeed, if {Φy ≤ a} contains a given preparation for appropriately chosen y and a, the associated game
is well behaved:

Proposition 5. Given a preparation P , a necessary and sufficient condition that γ(P) is in equilibrium and
has a bi-optimal state is that {Φy ≤ a} ⊇ P for some (y, a) with y ∈ P and a = H(y). When the condition is
fulfilled, a is the value of the game and y the bi-optimal state.

The simple proof is left to the reader. It is the sufficiency which is most useful in practical applications.
The results above translate without difficulty to results about games associated with a utility-based

information triple (U, M, D). For this, superlevel sets of the form {Uy ≥ k} as well as strict sub level
sets of the form either {M < a} or {Uy < a} play an important role. The notion of size of these latter
sets, those defined by strict inequality, is defined as the largest value of a which can occur in the
representations given.

We shall consider the largest sets of the form {M < a}, respectively {Uy < a}, which are contained
in the complement {P or, as we shall consistently prefer to say below, which are external to P .

Either directly—or as corollaries to Propositions 3–5 applied to the effort-based triple
(−U,−M, D)—one derives the following results:

Proposition 6. Let (U, M, D) be a utility-based information triple and consider a state x∗ with k = M(x∗) > −∞.
Then, for any preparation P , the game γ(P |U) is in equilibrium with x∗ as bi-optimal state if and only if
x∗ ∈ P ⊆ {Ux∗ ≥ k}. In particular, the largest such preparation is the superlevel set {Ux∗ ≥ k}.

Proposition 7. Let (U, M, D) be a utility-based information triple and consider a preparation P and the
associated game γ(P |U). Then:

(i) The value Mmin(P) is the size of the largest strict sub level set {M < a} which is external to P .
(ii) For fixed y � P , Gtu(y| P) is the size of the largest strict sub level set {Uy < a} which is external to P .

(iii) The value Gtumax(P), as the supremum of Gtu(y| P), is the supremum of all sizes of sets of the form
{Uy < a} with y � P which are external to P .
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Proposition 8. Let (U, M, D) be a utility-based information triple and consider a preparation P . Then a
necessary and sufficient condition that γ(P |U) is in equilibrium and has a bi-optimal state is that {Uy < a} is
external to P for some (y, a) with y ∈ P and a = M(y). When the condition is fulfilled, a is the value of the
game and y the bi-optimal state.

We also note that the minimax inequality Gtumax(P) ≤Mmin(P) follows from Proposition 7 by
applying the fact that, generally, {M < a} ⊆ {Uy < a}.

Let us look specifically at models of updating, cf., Section 2.13.
Given is a general divergence function D on X⊗Y and we consider preparations P and priors y0

for which Dy0 < ∞ on P . The sets we shall focus on related to the games γ(P ; y0) are of two types,
which we associate with, respectively “balls” and “half-spaces”. Firstly, for r > 0, consider the open
divergence ball with radius r and centre y0, defined as the Dy0-sub level set

B(r|y0) = {Dy0 < r} . (71)

In case r = D(x∗, y0) for some state x∗, we write this set as B(x∗|y0):

B(x∗|y0) = B(D(x∗, y0)|y0) = {x|D(x, y0) < D(x∗, y0)} . (72)

And, secondly, we consider sets—all referred to as half-spaces—of one of the following forms

σ+(y, a|y0) = {x|U|y0
< a} = {x|D(x, y0)−D(x, y) < a} (73)

σ−(y, a|y0) = {x|U|y0
≥ a} = {x|D(x, y0)−D(x, y) ≥ a} (74)

σ+(y|y0) = {x|U|y0
< D(y, y0)} = {x|D(x, y0)−D(x, y) < D(y, y0)} (75)

σ−(y|y0) = {x|U|y0
≥ D(y, y0} = {x|D(x, y0)−D(x, y) ≥ D(y, y0)} (76)

Associated with the sets introduced we define certain “boundary sets” , respectively peripheries
and hyper-spaces. Notation and definition for the former type of sets is given by

∂ B(r|y0) = {x|D(x, y0) = r} and

∂ B(x∗|yo) = {x|D(x, y0) = D(x∗, y0)}

and for the latter type we use

∂σ(y, a|y0) = {x|D(x, y0)−D(x, y) = a} and

∂σ(y|y0) = {x|D(x, y0)−D(x, y) = D(y, y0)} .

When translating basic parts of Propositions 6–8 to the setting we are now considering, we find
the following result:

Proposition 9. Let D be a general divergence function on X⊗Y and consider a belief instance y0 � X such
that Dy0 < ∞. Then the following results hold for the associated updating games with y0 as prior:

(i) For any x∗ ∈ X, the largest preparation P for which γ(P ; y0) is in equilibrium with x∗ as bi-optimal state,
hence with x∗ as the D-projection of y0 on P , is the half-space σ−(x∗|yo).

(ii) For a fixed updating game γ(P ; y0), the MinDiv-value Dmin(P ; y0) is the size of the largest strict
divergence ball B(r|y0) which is external to P , and the maximal guaranteed updating gain Gtumax(P ; y0)

is the supremum of a for which there exists y � P such that the half-space σ+(y, a|y0) is external to P .
(iii) An updating game γ(P ; y0) is in equilibrium and has a bi-optimal state if and only if, for some y ∈ P ,

the half-space σ+(y|y0) is external to P . When this condition holds, y is the bi-optimal state, hence the
D-projection of y0 on P .
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For illustrations see cases (a) and (b) shown in the figure in Section 3.2.

2.15. Adding Convexity

It has been recognized since long that notions of convexity play an important role for basic
properties of Shannon theory and for optimization theory in general, cf. in particular Boyd and
Vandenberghe [54] which also has a bearing on many of the concrete problems treated later on.
Deliberately, we have postponed the introduction of this element until this late moment, thereby
demonstrating that a large number of concepts and results can be formulated quite abstractly and
do not require convexity considerations. Also, it will become more clear exactly where convexity
is needed.

We shall study results which can be obtained under added algebraic assumptions related to
convexity considerations.

We assume that X is a convex set. The convex hull of a preparationP is denoted co(P). We assume
that controllability is adapted to the convex structure in the sense that a control w controls a convex
combination, say w � x = ∑ αixi, if and only if w controls every xi with αi > 0. It follows, that all
control regions ]w[ are convex. Also note that, for every convex combination x = ∑ αixi, we conclude
from x � x that x̂ � xi for all i with αi > 0 and hence, if we switch to the Y-domain, x � xi for every i
with αi > 0.

Regarding convex combinations, they are understood to be finite convex combination,
often written as above without introducing any special notation for the relevant index set.

Properties of Concavity, convexity and affinity of real-valued functions f defined on X or on
a convex subset of X are largely defined in the usual way. Thus, for concavity, the condition is that if
∑ αixi is a convex combination of elements in the domain of definition of f , then f (∑ αixi) ≥ ∑ αi f (xi).
For convexity the inequality sign is turned around and for affinity it is replaced by equality. The notions
make sense and will also be applied to extended real-valued functions provided they do not assume
both values +∞ and −∞. One comment has to be made, though. We only require that X is a convex
set. However, X could be affine, i.e., combinations ∑ αixi could be defined whenever the coefficients αi
are arbitrary real numbers which sum up to 1. This will be the case for some models. We shall then
point out if stated results hold for arbitrary affine combinations, not just for convex combinations.

The above definitions and concepts along with associated assumptions will always be understood
to apply when, in the sequel, we work with a convex state space.

The basis in this section, except for the last part (Example 1 and Proposition 10), is a proper
effort-based information triple (Φ̂, H, D̂) over X⊗ Ŷ. The derived information triple over X⊗Y is
denoted (Φ, H, D). When there is also given a preparation P , the results developed continue to hold
under Q2-properness.

Emphasis will be on concavity, convexity or affinity for the w-marginals Φ̂w—either all of them or
only those with a control in the range of the response function. Note that, say affinity for Φ̂w with w of
the form x̂ for some x ∈ X amounts to the same as affinity of Φx.

Basic properties of entropy and redundancy (hence also divergence) under added conditions
about the marginals Φ̂w or Φy are contained in the following result:

Theorem 8 (Deviation from affinity).

(i) If the marginals Φx with x ∈ X are concave, then, for every convex combination x = ∑ αixi of elements in X,

H
(

∑ αixi

)
≥∑ αi H(xi) +∑ αi D(xi, x) . (77)

In particular, H is concave and if H(x) = ∑ αi H(xi) and this quantity is finite, then all xi with αi > 0
are response equivalent, in fact xi∼̂x for these indices. If response is injective, the entropy function is
strictly concave.
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(ii) If the marginals Φx with x ∈ X are even affine, equality holds in (77):

H
(

∑ αixi

)
= ∑ αi H(xi) +∑ αi D(xi, x) . (78)

(iii) If the marginals Φ̂w with w ∈ Ŷ are affine and if H(x) < ∞ for a convex combination x = ∑i αixi then,
for every control w with w � x,

∑ αiD̂(xi, w) = D̂
(

∑ αixi, w
)
+∑ αi D(xi, x) . (79)

(iv) If the marginals Φ̂w with w ∈ Ŷ are affine, if P is a convex preparation with Hmax(P) < ∞ and
if w ∈ [̂P ], then the restriction of D̂w to P is convex and if ∑ αiD̂(xi, w) = D̂(x, w) for a convex
combination x = ∑ αixi of states in P , then all xi with αi > 0 are response equivalent, in fact xi∼̂x for
these indices. If response is injective, the restriction of D̂w to P is strictly convex.

Proof. The result is a natural extension of (the main parts of) Theorem 1 of [55] and the proof is
similar: For (i), apply linking to rewrite the right hand side, then upper bound the expression you
get by the assumed concavity and you end with the upper bound Φ(x, x) = H(x). The results about
concavity of H are easy consequences and property (ii) is proved similarly. For the basic assertion
of (iii), add ∑ αiD̂(xi, w) to both sides of (78), and use linking to rewrite the right hand side. Then apply
the assumed affinity and the term Φ̂(x, w) appears to which you once more apply linking. Finally
subtract H(x) from both sides. The assertions of (iv) are easy consequences.

Several comments are in place. First, as a simple corollary to (i) of Theorem 8 we note the following:

Corollary 5. Assume that the marginals Φ̂x with x ∈ X are concave and consider the game γ̂(P) for a convex
preparation P . Then the set of optimal strategies for Nature in this game is convex and, in case response is
injective and Hmax(P) < ∞, there can be at most one optimal strategy for Nature.

Conditions of affinity will play a main role for many results to follow. Notions of affine equivalence
applies in various contexts (Ŷ-domain, Y-domain, effort-based or utility-based). Some examples will
suffice: The effort functions Φ̂1 and Φ̂2 over X⊗ Ŷ are affinely equivalent if there exists a finite-valued
affine function f on X such that, for (x, w) ∈ X⊗ Ŷ, Φ̂2(x, w) = Φ̂1(x, w) + f (x). If so, Φ̂1 and Φ̂2 are
equivalent (D1 = D2). Moreover, two effort-based information triples (Φ1, H1, D1) and (Φ2, H2, D2) are
affinely equivalent if they are equivalent and there exists a finite-valued affine function f on X such that,
for (x, y) ∈ X⊗Y, H2(x) = H1(x) + f (x). Then of course, also Φ2(x, y) = Φ1(x, y) + f (x).

A simple and practically important result which follows readily from affinity conditions exploits
the notion of robustness in its weakened form introduced in Section 2.9, cf., (32) and (33). The result is
an extension of Theorem 5.

Theorem 9. Let X be a convex state space and let (Φ̂, H, D̂) be a proper information triple over X⊗ Ŷ for which
the marginals Φ̂w with w ∈ Ŷ are all affine. Let (x∗, w∗) be a pair of permissible strategies for γ̂(P) with w∗

adapted to x∗. Assume that x∗ ∈ co(E) and that w∗ is (E ,P)-robust. Then γ̂(P) is in equilibrium with x∗ as
bi-optimal strategy.

Proof. Let h < ∞ be the constant for which (32) and (33) hold. By affinity, (32) extends to states in
co(E), hence H(x∗) = Φ̂(x∗, w∗) = h. The result now follows from Theorem 2.

Then some comments on (79). In the terminology of [69], this is the compensation identity with the
last term as compensation term. This term appears as a measure of deviation from affinity, both in relation
to entropy, cf., (78), and in relation to redundancy (hence also to divergence), cf., (79). The significance
of such terms is being more widely recognized. This applies in particular to the case of an even mixture
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x = 1
2 x1 +

1
2 x2, for which the term is called Jensen-Shannon divergence, briefly just JSD-divergence,

between x1 and x2. We shall use the notation

JSD(x1, x2) =
1
2

D(x1, x1x2) +
1
2

D(x2, x1x2), (80)

where a “bar” signals “midpoint of”, a notation to be used often in the sequel:

xy =
1
2

x +
1
2

y. (81)

For even mixtures of two states, the compensation identity states that

1
2
(

D(x1, y) +D(x2, y)
)
= D(x1x2, y) + JSD(x1, x2). (82)

which, for classical Shannon theory, is sometimes called the parallelogram identity. The identity makes
sense for an arbitrary general divergence function but one should note the requirement of finiteness
in (79), expressed somewhat indirectly via the entropy function. That some restriction is important
will be seen from Example 1 below. When (82) holds, you may apply it with y = x1 and with y = x2,
and derive the identity

D(x1x2, x1)−D(x1x2, x2) =
1
2
(

D(x2, x1)−D(x1, x2)
)
. (83)

Previously, JSD-divergence has mainly been studied in the context of classical Shannon theory.
For our more abstract theory, we have chosen to put emphasis on it, especially in the formulation
of technical assumptions which are needed for the proofs of some basic results to follow. Note that
JSD-divergence is everywhere defined on X×X which D-divergence need not be. In the next section
we take up a closer study of Jensen-Shannon divergence.

The purpose of the next result is to indicate that it is conceivable that for many concrete situations,
a bi-optimal state will be robust, i.e., lie in the core of the preparation concerned. This result, in a
more concrete set-up goes back to Csiszár, cf., [63]. It depends on the following notion: A state x is
an algebraic inner point of P (typically assumed convex) if, for every x1 ∈ P distinct from x, there exists
x2 ∈ P such that x is a genuine convex combination of x1 and x2.

Corollary 6. Assume that Φx is affine for all x ∈ X and let P be a convex preparation. If γ(P) is in equilibrium
and has a bi-optimal state x∗ and if this state is algebraic inner in P , then x∗ is robust for γ(P) at the robustness
level Hmax(P). In particular, x∗ ∈ core(P).

Proof. With assumptions as stated, consider any x ∈ P distinct from x∗ and determine x′ ∈ P
such that x∗ is a genuine convex combination of x and x′, say x∗ = αx + βx′. We find that
Φ(x, x∗) ≤ Ri(x∗|P) = Hmax(P). Similarly, Φ(x′, x∗) ≤ Hmax(P). As the convex combination
αΦ(x, x∗) + βΦ(x′, x∗) equals Φ(αx + βx′, x∗) = Φ(x∗, x∗) = H(x∗) = Hmax(P), we conclude that
Φ(x, x∗) = Hmax(P). As this holds for every x ∈ P , the result follows.

An example is in place to illuminate the importance of the finiteness condition in relation to the
compensation identity. We shall work in the Y-domain, for which the identity takes the following form:

∑ αi D(xi, y) = D
(

∑ αixi, y
)
+∑ αi D(xi, x) . (84)

The identity can be considered for more or less any bivariate function D on X⊗Y. As before let
X be convex and assume that Y = X. We further assume that D is a general divergence function on
X⊗Y. It may be that D is derived from an information triple over X⊗ Ŷ, but we do not assume so.
In particular, no response function is involved.
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In order to check if the compensation identity holds for D, you may check if the difference
∑ αi D(xi, y)−D(∑ αixi, y) is well defined and independent of y. Or you may inspect more closely the
expression for D. If this expression, apart from pure x-only dependent terms, only contains terms
which, for fixed y, are linear terms in x, a suitable entropy can be identified and the compensation
identity (84) will hold (when H(x) < ∞). The procedure is demonstrated in the following example
which, at the same time, also illustrates the role of the two assumptions made in part (iii) of Theorem 8
in order for (79) or (84) to hold.

Example 1. Let X = Y = Ŷ be copies of the real line ]−∞, ∞[ provided with the standard structure, let response
be the identity map and let visibility be the diffuse relation. Further, let α be a positive parameter and consider
the bivariate function D given by

D(x, y) = |x− y|α . (85)

Clearly, this is a genuine general divergence function.
If α 6= 2, (84) does not hold. Indeed, if you consider the mixture x = 1

20 + 1
21 and as y take y = 1,

then the left hand side of (84) equals 1
2 whereas the right hand side equals 21−α. Thus, when α 6= 2, there is no

information triple (Φ, H, D) equivalent to (D, 0, D) for which (84) holds generally. So you cannot add a finite
entropy function to (D, 0, D) and obtain an effort function with affine marginals.

If α = 2, the matter is quite different. Then D(x, y) = x2 + y2 − 2xy and you can subtract x2 to obtain
a function with linear dependency on x for a given value of y. In other words, if you consider the triple equivalent
to (D, 0, D) for which entropy is given by H(x) = −x2, all conditions of Theorem 8, (iii) are fulfilled, thus (84)
must hold. Further material on this and similar examples can be found in Section 3.1.

For our last observation of this section we return to an updating triple (U|y0
, Dy0 , D) as introduced

in Section 2.8, cf. (22). Here, D is a general divergence and y0 a prior. A certain preparation P is also
given and it is assumed that Dy0 < ∞ on P . The triple (U|y0

, Dy0 , D) is a genuine proper utility-based
information triple over P ⊗Y. It is still assumed that X is convex and that Y = X. The observation we
want to point out is the following:

Lemma 1. If, in addition to assumptions above, the compensation identity (84) holds for all convex combinations
of states in P and all y ∈ Y, then all marginal functions of the utility function U|y0

obtained by fixing an element
y ∈ Y are affine.

Proof. Consider any y ∈ Y and any convex combination x = ∑ αixi of states in P . As Dy0 < ∞ on P ,
the sum ∑ αi D(xi, y0) is finite. By the compensation identity, so is the sum ∑ αi D(xi, x). For y ∈ Y,
we find that

U|y0
(x, y) =D(x, y0)−D(x, y)

=
(

∑ αi D(xi, y0)−∑ αi D(xi, x)
)

−
(

∑ αi D(xi, y)−∑ αi D(xi, x)
)

=∑ αi D(xi, y0)−∑ αi D(xi, y)

=∑ αi U|y0
(xi, y) .

This is the affinity relation sought.

The significance of this result is that it will later allow us to apply results for the updating games
under convexity assumptions, cf., Theorem 15.
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2.16. Jensen-Shannon Divergence at Work

As in the previous section, X is a convex set. We assume now that Y = X. For the first part of the
section we take as base a general divergence function D over X⊗Y. No preparation, effort function or
entropy function will appear until later in the section. We work entirely in the Y-domain.

As is no surprise, not all results of information theory are constructive and in order to be able
to handle situations where constructive methods are not available, we shall introduce topologically
flavored notions and methods. Previously, as in [55], we introduced topology into the picture by
referring to a “reference topology” which could be a topology with no very direct relation to the
theory developed. Now we apply a different approach and insist that everything topological can be
expressed in terms of quantities of direct interest for the theory dealt with. In fact, the previously
defined Jensen-Shannon divergence (JSD), cf., (80), will now be the central quantity to work with.
This notion of divergence is an everywhere defined, smoothed and symmetrized version of standard
divergence. It may take the value +∞. The following properties are obvious in view of the definition:

JSD(x, y) ≥ 0 (JSD is non-negative), (86)

JSD(y, x) = JSD(x, y) (JSD is symmetric), (87)

JSD(x, x) = 0 (JSD is sound), (88)

JSD(x, y) > 0 if y 6= x (JSD is proper). (89)

These properties hold for all x, y ∈ X. The same properties hold for any bivariate function on X⊗Y
which is a function of some metric with a function defined on [0, ∞[ which vanishes at 0 and nowhere
else. In several concrete cases, Jensen-Shannon divergence is of this type, in some central cases even in
a very simple way as JSD will be a squared metric in the cases we have in mind. For research in this
direction, we refer to Endres and Schindelin [70], Fuglede and Topsøe [71] and Briët and Harremoës [72].
The present study is a further indication of the significance of Jensen-Shannon divergence.

Jensen-Shannon divergence defines a natural sequential notion of convergence in X. To be

precise, a sequence (xn) = (xn)n≥1 converges in Jensen-Shannon divergence to x and we write xn
JSD−→ x,

if JSD(xn, x) → 0 as n → ∞. We shall only pay attention to convergence of ordinary sequences.
Convergence in Jensen-Shannon divergence is also referred to as JSD-convergence.

A sequence (xn)n∈N is a JSD-Cauchy sequence if

lim
n,m→∞

JSD(xn, xm) = 0. (90)

We shall consider the following five properties:

C1 (soundness) : xn ≡ x⇒ xn
JSD−→ x; (91)

C2 (subsequence consistency) :

xn
JSD−→ x⇒ xnk

JSD−→ x for any subsequence; (92)

C3 (unique limits) : xn
JSD−→ x ∧ xn

JSD−→ y⇒ y = x; (93)

C4 (subsubsequence principle) :

If ∀(xnk)∃(xnkl
) : xnkl

JSD−→ x then xn
JSD−→ x; (94)

C5 (completeness) : any JSD-Cauchy sequence is JSD-convergent. (95)

We may use terminology such as JSD-convergence has unique limits or JSD convergence is complete,
for example. Clearly C1, C2 and C4 hold generally. Completeness (C5) will be taken as an independent
axiom. Adding two relatively innocent technical axioms, we shall also establish C3.
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The axiom ASC of algebraic sequential continuity wrt JSD-convergence is the requirement that,
for convex combinations zn = αnxn + βnyn and for a convex combination z = αx + βy such that

xn
JSD−→ x, yn

JSD−→ y and αn → α (hence also βn → β) it holds that zn
JSD−→ z.

The axiom JSC of joint sequential lower semi-continuity of divergence is the requirement that,

for xn
JSD−→ x and yn

JSD−→ y, it holds that, properly interpreted,

D(x, y) ≤ lim inf
n→∞

D(xn, yn). (96)

Regarding the proper interpretation of (96), we shall agree to define D(x, y) = ∞ whenever y � x.
Thus the axiom implies that if the right hand side of (96) is finite, then y � x must hold.

The significance of the properties C1-4 lies in a general result dueto Kisynski [73], see also
Dudley [74], according to which these conditions ensure that the notion of convergence studied is
topological, i.e., that there exists a topology on X for which sequential convergence coincides with the
given notion of convergence. When this is so, there exists a unique strongest such topology, which
we refer to as the associated topology. For this topology, a set is open if and only if any sequence which
converges in the notion of convergence to a point in the set, eventually lies in the set. Note that,
typically, there are many topologies for which sequential convergence coincides with a given notion
of convergence. As a concrete example consider X = N and note that the convergent sequences
for the discrete topology (the eventually constant sequences) coincides with the class of convergent
sequences for the strictly weaker topology specified by taking G ⊆ N to be open if either 1 /∈ G or
else lim µn([1, n]) = 1 with µn the uniform probability measure over [1, n] (this is, essentially, “Appert
space” of [75]).

We are now ready to prove the following result:

Theorem 10. Under the added axioms ASC and JSC, the convergence properties C1-4 hold, hence JSD-convergence
is topological and the associated topology is well defined. Further, JSD is a sequentially lower semi-continuous

notion, i.e., for xn
JSD−→ x and yn

JSD−→ y, the following inequality holds:

JSD(x, y) ≤ lim inf
n→∞

JSD(xn, xm). (97)

Proof. To establish (97), note that by axiom ASC the convergence xnyn
JSD−→ xy is ensured. Then,

by axiom JSC,
D(x, xy) ≤ lim inf D(xn, xnyn). (98)

Similarly,
D(y, xy) ≤ lim inf D(yn, xnyn). (99)

As the left hand side in (97) is the sum of the left hand sides of (98) and (99), and as the sum of
the two right hand sides is dominated by the right hand side in (97), (97) must hold.

As to property C3, assume that xn
JSD−→ x and that xn

JSD−→ y. Then, by (97),
JSD(x, y) ≤ lim inf JSD(xn, xn) = 0 and hence D(x, xy) = 0 follows. By properness, x = xy and then
x = y follows.

Under the discussion of properties (86)–(89) we indicated that often JSD is directly related to
a metric in that a relation of the form

JSD(x, y) = f
(
ρ(x, y)

)
(100)

holds for some metric ρ. In such cases it is mostly easy to identify the associated topology (without
relying on any extra axioms). We leave it to the reader to prove the following simple result.
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Proposition 10. Assume that, for some metric ρ on X and some continuous and strictly increasing function
f on [0, ∞[ with f (0) = 0, Equation (100) holds for all (x, y) ∈ X × X. Then the associated topology for
JSD-convergence exists and can be identified as the metric topology defined by ρ. Further, JSD is jointly lower
semi-continuous. If the metric ρ is complete, so is JSD.

Under suitable conditions we now aim at establishing existence of optimal strategies for the
players in the games γ(P). However, in certain important cases Nature does not have an optimal
strategy. Instead, we aim at showing that rather generally replacements in the form of Hmax-attractors
exist. We shall aim at attractors for JSD-convergence but, as it will turn out, under conditions stated,
that will amount to the same thing as attractors for D-convergence. The result below, stated in rather
full detail for reference purposes, is a main technical result of the present contribution.

Theorem 11. Consider a convex state space X, let Y = X and let (Φ, H, D) be a proper information triple
over X ⊗ Y with affine marginals Φy for all y ∈ Y. Assume that the axioms ASC, JSC and the axiom of
JSD-completeness which all relate to the divergence function D hold.

Then, for every convex preparationP with Hmax(P) < ∞, γ(P) is in equilibrium and there exists a unique
optimal strategy y∗ for Observer and a unique Hmax-attractor x∗ wrt JSD-convergence. Furthermore, y∗ = x∗

and the direct as well as the dual Pythagorean inequalities hold, i.e., for x ∈ P and y � P ,

H(x) +D(x, y∗) ≤ Hmax(P);
Rimin(P) +D(x∗, y) ≤ Ri(y|P).

Proof. First we prove an auxiliary result, viz that if, for a sequence (xn) of states in P and for a state

x ∈ X, xn
D→ x holds, then also xn

JSD−→ x must hold.
To see this, note that by assumptions made, we conclude from (iii) of Theorem 8 that, for all n,

m and all y ∈ Y,
1
2

D(xn, y) +
1
2

D(xm, y) = D(xnxm, y) + JSD(xn, xm). (101)

Applying this with y = x, we see that (xn) is a JSD-Cauchy sequence. By completeness, there exists

x′ ∈ X such that xn
JSD−→ x′. By axiom JSD, D(x′, x) ≤ lim infn→∞ D(xn, x) = 0, hence x′ = x and

xn
JSD−→ x follows.

Now, let (xn) be an asymptotically optimal sequence for γ(P). Then (i) of Theorem 8 applied to
xnxm shows that

Hmax(P) ≥ H(xnxm) =
1
2

H(xn) +
1
2

H(xm) + JSD(xn, xm)

and we realize that (xn) is a JSD-Cauchy sequence. Therefore the sequence is JSD-convergent,

say xn
JSD−→ x. If also (zn) is an asymptotically optimal sequence, there must, likewise, exist z ∈ X such

that zn
JSD−→ z. As the alternating sequence x1, z1, x2, z2, · · · is also asymptotically optimal, that sequence

too JSD-converges, say with a ∈ X as limit state. By properties C2 and C3 we find that x = a = z.
This shows that there exists a unique Hmax-attractor wrt JSD-convergence. Let x∗ be this unique attractor.

Then we remark that if there exists an optimal strategy y∗ for Observer in γ(P), there can
only be one such strategy and it must coincide with x∗. To see this, note that if y∗ is optimal,
Ri(y∗|P) ≤ Hmax(P), hence, for every x ∈ P , H(x) + D(x, y∗) ≤ Hmax(P) and hence y∗ is also
an Hmax-attractor wrt convergence in D (cf., also Corollary 4). By the auxiliary fact established in the
beginning of the proof, y∗ is also an Hmax-attractor wrt JSD-convergence, hence must coincide with x∗

as claimed.
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Now fix an asymptotically optimal sequence, say (xn). Then, for x ∈ P consider “suitable”
convex combinations ξn = αnxn + βnx with βn → 0 and all βn positive (in fact, βn = 1

n if the difference
δn = Hmax(P)−H(xn) either vanishes or is larger than 1 and otherwise βn =

√
δn will do). Then

Hmax(P) ≥ H(ξn) = αn H(xn) + βn H(x) + αn D(xn, ξn) + βn D(x, ξn)

≥ αn H(xn) + βn
(

H(x) + D(x, ξn)
)
,

hence
H(x) + D(x, ξn) ≤

1
βn

(
Hmax(P)−H(xn)

)
+ H(xn).

Clearly, we can select the βn’s such that this quantity converges to Hmax(P) as n → ∞.
By axiom ASC, ξn converges in JSD-divergence to x∗ and then, by axiom JSC, we conclude that
H(x) + D(x, x∗) ≤ Hmax(P). Since this holds for every consistent state x, Ri(x∗|P) ≤ Hmax(P), from
which we conclude that γ(P) is in equilibrium, that the direct Pythagorean inequality holds and that
x∗ is an optimal strategy for Observer. As we have seen before, this strategy is unique.

As, for any y ∈ X,

Rimin(P) + D(x∗, y) = lim
n→∞

H(xn) + D(x∗, y)

≤ lim
n→∞

H(xn) + lim inf
n→∞

D(xn, y)

= lim inf
n→∞

Φ(xn, y) ≤ Ri(y|P),

also the dual Pythagorean inequality holds.

Several remarks concerning this theorem are in order.
Firstly, note that for the auxiliary result we started out to prove, we had to appeal (implicitly)

to the finiteness condition Hmax(P) < ∞ in view of the condition H(x) < ∞ in (iii) of Theorem 8.
Alternatively, we could instead demand that the compensation identity holds unconditionally.

Then, in general, the D-notion and the JSD-notion of convergence may differ from each other
(with D-convergence the stronger of the two). However, it follows from the theorem that under the
conditions stated, it does not matter whether we define Hmax-attractors wrt D-convergence or wrt
JSD-convergence. We may, therefore, simply talk about an Hmax-attractor, or even just an attractor,
without specifying the mode of convergence we have in mind.

Further, it lies nearby to ask if also the inequality H(x∗) ≤ Hmax(P) can be added to the
conclusions in Theorem 11. If H is sequentially lower semi-continuous wrt D-convergence (or wrt
JSD-convergence)—as will normally (always?) be the case—the inequality obviously holds. Assume
now that this is the case. Then there are two possibilities why an attractor x∗ may fail to be an optimal
strategy for Nature, either because x∗ /∈ P or, more interestingly, because there is an entropy loss in
that H(x∗) < Hmax(P). In Harremoës and Topsøe [76], the authors speculate that the phenomena of
entropy loss could be important in computational linguistics and provide a partial explanation behind
Zipf’s law.

Following up on the remark above, we may investigate what can be accomplished if we work with
a state x∗ which is known to be consistent and apply the same technique of proof as for Theorem 11.
What we find is that in the presence of convexity (and with technical axioms added), the essential
inequality Ri(y∗| P) ≤ H(x∗) is not needed in full strength. It suffices to assume one of the facts which
flow from that inequality, viz., that H(x∗) = Hmax(P). To be precise:

Theorem 12. With assumptions as in Theorem 11, let P be a convex preparation and x∗ a consistent state with
finite entropy which is also a possible strategy for Observer, i.e., x∗ � P . Then the condition H(x∗) = Hmax(P)
is not only necessary, but also sufficient for Ri(x∗| P) ≤ H(x∗) to hold, hence for γ(P) to be in equilibrium
with x∗ as bi-optimal state.
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Proof. Consider a state x ∈ P and apply (77) to a convex combination of the form yn = (1− 1
n )x
∗+ 1

n x.
We find that H(x∗) ≥ H(yn) ≥ (1− 1

n )H(x∗) + 1
n H(x) + 1

n D(x, yn) from which we conclude that
H(x) + D(x, yn) ≤ H(x∗). By axiom JSD, x∗ � x and H(x) + D(x, x∗) ≤ H(x∗) follows. As x ∈ P was
arbitrary, the desired inequality follows. Apply Corollary 1 and the result follows.

After these remarks let us turn to another key result:

Theorem 13. Let P be any preparation—convex or not—such that Hmax(P) < ∞. Keeping the other
assumptions of Theorem 11 as they are, the game γ(P) is in equilibrium if and only if entropy is not increased
by taking convex mixtures in the sense that

Hmax(co(P)) = Hmax(P). (102)

When (102) holds, γ(P) and γ(co(P)) have the same unique optimal strategy y∗ for Observer and the
same Hmax-attractor, x∗ for Nature and the two agree: x∗ = y∗.

Proof. First remark that if (102) holds, Hmax(co(P)) < ∞ and Theorem 11 applies. All claimed
properties then follow easily from that result.

To prove necessity, note that quite generally,

Rimin(co(P)) = Rimin(P). (103)

In more detail, the condition y � co(P) is equivalent with y � P , and, for each belief instance y ∈ Y,

Ri(y| co(P)) = Ri(y|P). (104)

This follows by standard assumptions made in the beginning of Section 2.15 according to which
visibility is adapted to the convex structure and by affinity of the marginals Φy (convexity would do).
Then, if γ(P) is in equilibrium, we can argue that

Hmax(co(P)) ≤ Rimin(co(P)) = Rimin(P) = Hmax(P)

and (102) follows.

As we saw, the result is essentially a corollary to Theorem 11. The proof above is modeled after
the proof of a less abstract result in [55].

We have formulated results for the Y-domain which appear less involved. We leave it to the
reader to formulate and prove versions of the two key theorems above for the Ŷ-domain.

Translating Theorems 11 and 12 to a setting based on utility—this requires an obvious dual notion
of attractors aiming at minimax utility rather than at maximin effort (i.e., maximal entropy)—one finds
the following result:

Theorem 14. Again with X a convex state space, let (U, M, D) be a proper utility-based information triple
with affine marginals Uy for y ∈ X. Assume that the technical axioms ASC and JSC hold. Further assume that
JSD-divergence is complete. Let P be a convex preparation for which Mmin(P) > −∞. Then:

(i) Without further assumptions, the utility game γ(P|U) is in equilibrium and there exists a unique optimal
strategy y∗ for Observer and a unique Mmin-attractor x∗. Furthermore, y∗ = x∗ and the direct as well as
the dual Pythagorean inequalities hold, i.e., for x ∈ P and y ∈ Y,

Mmin(P) + D(x, y∗) ≤M(x); (105)

Gtu(y|P) + D(x∗, y) ≤ Gtumax(P). (106)
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(ii) In case x∗ is a consistent state with finite max-utility, i.e., M(x∗) > −∞ for which M(x∗) = Mmin(P),
x∗ ∈ ctr(P) and the game γ(P |U) is in equilibrium and has x∗ as bi-optimal state. In particular,
the Pythagorean inequality

M(x∗) + D(x, y∗) ≤M(x) (107)

holds for every x ∈ P .

Let us collect the key results about updating games in one theorem:

Theorem 15. Let X be convex, let P be any preparation and let D be a general divergence on X ⊗ Y with
Y = X for which the compensation identity holds. Assume that the technical axioms ASC and JSC hold
and that JSD-divergence is complete. Consider a prior y0 ∈ Y and assume that Dy0 < ∞ on P and that
Mmin(P ; y0) > −∞. Then:

(i) Without adding extra conditions, Observer has a unique optimal strategy, y∗, in the game γ(P ; y0).
(ii) Observer strategies for γ(co(P); y0) and for γ(P ; y0) coincide, i.e., [co(P)] = [P ] and, for every such

strategy y, Gtu(y| co(P); y0) = Gtu(y| P ; y0), hence

Gtumax(co(P); y0) = Gtumax(P ; y0). (108)

(iii) If P is convex, the game γ(P ; y0) is in equilibrium and the Dy0
min-attractor exists. This attractor, say x∗,

is identical to the optimal Observer strategy y∗ from (i); it is the D-projection of y0 on P if and only if
x∗ ∈ P .

(iv) The game γ(P ; y0) is in equilibrium if and only if

Dmin(co(P); y0) = Dmin(P ; y0) . (109)

Proof. This may be proved by applying the key results of this section, also recalling Lemma 1. Details
are left to the reader.

Further properties of Jensen-Shannon divergence are worth investigating. This concerns in
particular the notion of negative definiteness, cf., [71,72]. Some indications are in place. When the
property holds, JSD is the square of a Hilbert metric in a natural sense (loc. cit.). Investigating
this property, one will quickly realize that, modulo finiteness conditions on the entropy function
(say Hmax(X) < ∞), JSD is negative definite if and only if the entropy function is midpoint-negative
definite, i.e., for any finite sequence of states (xi)i≤n and any associated sequence of real numbers
(ci)i≤n with ∑i ci = 0, it holds that ∑i,j cicj H(xixj) ≤ 0. If this property holds with a restriction on n we
express the property by saying that H is MP(n)-negative definite. Clearly, MP(2)-negative definiteness is
equivalent to midpoint concavity of H. In the same way as we introduced the notion of MP(n)-negative
definiteness for H, we may introduce a notion of n-negative definiteness of JSD.

Whereas the results about embeddability in a Hilbert space are rather deep, if we just ask for the
property to be a squared metric, the matter is much simpler:

Proposition 11. Assume that JSD is everywhere finite. Then the following conditions are equivalent:

• JSD is the square of a metric;
• JSD is 3-negative definite;
• H is MP(3)-negative definite

This result depends on the properties (86)–(89). The key argument is not specific to JSD. For the
sake of good order, we provide a proof of the basic general result in Appendix D.
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3. Examples, towards Applications

3.1. Primitive Triples and Generation by Integration

Natural building blocks for information triples will be defined. We shall here concentrate on
a simple, important and easy-to-apply approach.

A possible expansion of the considerations in the present section is dealt with in the Appendix A.
This is related to our introduction of weaker concepts of properness and will allow you to work more
generally with non-smooth “generators” (see below). Desirable is also an introduction of an action
space and of the notion of response. How this can be done is indicated in Appendix A. We have chosen
not to deal with the possible refinements in the main text, partly to keep the exposition simple, partly
as a few technical issues may still need a closer investigation.

Let I be a subinterval of ]−∞, ∞[ with endpoints a and b (−∞ ≤ a < b ≤ ∞). Either none,
one or both endpoints belong to I but neither +∞ nor −∞ are members of I. Provide I with its usual
algebraic and topological structure. We take I as state space as well as belief reservoir. Thus X = Y = I.
Visibility is normally taken to be the diffuse relation so that any state s ∈ I is visible from any belief
instance. However, at times a more restricted notion of visibility is relevant, especially for I = [0, 1] or
I = [0, ∞[. Then

I ⊗ I = I2 \ {(s, u)|s > 0, u = 0} (110)

is a better choice.
We agree that in this section, visibility I⊗ I is either the discrete relation I× I or else given by (110)

in certain cases when 0 ∈ I is a left endpoint of I.
An effort-based information triple over I ⊗ I is said to be primitive. The “primitivity” lies in the

fact that the state space and belief reservoir appear to be as simple as one can think of—if you do not
want to enter into discrete structures with a finite or countably infinite state space. We use lower case
letters as in (φ, h, d) for such triples. Upper case letters will then occur for constructions via a process
of summation or integration, starting with primitive triples.

We are especially interested in proper primitive triples. The conditions they must satisfy are as
follows (linking, fundamental inequality, soundness and properness):

φ(s, u) = h(s) + d(s, u) , (111)

d(s, u) ≥ 0 , (112)

d(s, s) = 0 , (113)

d(s, u) = 0⇒ u = s . (114)

It is understood here and later on that such requirements are to hold for all s ∈ I (for (113)) or for
all (s, u) ∈ I⊗ I (for (111), (112) and (114)). From Section 2.15 we know that it is desirable for the effort
function to have affine marginals φu. For this to be the case, there must exist functions on I, η and ξ

say, such that
φ(s, u) = sη(u) + ξ(u) (115)

for (s, u) ∈ I⊗ I. There is a simple way to generate a multitude of such information triples. The method
is inspired by Bregman, [77], who used the construction for other purposes. Given is a Bregman
generator h which is here understood to be a continuous, real-valued, strictly concave function on I
which is sufficiently smooth on the interior of the interval, say continuously differentiable. We take
this function as the entropy function, h. Defining effort and divergence by

φ(s, u) = h(u) + (s− u)h′(u) , (116)

d(s, u) = h(u)− h(s) + (s− u)h′(u) , (117)
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the triple (φ, h, d) is indeed a proper primitive information triple with affine marginals, φu. Figure 2
illustrates what is involved.

Figure 2. Bregman generator and primitive effort-based information triple.

It is also easy to illustrate geometrically what Jensen-Shannon divergence amounts to. Referring to
Figure 3, we find that the Jensen-Shannon divergence between s1 and s2, for primitive triples denoted
by jsd is given by

jsd(s1, s2) =
1
2

d1 +
1
2

d2. (118)

It follows geometrically that

jsd(s1, s2) ≤
1
2

d(s1, s2) +
1
2

d(s2, s1). (119)

We also find that for a bounded interval I, JSD-convergence and D-divergence are equivalent
concepts and that the associated topology is the standard topology on I.

Figure 3. Jensen-Shannon divergence (d1 + d2) for the Bregman construction.

The utility-based analogues of notions introduced are defined in an obvious manner (see also
examples below). We shall use (u, m, d) as generic notation for primitive utility-based triples.
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As two examples of effort-based Bregman generated primitive triples, we point to the standard
algebraic triple given by

φ(s, u) = u2 − 2su , (120)

h(s) = −s2 , (121)

d(s, u) = (s− u)2 (122)

over ]−∞,+∞[ and to the standard logarithmic triple

φ(s, u) = u− s + s ln
1
u

, (123)

h(s) = s ln
1
s

, (124)

d(s, u) = u− s + s ln
s
u

. (125)

over [0, ∞]. Both triples are given in their effort-based versions. If need be, we refer to these triples as
standard primitive effort-based triples.

The first triple is equivalent to a triple we met in Example 1. It leads to basic concepts of real
Hilbert space theory by a natural process of summation or, more generally, integration. By a similar
process, the second triple leads to basic concepts of Shannon information theory. Before elaborating on
that, we shall generalize both examples by the introduction of a parameter q. In fact, we shall see that,
modulo affine equivalence, both examples can be conceived as belonging to the same family of triples.

In order to modify the standard algebraic triple, it lies nearby to consider generators of the form

hq(s) = α(q)sq + β(q)s + γ(q) (126)

with α, β and γ functions depending on a real parameter q. Let us agree to work mainly with
I = [0, ∞] as state space. Then q could in principle be any real parameter. For each fixed q, hq is
either strictly concave—an effort-based Bregman generator—strictly convex—a utility-based Bregman
generator—(or degenerate). Applications of (116) and (117) give the formulas

φq(s, u) = α(q)(1− q)uq + α(q)qsuq−1 + β(q)s + γ(q) (127)

dq(s, u) = α(q)(1− q)uq + α(q)qsuq−1 − α(q)sq . (128)

When α(q)q(q− 1) is negative, hq is a genuine effort-based Bregman generator and the triple
(φq, hq, dq) is a proper primitive effort-based information triple. When α(q)q(q− 1) is positive, hq is
strictly convex and the triple (φq, hq,−dq) is a proper primitive utility-based information triple (which
should then rather be denoted (uq, mq, dq)). Thus, if you consider the triple (φq, hq, |dq |) you are
certain to obtain a primitive triple, either effort-based or utility-based (or degenerate). It also follows
from (126)–(128) that modulo affine equivalence, the triples you obtain from different choices of α, β

and γ are scalarly equivalent. For some choices you may prefer to restrict the parameter so that only
effort-based triples emerge, for others you may find it interesting to focus on triples where there is
a smooth variation from effort-based to utility-based triples. In applications—purely speculative at
the moment—this could reflect situations in economic or physical or chemical systems where e.g.,
a change from positive to negative rent or from exothermic to endothermic reaction can take place.

If you choose α = 1 and β = γ = 0, then (φq, hq, |dq |) equals(
(1− q)uq + qsuq−1, sq, |(1− q)uq + qsuq−1 − sq|

)
. (129)

As you go from large to small values of q this primitive triple starts out as utility-based, then,
for q = 1, becomes degenerate, after which it switches to the effort-based mode until, for q = 0, it again
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becomes degenerate, after which it switches back to the utility-based mode. For q = 2, the triple
is the utility-based standard algebraic triple, the utility-based version of the triple given in (120)–(122).
That triple is most naturally considered over I ⊗ I with I =]−∞, ∞[.

We can remove the “singularity” of the system at q = 1 by blowing up the generator near q = 1.
Let us choose α, β and γ as follows:

α(q) =
1

1− q
, β(q) =

−1
1− q

, γ(q) = γ0 . (130)

Here, the constant γ0 represents an eventual overhead With choices as specified, we obtain the
triples (φq, hq, dq) with

φq(s, u) = uq +
1

1− q
(
quq−1 − 1

)
s + γ0 , (131)

hq(s) = s
sq−1 − 1

1− q
+ γ0 , (132)

dq(s, u) = uq +
q

1− q
uq−1s− 1

1− q
sq . (133)

The Equation (131) gives you gross effort with net effort obtained by putting γ0 = 0. Similarly,
(132) is gross entropy and the same formula with γ0 = 0 gives you net entropy.

The family of triples (131)–(133) is well defined for all q ≥ 0 if we allow for an interpretation by
continuity for q = 1. For q = 0 the triple is degenerate, for q > 0 it determines a proper primitive
effort-based information triples. For q = 1 continuity considerations show that (φ1, h1, d1) is identical to
the standard logarithmic triple given in (123)–(125) (assuming that the overhead is neglected, γ0 = 0).

The triples we have identified may all be conceived to be of the same structure as the standard
logarithmic triple. What is meant by this, is that if we, following Tsallis [78], introduce the deformed
logarithms, lnq, defined by the formula

lnq t =

{
ln t if q = 1

1
1−q
(
t1−q − 1

)
otherwise ,

(134)

then the Formulas (131)–(133) may be expressed as follows in terms of the deformed logarithms:

φq(s, u) = uq − s + qs lnq
( 1

u
)
+ γ0 , (135)

hq(s) = s lnq
(1

s
)
+ γ0 , (136)

dq(s, u) = uq − s + qs lnq
( 1

u
)
− s lnq

(1
s
)

. (137)

These formulas are used for s, u ≥ 0 and q ≥ 0 (for negative q you do not obtain effort-based
quantities). Note that if q ≤ 1, then lnq

1
t = ∞ for t = 0. The formulas indicate that it is not so much

the logarithmic function t 7→ lnq t which is of importance but more so the function t 7→ lnq
1
t . This

is no surprise to information theorists as the latter expression has a well known interpretation in
terms of coding when q = 1, provided t represents a probability. No convincing interpretation of lnq

1
t

appears to be known for other values of q. For q = 1, (135)–(137) reduce to (123)–(125) pertaining to
the standard logarithmic triple,.
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The family of triples (135)–(137), q ≥ 0, is referred to as the family of deformed primitive
triples—adding a qualifying “effort-based” if need be. The analogous utility-based primitive is the
family of triples (uq, mq, dq) = (−φq,−hq, dq), i.e., for q ≥ 0,

uq(s, u) = −uq + s− qs lnq
( 1

u
)
− γ0 , (138)

mq(s) = −s lnq
(1

s
)
− γ0 , (139)

dq(s, u) = uq − s + qs lnq
( 1

u
)
− s lnq

(1
s
)

. (140)

Let us return to the process of integration hinted at in the beginning of the section. A substantial
amount of concrete triples which illustrate the theory developed can be constructed by combining the
Bregman construction with a process of integration.

Integration may be applied to any family of information triples and gives us new triples to work
with. Note that by linearity of integration, the important property of affinity of marginals is preserved.

We comment mainly on integration of effort-based triples with a view towards applications in
information theory and in statistical physics. Consider integration of one and the same primitive triple
(φ, h, d) over I ⊗ I with Bregman generator h. Partly for technical convenience we assume that h is
non-negative. Then effort, entropy and divergence, will all be non-negative, also in the integrated
version. Considering the intended applications, this is only natural.

Let T be a set provided with a Borel structure and with an associated measure µ. Let X = Y be
the function space consisting of all measurable functions x : T 7→ I. Functions in X are identified if
they agree µ-almost everywhere. Note that X is a convex cone. Consider the integrated triple

(Φ, H, D) =
∫

T
(φ, h, d)dµ(t) (141)

by which we express that the following equations hold:

Φ(x, y) =
∫

T
φ
(
x(t), y(t)

)
dµ(t) , (142)

H(x) =
∫

T
h
(
x(t)

)
dµ(t) , (143)

D(x, y) =
∫

T
d
(
x(t), y(t)

)
dµ(t) . (144)

As h ≥ 0, H is well defined and 0 ≤ H(x) ≤ ∞ for all x ∈ X and as t 7→ (x(t), y(t)) is measurable
and (s, u) 7→ d(s, u) non-negative and measurable, cf., (117), D is well-defined by (144). By linking,
also Φ is well defined. Thus, (Φ, H, D) is a well defined triple over X×Y. We leave it to the reader to
verify that (Φ, H, D) is a proper information triple. Moreover, if φ has affine marginals φu for all u ∈ I,
then Φ has affine marginals Φy for all y ∈ Y. The divergence functions which can be obtained in this
way are Bregman divergences. Note that with this construction, the essential fundamental inequality
D ≥ 0 even holds pointwise as d ≥ 0. For this reason, when we discuss the integrated triple, we refer
to (112) as the pointwise fundamental inequality.

Bregman divergence may be used to modify visibility by taking X ⊗ Y to consist of all pairs
(x, y) ∈ X×Y with D(x, y) < ∞.

For the standard logarithmic triple (123)–(125), one may construct discrete models, say over
a finite or countably infinite alphabet T, by a process of summation related to the interval I = [0, ∞[

rather than the traditional choice I = [0, 1]. States will then be certain sequences (xi)i∈T, which may
be conceived as intensity sequences consisting of point intensities rather than the usual probability
sequences of point probabilities. As regularity conditions one could take sequences with bounded
intensities or sequences for which the primitive entropy function h of (124) satisfies the requirement
∑i∈T h(xi) > −∞. For this to work technically, we realize the importance of the pointwise fundamental
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inequality for d of (125) and note that this requires the inclusion of the term u− s in d. Thus one may
suggest to replace classicalprobability spaces with certain intensity spaces.

Returning to the classical choice with discrete probability distributions over a discrete alphabet T,
Φ becomes discrete Kerridge inaccuracy, H classical Shannon entropy and D discrete Kullback-Leibler
divergence. If we generalize to cover non-discrete settings, entropy can only be finite for distributions
with countable support, whereas the generalization of divergence makes sense more generally.
For instance, we may consider the generator s 7→ s ln 1

s on the entire half-line I = [0, ∞[ and for (T, µ)

take an arbitrary measure space, provided with some measure µ. As state space we can then, as one
possibility, take the set of measures absolutely continuous with respect to µ and with finite-valued
Radon-Nikodym derivatives with respect to µ. For two such measures, say P = pdµ and Q = qdµ we
find that

D(P, Q) =
∫ (

p(t) ln
p(t)
q(t)

+ q(t)− p(t)
)

dµ(t) . (145)

This may be called generalized Kullback-Leibler divergence. It is the more natural divergence to
consider. For one thing, the integrand is non-negative by the pointwise fundamental inequality. If we
restrict attention to finite measures P and Q with the same total mass, this reduces to the standard
expression

∫
p ln p

q dµ. The standard expression also gives a divergence measure if the two measures
are finite and Q(T) ≤ P(T) and, moreover, the important compensation identity also holds in this case
since the additional terms (stemming from u− s in (125)) are integrable and affine.

Now consider extensions to cover also integration of the family (φq, hq, dq). It is natural to consider
these triples over I⊗ I with I = [0, 1] in order to ensure that hq ≥ 0. By integration we obtain the triples

(Φq, Hq, Dq) (146)

defined over appropriate function spaces, typically representing probability distributions. For q > 0
these triples are proper effort-based information triples. For q = 0 you obtain degenerate triples.
The quantity Hq, is meaningful in discrete cases with T finite or countably infinite, and defines Tsallis
entropy. For the continuous case, Tsallis entropy does not make much sense, but the divergence function
Dq does.

So far, we have discussed integration of primitive triples. This concerns a process where the
original state space (the interval I) is changed to a new state space and then, an information triple
over the new state space is constructed. A similar process applies if we start out with a family(
(Φt, Ht, Dt)

)
t∈T of proper information triples over the same state space X (formally, over X×Y or

X⊗Y with structures as usual and, typically, Y = X). Then we may consider the integrated triple

(Φ, H, D) =
∫

T
(Φt, Ht, Dt)dµ(t) (147)

defined by

Φ(x, y) =
∫

T
Φt(x, y)dµ(t) , (148)

H(x) =
∫

T
Ht(x, y)dµ(t) , (149)

D(x, y) =
∫

T
Dt(x, y)dµ(t) . (150)

With suitable measurability conditions, (Φ, H, D) is a well-defined proper information triple. Also,
the standard restriction of affinity is preserved by this process. As a useful but trivial remark, we note
that properness of the integrated triple only needs properness of (Φt, Ht, Dt) for a set of positive
µ-measure. An instance of this feature with T a two-element set was already discussed in Section 2.7.

The most obvious application of the process of integration probably is to integrate the utility-based
standard algebraic triple (u, m, d) =

(
− u2 + 2su, s2, (s− u)2), cf., (129). This triple is considered over
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I ⊗ I with I =]−∞, ∞[. Integrating over a measure space (T, µ), you are led to take as state space the
L2-space over (T, µ). In standard notation, the integrated triple (U, M, D) is given by

U(x, y) = −‖y‖2 + 2〈x, y〉 , (151)

M(x) = ‖x‖2 (152)

D(x, y) = ‖x− y‖2 . (153)

We collect in Section 3.2 comments on these classical concepts, seen in the light of the theory
here developed.

Some comments on the generation of information triples by the method inspired by Bregman [77]
are in order. The focus of Bregman’s method has often been on the divergence measures it generates.
Before Bregman’s work one mainly studied f -divergences, introduced independently by Csiszár [79],
Morimoto [80] and by Ali and Silvey [81]. We find that often, Bregman divergences occur more
naturally and have more convincing interpretations.

As we have seen, the widely studied entropies bearing Tsallis’ name can be derived via a Bregman-
type construction. In Section 3.6 we shall have a closer look at these entropies. They have received
a good deal of attention, especially within statistical physics. Some comments on the origin of
these measures of entropy are in place. Tsallis’ trend-setting paper [2] is from 1988 but, originally,
the entropies go back to Havrda and Charvát [82], to Daróczy [83] and to Lindhard and Nielsen [84,85]
who all, independently of each other, found the notion of interest. Characterizations via functional
equations were derived in Aczél and Daróczy [86], see also the reference work [87] as well as [41].
Regarding the physical literature, there is a casual reference to Lindhard’s work in one of Jaynes’
papers [88]. However, only after the publication of Tsallis 1988-paper mathematicians and, especially,
physicists took an interest in the “new” entropy measures. We refer to the database maintained by
Tsallis with more than 2000 references. From the recent literature we only point to Naudts, ref. [89]
who also emphasized the convenient approach via Bregman generators.

3.2. A Geometric Model

Let us return to the model (U, M, D) given by (151)–(153) of Section 3.1. This is the utility-based
information triple

(
− ‖y‖2 + 2〈x, y〉, ‖x‖2, ‖x− y‖2) pertaining to the Hilbert space X = Y = L2(T, µ).

The triple is proper and has affine marginals Uy given y.
In this case, the linking identity (after rearrangement of terms) is identical to the cosine relation.

Other well-known basic facts of inner-product spaces can be derived by combining the linear structure
of such spaces with the basic properties of information triples. Thus, the identity you obtain from the
compensation identity (79) applied to D is of central importance for classical least squares analysis
(apparently, the identity has no special name in this setting—it goes back at least to Gauss).

Games directly associated with the information triple (U, M, D) involve minimization of M over
various preparations, in other terms, the search for elements closest to the origin subject to certain
restrictions. Let us, instead comment on relative games, which are games depending on the specification
of a preparation and a prior y0 ∈ Y, cf., Section 2.8. If the preparation P is convex and closed,
the D-projection x∗ of y0 on P exists; it is the unique point in P which is closest in norm to y0 (though
classical, the reader may appreciate to note that this existence result is derived with ease from the
compensation identity and completeness of Hilbert space). As standard convexity- and continuity
assumptions are also in place, Theorem 15 applies. It follows that the game γ(P ; y0) is in equilibrium
with the D-projection x∗ as bi-optimal state. The updating gain for this game is given by (21), i.e.,

U|y0
(x, y) = ‖x− y0‖2 − ‖x− y‖2 . (154)
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In this case the Pythagorean inequality reduces to the classical inequality

‖x− y0‖2 ≥ ‖x− x∗‖2 + ‖x∗ − y0‖2 , (155)

valid for every x ∈ P .
Combining Proposition 9 and Theorem 15 we obtain rather complete information about the

updating games, also for preparations which are not necessarily convex. For instance, Figure 4, case (a)
illustrates a case with unique optimal strategies for both players and yet, the game is not in equilibrium.
Case (b) illustrates a typical case with a game in equilibrium. For both figures, x∗ denotes the optimal
strategy for Nature and y∗ the optimal strategy for Observer. Indicated on the figures you also find
the largest strict divergence ball B(x∗|y0) and the largest half-space σ+(y∗|y0) which is external to P .
The two values of the game can then be determined from the figures, ‖x∗− y0‖2 for Nature, respectively
‖y∗ − y0‖2 for Observer.

Figure 4. Optimal strategies, typical equilibrium via core.

Lastly some words on the typical preparations you meet in practice. In consistency with the
philosophy expressed in Section 2.9 these are the feasible preparations. The strict ones are affine
subspaces and the slack ones are convex polyhedral subsets. We shall determine the core of families of
strict preparations:

Proposition 12. Consider a family P = Py of strict feasible preparations determined by finitely many points
y = (y1, · · · , yn) in X. The core of this family consists of all points in the affine subspace through y0 generated
by the vectors yi − y0; i = 1, · · · , n, i.e.,

core(P) =
{

y0 +∑ αi(yi − y0)
∣∣(α1, · · · , αn) ∈ Rn} . (156)

Proof. An individual member P of P is determined by considering all x ∈ X for which the values
of U|y0

(x, yi); i = 1, · · · , n have been fixed. Note that fixing these values is the same as fixing the
inner products 〈x− y0, yi − y0〉 or, equivalently, the inner products 〈x, yi − y0〉. If y∗ is of the form
given by (156), y∗ = y0 + ∑ αi(yi − y0), then 〈x, y∗ − y0〉 = ∑ αi〈x, yi − y0〉 and we realize that this
is independent of x if x is restricted to run over some preparation in P. Then also U|y0

(x, y∗) is
independent of x when x is so restricted. We conclude that y∗ ∈ core(P). This proves the inclusion
“⊇” of (156).

To prove the other inclusion, assume, as we may, that y0 = 0 and that the yi forms an orthonormal
system. Consider a point y∗ ∈ core(P). Determine P ∈ P such that y∗ ∈ P . By Theorem 5, y∗ is
the bi-optimal state of γ(P ; y0). Let ci; i = 1, · · · , n denote the common values of 〈x, yi〉 for x ∈ P .
Then x∗ = ∑ ciyi is the orthogonal projection of y0 = 0 on P , hence y∗ = x∗. This argument shows that
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the core is contained in the subspace generated by the yi. This is the result we want as we assumed
that y0 = 0.

In order to determine the projection of y0 on a specific preparation P = Py(h) ∈ P, we simply
intersect core(P) with P . If you do this analytically, one may avoid trivial cases and assume that
yi − y0; i = 1, · · · , n are linearly independent. In Figure 4, case (c) we have illustrated the situation in
the simple case when n = 1.

3.3. Universal Coding and Prediction

In this and in the next two sections we present problems where randomization plays a role. It will
be realized that apart from this, the discussion of the three problems treated, though different in nature,
relies on the same type of considerations (Kuhn-Tucker type results).

We start by discussing a problem of universal coding and prediction.
Let A be a discrete finite set, the common alphabet and consider languages whose written

representation use letters fromA. Let P be a finite set of such languages, referred to as the selection, e.g.,
the selection could be English, German and French. Assume that for each individual language from
P we know the distribution of single letters in a typical text from that language, and let us identify
a language with the corresponding distribution over A. In this way, the selection is identified with
a certain finite subset P ⊆ of M1

+(A), the set of all distributions over A.
When we observe letters from A generated by a typical text from just one of the languages,

say with associated single-letter distribution P ∈ M1
+(A), information theory tells us how to encode

letters from A in strings of letters from a reference alphabet, say the binary alphabet consisting of the
two elements 0 and 1, so as to minimize the expected length of the encoded binary strings. The encoded
string corresponding to the letter x ∈ A, will then have a length κ(x) which is given roughly as

κ(x) ≈ log
1

P(x)
(157)

with log denoting binary logarithms. This choice ensures that the average code length

〈κ, P〉 = ∑
x∈A

P(x)κ(x) (158)

is minimal.
The precise sense in which (157)—even with exact equality—is the undisputed right choice will

not be discussed here. It is a cornerstone of information theory for which you may consult standard text
books on information theory such as [90] or an introductory text such as Topsøe [91]. Note that (157)
with equality implies that ∑x∈A 2−κ(x) = 1 (Kraft’s equality).

Let us change to a more theoretical concept of encoding by idealization, forgetting that the length
of a binary sequence is a natural number and by a change to natural units rather than binary units.
This leads us to redefine a code over A to be a map κ : A 7→ [0, ∞] such that

∑
x∈A

exp(−κ(x)) = 1, (159)

i.e., such that Kraft’s equality with natural units holds. Denote by K(A) the set of all such codes.
The requirement (159) amounts to the requirement that the correspondence κ ↔ P given by

κ(x) = ln
1

P(x)
; x ∈ A (160)
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is a one-to-one correspondence between M1
+(A) and K(A). We also express (160) by saying that κ is

adapted to P and we write κ = P̂. As is easily seen, either directly or referring to previous material from
Section 3.1, κ = P̂ is the unique code for which the average code length 〈κ, P〉 is minimal.

With this property in mind, we define the redundancy of a pair (P, κ) ∈ M1
+(A) × K(A) as

the quantity

D̂(P, κ) = ∑
x∈A

P(x)
(

κ(x)− ln
1

P(x)

)
. (161)

From our discussion we know—in a theoretical idealized way at least—how to encode letters from
A if we want to process letters from a text source generated by a single language in an optimal manner.
We shall investigate what can be done if we receive text from an unknown language, except that we
know that the language is one from the given selection.

We agree to call a code κ ∈ K(A) universal for the language selection P if the risk, here defined as

R̂i0(κ|P) = max
P∈P

D̂(P, κ) (162)

is minimal. The associated distribution under the correspondence κ ↔ P is then said to be a universal
predictor. Note that the risk R̂i0 is associated with the information triple (D̂, 0, D̂) and that a universal
code is the same as an optimal strategy for Observer in the game associated with this triple. Clearly,
the game in question is not in equilibrium, hence equilibrium type results as developed previously
are not of much use. Instead it turns out that a very direct approach will lead to an identification of
universal objects.

Theorem 16. Let (P∗, κ∗) ∈ M1
+(A)× K(A) with κ∗ adapted to P∗. Assume further that for some finite

constant R,
D̂(P, κ∗) ≤ R for all P ∈ P (163)

and that P∗ can be written as a convex combination of a set of distributions in P for which equality holds
in (163). Then κ∗ is the unique universal code and P∗ the unique universal predictor.

Proof. Clearly, R̂i0(κ∗|P) = R.
Then consider any code κ different from κ∗. Write P∗ as a convex combination P∗ = ∑i αiPi of

distributions in P all of which satisfy the relation D̂(Pi, κ∗) = R. Then the compensation identity
tells us that

R̂i0(κ|P) = ∑
i

αiR̂i0(κ|P) ≥∑
i

αiD̂(Pi, κ)

= D̂(P∗, κ) +∑
i

αiD̂(Pi, κ∗) = D̂(P∗, κ) + R.

Thus, as D̂ is proper, R̂i0(κ|P) > R. As this holds for all κ 6= κ∗, the result follows.

Note the essential point that D̂ satisfies the compensation identity. That this is so follows either by
direct calculation or, more systematically, by applying (iii) of Theorem 8 to the triple you obtain by
adding entropy to (D̂, 0, D̂). For the derived domain you then work with the typical Shannon triple,
listed explicitly in (185)–(187). So, after all, the information triples are also useful for the above problem.

It can be shown that the result always applies in the sense that the unique optimal code and the
unique optimal predictor exist and that they satisfy the conditions stated in the theorem. Note that the
representation of the optimal predictor as given in the theorem may not be unique.
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3.4. Sylvester’s Problem from Location Theory

As starting point we take a simple Y-domain model with Y = X, a convex set. For visibility we
take the diffuse relation X×Y. Given is a finite-valued general divergence function over X×Y for
which the compensation identity (79) holds.

As a concrete example, one may have in mind, take that of a Euclidean space X provided with
norm-squared distance, D(x, y) = ‖x− y‖2. Moreover, as the motivating problem, consider Sylvester’s
problem, to determine the point with the least maximal distance to a given finite set P of points in X, cf., [92]
or the monograph [93]. For the original problem, X was the Euclidean plane. However, the problem
makes good sense in the general setting with X any convex set provided with a suitable replacement
for classical squared distance.

The problem is a minimax problem and may formally be conceived as related to the special
proper information triple (D, 0, D). Indeed, the problem is to find optimal Observer strategies for the
associated game γ(P) and to calculate Observer’s value of the game, the MinRisk-value Rimin(P).
However, this game is rather trivial as Natures value in the game is 0. Thus no equilibrium-type results
are available.

To find a remedy, we apply a process of randomization. For that, we no longer consider X as the
state space but take the convex space X̃ = MOL(X) of molecular probability measures as a new state
space. An element α ∈ X̃ is represented as a family α = (αx)x∈X of non-negative numbers such that
∑x∈X αx = 1 and such that the support of α, i.e., the set supp(α) = {x|αx > 0}, is finite.

The new model we shall construct is conceived as a Ŷ-type model. As state space we take X̃.
Just as X, this is a convex set. For formal reasons—so that the modeling fits the general abstract
theory—we may also take X̃ as belief reservoir, though we will have no need really to consider belief
instances. Instead, control will be in the focus, and for the set of control instances we shall take Y = X.
Once more for formal reasons, we consider the barycentric map which maps an (artificial) belief
instance into its barycenter as response. This map will play an important role for the modeling. Let the
map be α 7→ b(α) with α ∈ X̃ and barycenter of α given by

b(α) = ∑
x∈X

αxx . (164)

The good sense in considering elements of X as controls is the idea from location theory, that from
a point in X, conceived as a location, you should try to control the given points in the set P as best
you can.

With these preparations, we may consider the triple (Φ̃, H̃, D̃) over X̃×Y given by

Φ̃(α, y) = ∑
x∈X

αx D(x, y) , (165)

H̃(α) = ∑
x∈X

αx D(x, b(α)) , (166)

D̃(α, y) = D(b(α), y) . (167)

For P ⊆ X, denote by P̃ the set of α ∈ X̃ which are supported by P , i.e., ∑x∈P αx = 1. By γ̃(P̃)
we denote the game corresponding to the triple (Φ̃, H̃, D̃) with P̃ as preparation. A basic fact which
contributes to the significance of games of this type is that, as easily seen, risk does not increase when
you replace the game γ(P) with γ̃(P̃), in particular, with self-explanatory notation,

R̃imin(P̃) = Rimin(P) . (168)

This fact relies on the affinity of the marginals of Φ̃ for fixed y.
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Theorem 17. The triple (Φ̃, H̃, D̃) over X̃ × Y is a proper information triple over X̃ × Y and the triple has
affine marginals.

Let P be a subset of X and consider the game γ̃(P̃). Consider a pair (α∗, y∗) ∈ P̃ ×Y of strategies in the
game γ̃(P̃) with y∗ adapted to α∗, i.e., y∗ = b(α∗). Then if, for some constant R,

∀x ∈ X : D(x, y∗) ≤ R , (169)

∀x ∈ supp(α∗) : D(x, y∗) = R , (170)

y∗ is the unique optimal strategy for Observer in γ̃(P̃) as well as in γ(P). Further, Rimin(P) = R and x∗ is
a bi-optimal strategy for γ̃(P̃).

Proof. With preparations done, the first part is trivial, and the second is also so, obtainable as
an application of Corollary 1.

Note that the linking identity is just another way of formulating the compensation identity and
that the entropy function is the compensation term in that identity.

With Theorem 17 we have a solution to Sylvester’s problem for an abstract model provided you
can somehow point to a possible solution. It can be shown, modulo technical assumptions to ensure
existence of optimal strategies, that the sought optimal Observer strategy must be of the form as stated
in the theorem.

3.5. Capacity Problems, an Indication

Problems concerning capacity are among the most well known problems from information theory.
They concern the determination of capacity defined as maximal information transmission rate under
various conditions and on the associated optimal ways of coding. We shall only define one of the
basic concepts and derive a key relation and leave it to the reader to consult the literature for more
concrete results.

We first elaborate on the information triple given in the previous section by (165)–(167).
The entropy function of that triple we may think of as related to information transmission rate of
information theory (then also related to the notion of mutual information which is, however, not
investigated further in the present study). This refers to the map x 7→ y as a map from an input letter
to an output letter. Then an element α ∈ X̃ represents a distribution over the input letters, a source,
and response tells you what is happening on the output side. It is important to study how the rate
behaves under mixtures. Thus we have a need to study elements in ˜̃X = MOL(X̃). The result one
needs exploits the flexibility of the modeling, especially related to Theorem 8.

First, define information transmission rate related to α ∈ X̃ simply as

I(α) = H̃(α) . (171)

We wish to emphasize the following result:

Lemma 2. With the setting as above, consider any w = (wα)α∈X̃ ∈ ˜̃X and put α0 = ∑α∈X̃ wαα. Then,
for every w ∈ ˜̃X,

I
(

∑
α∈X̃

wαα
)
= ∑

α∈X̃

wα I(α) + ∑
α∈X̃

wα D
(

b(α), b(α0)
)

. (172)

Proof. If you write H̃ in place of I, this follows from the identity (77) of Theorem 8 with H̃ in place
of H.

With the technical lemma in place, a study of abstract models of information transmission systems
runs smoothly and you can derive operational necessary and sufficient conditions for the requirements
of optimal strategies. On Natures side, an optimal strategy is an input distribution for which the
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transmission rate reaches the maximum, the capacity of the system. The result is a Kuhn-Tucker type
result, well known from general convexity theory and from Information theory, and much resembles
the results of the previous two sections. We refer to Topsøe [94] for an exposition of a result which
exploits the lemma just proved.

3.6. Tsallis Worlds

Recall the introduction in Section 3.1 of the family of Tsallis entropies. In this section we present
arguments which may help to appreciate the significance of these measures of entropy.

The main result, Theorem 18 was presented in a different form in [36] and, less formally, in [35].
Here we present detailed proofs which were not provided in these sources.

The introduction in Section 3.1 of the Bregman generators hq and thereby, via a process of
integration, of Tsallis entropy, cf., (146), does not in itself constitute an acceptable interpretation.
Via coding considerations, the significance of the Bregman generator h1, leading to the notion of
Shannon entropy is well understood. Despite some attempts to extend this to more general entropy
measures, cf., [95–97], a general approach via coding has not yet been fully convincing. In [98] you
find a previous attempt of the author centred on a certain property of factorization.

The results presented here indicate that possibly, a convincing and generally acceptable physical
justification of Tsallis entropy can be provided by involving deformation between the physical system
studied and the physicist. Previous endeavours to find physical justification for Tsallis entropy are
discussed in detail in Tsallis, [99]. We share the view that though the “Tsallis-q” can be viewed just as
a parameter introduced simply to fit data, this is not satisfactory and operational justification is needed.
Deformation as here emphasized in combination with a notion of description may offer a common
ground on the way to more insight.

To set the scene for our study, introduce the alphabet A, a discrete set of basic events which are
identified by an index, typically denoted by i. Sensible indexing is often of importance and depends on
the concrete physical application. The semiotic assignment of indices shall facilitate technical handling
and catalyze semantic awareness. As we have no concrete application in mind, no extra structure is
introduced which could justify a specific choice of indices.

The state space X is taken to be identical to the belief reservoir Y and, for simplicity, equal to
M1

+(A), the set of probability distributions overA (you could have worked, instead and more generally,
with sets involving intensity as suggested in Section 3.1). Generically, x = (xi)i∈A will denote a state
and y = (yi)i∈A a belief instance. Thus x and y are characterized by their point probabilities. As Ydet, the
set of certain belief instances, we take the set of deterministic distributions overA. Visibility y � x shall
mean that x is absolutely continuous wrt y. Thus X⊗Y consists of all pairs (x, y) ∈ M1

+(A)×M1
+(A)

with supp(x) ⊆ supp(y), with @supp@ denoting support. We shall not need a control space or
a response function.

A knowledge instance will be a family z = (zi)i∈A over A of real numbers, not necessarily
a probability distribution. The interpretation of zi is as the intensity with which the basic event indexed
by i is presented to Observer. For this reason, z is referred to as the intensity function. The individual
elements zi are the local intensities.

The deformation between x, y and z is given by a deformation Π, cf., Section 2.5. We assume
that Π acts locally, i.e., that there exists a real-valued function π, the local deformation, defined on
[0, 1]2 = [0, 1]× [0, 1] such that, when z = Π(x, y), then zi = π(xi, yi) for all i ∈ A. The world defined
in this way by a local deformation is denoted Ωπ or, if need be, Ωπ(A). From now on, when we talk
about a “deformation”, we have a local deformation in mind.

Regarding regularity conditions, we assume that π is finite on [0, 1]×]0, 1], continuous on
[0, 1]2 \ {(0, 0)} and continuously differentiable on ]0, 1[×]0, 1[. The deformation is weakly consistent if
∑i∈A zi = 1 whenever (x, y) ∈ X⊗Y and (zi)i∈A = Π(x, y). If you can even conclude that z = (zi)i∈A
is a probability distribution, π is strongly consistent. The deformation π is sound if π(s, s) = s for
every s ∈ [0, 1].
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For q ∈ R, the algebraic deformation πq is given on [0, 1]2 by

πq(s, t) = qs + (1− q)t . (173)

These deformations are all sound and weakly consistent and, for 0 ≤ q ≤ 1, even strongly
consistent. The corresponding worlds are denoted Ωq = Ωq(A). The notation is consistent with the
notation introduced in Section 2.5. The significance of the algebraic deformations is derived from the
following result.

Lemma 3. Assume that the alphabet A is countably infinite. Then only the algebraic deformations are
weakly consistent.

Proof. Let π be weakly consistent and put q = π(1, 0). Consider a deterministic distribution δ over
A and apply weak consistency with x = y = δ to find that π(0, 0) = 0. Thus, if x and y both have
support in a subset A0 ⊆ A, you can neglect contributions stemming from (xi, yi) with i /∈ A0 and
conclude consistency over A0, i.e., that ∑i∈A0

π(xi, yi) = 1. By weak consistency (in the extended form
just established), π(s, t) + π(1− s, 1− t) = 1 for all (s, t) ∈ [0, 1]× [0, 1], in particular, π(0, 1) = 1− q.
Consider (x0, y0) = (0, 1) and (xi, yi) = ( 1

n , 0) for i = 1, · · · , n, apply weak consistency and conclude
that π( 1

n , 0) = 1
n q. Then, for p ∈ N, consider vectors (xi, yi) of the form (0, 1), ( 1

n , 0), · · · , ( 1
n , 0), ( p

n , 0).
By weak consistency and previous findings, conclude that π(s, 0) = sq for all rational s ∈ [0, 1].
By continuity, this formula holds for all s ∈ [0, 1]. Quite analogously, π(0, t) = t(1− q) for all t ∈ [0, 1].
Finally, π = πq follows by weak consistency applied to (s, t), (1− s, 0), (0, 1− t).

In particular, if A is infinite then, automatically, a weakly consistent deformation is sound. In fact,
all concrete deformations we shall deal with will be sound.

Instead of searching only for a suitable entropy function for the world Ωπ, we find it more
rewarding to search for a suitable full information triple for this world. Let us analyze what such
a triple, say (Φ, H, D), could be. A natural demand is that Φ, H and D should all act locally. Therefore,
according to Section 3.1 what we are really searching for is a primitive information triple (φ, h, d)
over [0, 1]× [0, 1] \ {(s, u)|s > 0, u = 0}, cf., (110), such that (Φ, H, D) is obtained from this triple by
integration over A equipped with counting measure. In particular, the requirements (111)–(114) must
be satisfied. Obvious names for the sought functions φ, h and d are, respectively, local effort, local entropy
and local divergence.

Let us suggest a suitable form of local effort. It will depend on the notion of a descriptor, defined
as any continuous, strictly decreasing function on [0, 1] which is finite-valued and continuously
differentiable on ]0, 1], vanishes at t = 1 and satisfies the condition that

κ′(1) = −1 . (174)

The value κ(u) is conceived as the effort you have to allocate to any basic event in which you
have a belief expressed by u. The condition κ(1) = 0 reflects the fact that if you feel certain that a basic
event will occur, there is no reason why you should allocate any effort at all to that event. Also, it is to
be expected that events you do not have much belief in are more difficult to describe than those you
believe in with a higher degree of confidence. Therefore, we may just as well assume from the outset
that κ is decreasing. The norming requirement (174) will enable comparisons of effort, entropy and
divergence across different descriptors or even different worlds. The unit defined implicitly by (174) is
the natural information unit, the “nat”.

An important class of descriptors is the class (κq)q≥0 given on [0, 1] by

κq(s) = lnq
1
s

. (175)
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With access to a descriptor you may suggest to assign the effort κ(u) to an event with belief
instance u, but you should multiply this effort with the intensity with which the event is presented to
you. This gives the suggestion φ(s, u) = π(s, u)κ(u) for local effort. Then local divergence should be
the function d(s, u) = π(s, u)κ(u)−π(s, s)κ(s). However, this is not going to work as the fundamental
inequality (112) is bound to fail (consider (s, u) with u close to 1). Fortunately, insight gained in
Section 3.1 indicates how one may modify the suggestion in order to have a chance that the fundamental
inequality could hold, viz., by adding an overhead term. Therefore, given a descriptor, we now suggest
to define the local functions as follows:

φπ(s, u|κ) = π(s, u)κ(u) + u (176)

hπ(s|κ) = π(s, s)κ(s) + s (177)

dπ(s, u)|κ) =
(
π(s, u)κ(u) + u

)
−
(
π(s, s)κ(s) + s

)
. (178)

One may study modifications with more general overhead terms, but we shall not do so.
The important thing is to realize that something has to be done. Moreover, inspired by the fact
that for the important cases with descriptors of the form κq, adding a simple linear overhead as
suggested above works. This is stated explicitly in Corollary 7 below.

Lemma 4. Let π be a deformation and κ a descriptor. Assume that dπ(·, ·|κ) given by (178) is a genuine
primitive divergence function, i.e., that (112) (the pointwise fundamental inequality) and (114) (pointwise
properness) hold. Then

(
Φπ(·, ·|κ), Hπ(·|κ), Dπ(·, ·|κ)

)
obtained by integration of the local quantities given

in (176)–(178) over A is a proper information triple over X⊗Y.

The proof follows directly from the discussion in Section 3.1.
Note that for sound deformations, the measures of entropy constructed this way only depend on

the descriptor, not on the deformation.
Also note that the quantities defined really give gross effort and gross entropy. In particular,

minimal entropy is not 0 as usual, but 1. This may appear odd but, on the other hand, the way to these
quantities was very natural and one may ask if it is not advantageous in many situations to incorporate
an overhead. Moreover, why not use the overhead to fix the unit of effort?

We also remark that if we allow incomplete probability measures Q as belief instances, then this
change of the space X ⊗ Y will not change the conclusion above. However, sticking to probability
measures also for belief instances, we may subtract the number 1 from gross effort and from gross
entropy and obtain the more familiar net-quantities.

Corollary 7. For 0 < q ≤ ∞ the deformation πq and the descriptor κq satisfy the conditions of Lemma 4.
Accordingly, the information triple generated by integration over A is a proper information triple. Furthermore,
the effort function has affine marginals.

The obtained effort- and entropy functions are gross-quantities. The corresponding net-quantities give
the information triple (Φq, Hq, Dq) in (146) of Section 3.1. In particular, Hq is standard Tsallis entropy with q
as parameter.

The simple checking is left to the reader.
We turn to problems of another nature, viz., if, given a deformation, one can find an appropriate

descriptor such that the generated global description effort is proper.

Lemma 5. Assume that the alphabet A has at least three elements. Let π be a sound deformation and denote by
χ the function on ]0, 1[ defined by

χ(t) =
∂π

∂t
(t, t) . (179)
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Under the assumption that χ is bounded in the vicinity of t = 1, there can only exist one descriptor κ such
that the net-effort function generated by π and κ, i.e., the function Φ given by

Φ(x, y) = ∑
i∈A

π(xi, yi)κ(yi) (180)

is a proper effort function over X⊗Y. Indeed, κ must be the unique solution in ]0, 1[ to the differential equation

χ(t)κ(t) + tκ′(t) = −1 (181)

for which κ(1) = limt→1 κ(t) = 0.

Proof. Assume that κ exists with Φπ(·, ·|κ) proper. For 0 < t < 1 put

f (t) = χ(t)κ(t) + tκ′(t) .

Consider a, for the time, fixed probability vector x = (x1, x2, x3) with positive point probabilities.
Then the function F given by

F(y) = F(y1, y2, y3) =
3

∑
1

π(xi, yi)κ(yi)

on ]0, 1[×]0, 1[×]0, 1[ assumes its minimal value at the interior point y = x when restricted to probability
distributions. As standard regularity conditions are fulfilled, there exists a Lagrange multiplier λ such
that, for i = 1, 2, 3,

∂

∂yi

(
F(y)− λ

3

∑
1

yi
)
= 0

when y = x. This shows that f (x1) = f (x2) = f (x3).
Using this with (x1, x2, x3) = ( 1

2 , x, 1
2 − x) for a value of x in ]0, 1

2 [, we conclude that f is constant on
]0, 1

2 ]. Then consider a value x ∈] 1
2 , 1[ and the probability vector

(
x, 1

2 (1− x), 1
2 (1− x)

)
and conclude

from the first part of the proof that f (x) = f
( 1

2 (1− x)
)
. As 0 < 1

2 (1− x) < 1
2 , we conclude that

f (x) = f ( 1
2 ). Thus f is constant on ]0, 1[. By letting t → 1 in (181) and appealing to the technical

boundedness assumption, we conclude that the value of the constant is −1.

Note the use in the above proof of Lagrange multipliers in the study of properties that hold under
the realization of an extremum. This is quite different from the usage we have opted against where the
technique is used as a tool to verify that an extremum has been found. In the latter case, we claim that,
typically, more adequate intrinsic methods apply.

We can now formulate one of the main results:

Theorem 18. Assume that the alphabet has at least three elements.

(i) If q ≤ 0, there is no descriptor which, together with πq, generates a proper effort function.
(ii) If q > 0 there exists a unique descriptor, κq defined by (175) which, together with πq generates a proper

effort function. The generated information triple (Φq, Hq, Dq) is proper.

Proof. By Lemma 5 we see that κq given by (175) is the only descriptor which, together with πq,
could possibly generate a proper effort function. That it does so for q > 0, follows by Lemma 4.
For q ≤ 0, this is not the case as the reader can verify by considering atomic situations with x = (1− ε, ε)

and y = ( 1
2 , 1

2 ) and letting ε tend to 0.
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We may add that for the case of a black hole, q = 0, the descriptor is given by κ0(s) = 1
s − 1 and,

using | · | for “number of elements in · · · ” , the generated information triple (Φ0, H0, D0) is given by

Φ0(x, y) = | supp(y)| , (182)

H0(x) = | supp(x)| , (183)

D0(x, y) = | supp(y) \ supp(x)| (184)

for all y � x. Note that if terms of the form π(xi, yi)κ(yi) were to be interpreted by continuity,
the resulting triple would be discrete.

We have noted that the descriptor is uniquely determined from the deformation. Therefore,
in principle, only the deformation needs to be known. Examples will show that different deformations
may well determine the same descriptor. For instance, deformation defined as a geometric average
rather than an arithmetic average as in the definition of πq will lead to the same descriptor.
Thus, knowing only the descriptor, you cannot know which world you operate in, in particular,
you cannot determine divergence or description effort. But you can determine the entropy function.
This emphasizes again the general thesis, that entropy should never be considered alone.

Finally a comment on the descriptors κq. A focus on their inverses is also in order. They may be
interpreted as probability checkers: Indeed, if, in a Tsallis world with parameter q, you have access to
a nats and ask how complex an event this will allow you to describe, the appropriate answer is “you
can describe any event with a probability as low as κ−1(a)” . Thus, when q ≤ 1, however large your
resources to nats are, there are events so complex that you cannot describe them, whereas, if q > 1 you
can describe any event if you have access to K nats if only K is sufficiently large (K ≥ 1

q−1 ).

3.7. Maximum Entropy Problems of Classical Shannon Theory

Terminology and results as developed in Section 2 are evidently inspired by maximum entropy
problems of classical information theory. The classical problems concern inference of probability
distributions over some finite or countably infinite alphabet A, typically with preparations given in
terms of certain constraints, often interpreted as “moment constraints” related to random variables of
interest. Such preparations will, modulo technical conditions, be feasible in the sense as defined in
Section 2.9. Examples are numerous, from information theory proper, from statistics, from statistical
physics or elsewhere. The variety of possibilities may be grasped from the collection of examples in
Kapur’s monograph [100]. The abstract results developed in Section 2 can favorably be applied to all
such examples. This then has a unifying effect. However, for many concrete examples, it may involve
a considerable amount of effort actually to verify the requirements needed for the abstract results to
apply. This may involve the verification of Nash’s inequality (52) or the determination of the core
of models under study, cf., Theorems 5 and 6. No detailed calculations for specific examples will be
carried out here.

A very large number of researchers have worked with these problems. The related publications
of the present author comprises [26,101]. We shall focus on applications of the general theory
from Section 2.

The basic model we shall discuss is the same as in Section 3.6 based on a finite or countably infinite
alphabet A. Note that, in principle, discrete alphabets with more than enumerably many elements
could be allowed. However, that would contradict the sensible requirement (3).
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The relevant information triple is the proper information triple composed of Kerridge inaccuracy,
Shannon entropy and Kullback-Leibler divergence:

Φ(P, Q) = ∑
a∈A

P(a) ln
1

Q(a)
; (185)

H(P) = ∑
a∈A

P(a) ln
1

P(a)
; (186)

D(P, Q) = ∑
a∈A

P(a) ln
P(a)
Q(a)

. (187)

We shall also work with the action space Ŷ = K(A) introduced in Section 3.3 and as response we
take the bijection Q 7→ Q̂ from Y to Ŷ given, for a ∈ A, by

Q̂(a) = ln
1

Q(a)
. (188)

Controllability is the relation for which control κ � P means that P(a) = 0 whenever κ(a) = ∞.
The information triple to work with in the Ŷ-domain is (Φ̂, H, D̂) with entropy as above and with

Φ̂(P, κ) = ∑
a∈A

P(a)κ(a) , (189)

D̂(P, κ) = ∑
a∈A

P(a)
(
κ(a)− P̂(a)

)
. (190)

The triples (Φ, H, D) and (Φ̂, H, D̂) are genuine proper information triples with affine marginals.
Thus all parts of the abstract results developed are available and ready to apply. However, we limit the
discussion by focusing only on the role of the feasible preparations, leaving elaborations in concrete
examples to those interested.

Thinking of states P as determining the distribution of a random element ξ over A, it is often
desirable to consider preparations corresponding to the prescription of one or more mean values of ξ.
A typical preparation consists of all P ∈ X such that

∑
a∈A

P(a)λ(a) = c (191)

with c a given constant and λ = (λ(a))a∈A a given function on A. This is a strict feasible preparation if
and only if the partition function (a special Dirichlet series),

Z(β) = ∑
a∈A

exp
(
− βλ(a)

)
(192)

has a finite abscissa of convergence, i.e., converges for some finite constant β, cf., [26] (or monographs
on Dirichlet series). However, for the most important part, having concrete applications in mind, viz.,
the “if”-part, this is clear. Indeed, if the condition is fulfilled, there exist constants α0 and β0 such that
the function κ0 given for a ∈ A by

κ0(a) = α0 + β0λ(a) (193)

defines a code. Then P = Pκ0(k) for some constant k, hence it is a strict feasible preparation of genus 1.
It is a member of the preparation family P = Pκ0 . Consider, for any β with Z(β) < ∞, the code κβ

given for a ∈ A by
κβ(a) = ln Z(β) + βλ(a) . (194)

Then this code is a member of coreˆ(Pκ0) as is easily seen. In fact all members of the core are
of this form (this fact can be proved as a kind of exercise in linear algebra, but more elegant proofs
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using the structure of the problem should be possible). If we can adjust the parameter β such that the
corresponding distribution Pβ given by

Pβ(a) =
exp

(
− βλ(a)

)
Z(β)

for a ∈ A (195)

is a member of the original preparation P , this must be the maximum entropy distribution of P ,
as follows from Theorem 6, translated to the Ŷ-domain.

Schematically then: In searching for the MaxEnt distribution of a given preparation, first identify
the preparation as a feasible preparation (of genus 1 or higher), then calculate if possible the appropriate
partition function and finally adjust parameters to fit the original constraint(s). This gives you
the MaxEnt distribution searched for. If calculations are prohibitive, you may resort to numerical,
algorithmic or graphical methods instead.

As already mentioned, the literature very often solves MaxEnt-problems by the introduction
of Lagrange multipliers. As shown, this is not necessary. An intrinsic approach building on the
abstract theory of Section 2 appears preferable. For one thing, the fact that you obtain a maximum
for the entropy function (and not just a stationary point) is automatic—it is all hidden in the
fundamental inequality. For another, the quantities you work with when appealing to the abstract
theory, have natural interpretations.

3.8. Determining D-Projections

The setting is basically the same as in the previous section, especially we again consider
a preparation P given by (191). The problem we shall consider is how to update a given prior
Q0 ∈ M1

+(A). Then, the triple (Φ, H, D) given by (185) is no longer relevant but should be replaced by
the triple (U|Q0

, DQ0 , D) as defined in Section 2.8, cf., (21). This makes good sense if DQ0 is finite on P .
The update we seek is the D-projection of Q0 on P as defined in Section 2.13 in connection with (66).

We shall apply much the same strategy as in the previous section. However, we choose not to
introduce response and an action space in this setting (this can be done with controls consisting of
code improvements which are code length functions measured relative to the code κ0 associated with
Q0). Instead, we work directly in the Y-domain and seek a representation of P as a strict feasible
preparation of genus 1, now to be understood with respect to U|Q0

. Analyzing what this amounts to,
we find that if the partition function, now defined by

Z(β) = ∑
a∈A

Q0(a) exp(−βλ(a)) , (196)

converges for some β < ∞, a representation as required is indeed possible. Assuming that this is the
case we realize that for each β with Z(β) < ∞, the distribution Qβ defined by

Qβ(a) =
Q0(a) exp(−βλ(a))

Z(β)
for a ∈ A (197)

is a member of the core of P . Then it is a matter of adjusting β such that Qβ is consistent, and we have
found the sought update.

The cancellation that takes place from (20) to (21) allows an extension of the discussion of
updating from the discrete setting to a setting based on a general measurable space. For instance,
one may consider a measurable space provided with a σ-finite reference measure µ and then work with
distributions that have densities with respect to µ. As is well known, cf., also Section 3.1, the definition
of Kullback-Leibler divergence makes good sense in the more general setting. Thus updating problems
can be formulated quite generally. If the prior has density q0, the partition function one should work
with is given by Z(β) =

∫
exp(−βλ)q0dµ. Strategies for updating may be formulated much in analogy
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with the strategies of Section 3.7. Further details and consideration of concrete examples are left to the
interested reader.

4. Conclusions

The theory presented provides a general abstract framework for the treatment of a wide range of
optimization problems within geometry, statistics, statistical physics and other disciplines. Looking
back, considering the methods applied and the demonstrated wide applicability, two factors seem
to be essential, the type of modeling and affinity. Regarding the modeling, the key focus was on our
information triples involving three interrelated quantities, effort, entropy and divergence—dually, utility,
max-utility and divergence—each one being in itself of great significance and seen together playing
distinct well-defined roles.

Regarding the focus on affinity, it is true that for the basic theoretical results this is not necessary.
However, for almost every successful concrete application, affinity seems to pop up and appears both
as a necessity and as a guarantee of success. There is something fundamental about this—possibly
rooted in deep facts concerning the essential nature of observation, description and measuring.

On the theoretical side, one should note the emphasis placed on Jensen-Shannon divergence.
The game theoretical approach expressing the “man/system” or, as here, the “Observer/Nature”

interface has played a major role. It has led to minimax and maximin problems. Adding convexity, it is
an empirical fact that interesting and tractable optimization problems of this nature either concerns
a minimax or a maximin problem for which the first optimization is easy to solve. This aspect is also
present in our modeling through the linking identity and the fundamental inequality. Thus, for fixed
second argument, minimal effort in our basic models is a quantity given by assumptions made and
called entropy.

The extensive appeal to loose, sometimes speculative philosophical considerations is another
pronounced feature of the exposition. This is intended as a guide to sensible model building and may
also catalyze the consideration of meaningful applications to look into.

Other attempts to build quite general theories in this area of science include Jaynes [9], Csiszár and
Matús [67], Amari and Nagaoka [10] and then the recent work of Pavon and Ferrante [102]. In the latter
we find a focus on the same kind of issues as we have promoted, simplicity of modeling and affinity.
With simplicity also, as here, pointing to the unnecessary appeal to techniques involving Lagrange
multipliers. The base for the modeling of Pavon and Ferrante is geometry via a lemma of geometric
orthogonality. So, as “models of the world” these authors, as well as Amari and Nagaoka and their
followers take geometry, whereas we take a more “social” approach via game theory, emphasizing
man’s role in the world.

We believe that the approach presented here is technically the more elementary one.
Along the way, our approach gave rise to a few points worth emphasizing. A modeling of what

can be known (Section 2.9) appears to be a useful concept. The suggested weak notions of properness
in Section 2.11 is new whereas the material in Appendix A, which serves as a partial justification,
may well be common knowledge. The notion of deformation introduced in Section 2.5 and its role in
the discussion of Tsallis entropy in Section 3.6 has been announced before but is here given a more
full treatment, also incorporating a Bregman construction in Section 3.1. Regarding the discussion of
Tsallis entropy also note the emphasis on the descriptors κq.

Many issues are left for further discussion and consolidation of the theory. Some of the possibilities
are indicated in the text. Others involve a look at sufficiency, duality, mutual information, learning
theory and more. Much of this appears feasible. However, there is an important area where we do
not see that our approach and results provide any clue, viz., quantum information theory. Let this
challenge to the reader be the last word for now.
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Appendix A. Notions of Properness

This appendix serves as motivation for the introduction of weak notions of properness. Arguments
presented are elementary and there may well be references to previous relevant work.

Three considerations underlie the refinements of this section.
Firstly, as already noted, MaxEnt problems can often be tackled without recourse to techniques

involving differentiation. This is not a new observation, see e.g., Csiszár [63], Topsøe [26], Campenhout
and Cover [104] and the recent work by Pavon and Ferrante, [102]. In contrast to this, the many examples
contained in Kapur [100] builds excessively on differentiation techniques.

Secondly, have a look at Figure 2. Really, what is dominating is the curve h and the straight line,
w. The belief instance u is not that prominent. More so the line it determines. True, this is the tangent
at (u, h(u)), determined by differentiation but what is essential is that it dominates h, a feature ensured
by concavity. Domination by control appears as the right focus.

Thirdly, also non-concave functions can of course have maxima. Therefore, avoiding differentiation,
there may be no need for the convenience of the assumed concavity of the generator.

Motivated by these considerations we embark on the intended refinement. We shall work in
the subset I ×R of the plane R2 with I an interval. It simplifies matters if I is open and this will be
assumed until further notice. For linear functions on I we use the bracket notation as in

〈s, w〉 = α + βs; s ∈ I . (A1)

A linear function w is identified with its graph, which could be any non-vertical line. For a point
Q ∈ I ×Rwe talk about points to the left of Q (to the right of Q) as points left of (right of) the vertical
line through Q.

We shall work with some special sets, called butterfly sets. Such a set is characterized by two linear
functions w− and w+, the boundary lines, and a point Q ∈ w− ∩w+, the crossing point. This terminology
is also applied if w− and w+ coincide. The butterfly set determined by (w−, w+) and with crossing
point Q is the set B(w−, w+|Q) of points (s, t) ∈ I ×R, “squeezed in” between the boundary lines:

B(w−, w+|Q) = {(s, t)|min(〈s, w−〉, 〈s, w+〉) ≤ t ≤ max(〈s, w−〉, 〈s, w+〉)} . (A2)

In the notation for butterfly sets it is assumed that either w− = w+ or else w− is below w+ to the
left of Q and above w+ to the right of Q. If w− = w+, the butterfly set is thin. Otherwise it is fat.

We shall consider a generalized generator which is just any real-valued function h defined on I.
For our standard modeling, I will be the state space as well as the belief reservoir: X = Y = I.
Moreover, a control, here a control line, is any linear function w which dominates h, i.e., h(s) ≤ 〈s, w〉
for s ∈ I. The set of controls is denoted W (rather than Ŷ). We assume that W 6= ∅. Visibility and
controllability are the diffuse relations on X×Y, respectively X× Ŷ.

The key lemma is the following geometry-based result. We shall not write out all details of
the proof. This is standard routine. You should observe that both parts of the result are existence
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statements which do not have purely constructive proofs. The proof is based only on the most basic
elements of the infinitesimal calculus via appeal to statements about existence of suprema and infima
of sets of real numbers.

Lemma A1. (i) With assumptions as stated (I open, W 6= ∅), there exists a function h on I such that every
point on the graph of h lies on some control line and such that this property applies to no point below this graph.

(ii) Further, for every u ∈ I there exists a butterfly set Bu = B(w−u , w+
u |Qu) with Qu = (u, h(u)) as

crossing point such that the set of control lines which passes through Qu is identical with the set of control lines
contained in Bu.

Proof. Property (i) is trivial. One simply defines h by

h(s) = inf{t|∃w ∈W : 〈s, w〉 = t} (A3)

for s ∈ I. As you will realize, h is the concave envelope of h. Automatically, this function is
upper semi-continuous.

As to (ii), we shall outline one way to the proof. Let u ∈ I and have a look at Figure A1. There,
P = (u, h(u)) and Q = (u, h(u)). For every pair of points (P−, P+) on the graph of h, with P− to
the left and P+ to the right of Q, the set T, understood to be open, which lies above the butterfly set
in the figure, does not contain any point from the graph of h. Clearly, the union of all sets T which
can be constructed in this way, call it Tu, is the set above two, possibly coinciding control lines w−u
and w+

u which constitute the boundary of Tu. The set B(w−u , w+
+|Q) is the butterfly set Bu we were

looking for.

Figure A1. For the proof of Lemma A1.

With the lemma in place, we can define response as a point map from I into W. The map will
not be surjective and, depending on h, possibly not injective either. To define the map, let u ∈ Y be a
belief instance and consider the butterfly set Bu = B(w−u , w+

u |Qu). As response of u we take w+
u = w−u

if these control lines coincide. If the horizontal line through Qu is contained in Bu, we take this control
line as response. In the remaining cases we take as response that control line û among w+

u and w−u
which, numerically, has the smallest slope.

The above construction defines û ∈W uniquely. When Bu is thin, there is only one control line to
choose from, whereas when Bu is fat, we made a specific choice so as to minimize the risk. The control
lines constructed this way are called minimal-risk controls. As to the nature of the result, one may
note that it involves global rather than local considerations as would be involved in an approach
via differentiation.

The following obvious corollary is a replacement of a classical basic result on maxima of functions
based on differentiation.

Corollary A1. Let I ⊆ R be an open interval and h a real function defined on I which is dominated by a
real line.



Entropy 2017, 19, 143 64 of 70

A necessary and sufficient condition that h has a maximum in I is that for some point u ∈ I, the butterfly
set Bu contains a horizontal line, necessarily wu, and that h(u) = h(u). Assume that these conditions are
fulfilled for some point u ∈ I. Then u is a maximum point of h and a necessary and sufficient condition that u is
the unique maximum point of h in I is that w = û intersects no other point on the graph of h than the point
Qu =

(
u, h(u)

)
.

As to the various possibilities for the type of Bu—fat or thin—and for h in relation to h, we note
the following:

Lemma A2. Let u ∈ I.

(i) If Bu is fat, then h(u) = lim supv→u h(v).
(ii) If h is upper semi-continuous, in particular if h is continuous, and if h(u) > h(u), then Bu is thin.

Proof. (i) follows by noting that if w−u 6= w+
u , then no line segment connecting a point on w−u to the

left of Qu with a point on w+
u to the right of Qu can dominate the relevant part of h since then the

prolongation of the line segment would dominate h for all arguments in I, clearly contradicting the
definition of h(u).

Part (ii) is an easy consequence.

The cases depicted in Figure A2 illustrate some possibilities for the location of the possible
butterfly sets in relation to h.

Figure A2. Examples of generators and butterfly sets; control lines as given by response are shown in red.

Our construction allows us to define a pretty natural information triple associated with any
generalized generator. We simply define φ̂ and d̂ for (s, w) ∈ I ×W by

φ̂(s, w) = 〈s, w〉 , (A4)

d̂(s, w) = 〈s, w〉 − h(s) (A5)

and can then assert as follows:

Theorem A1. With the definitions (A4) and (A5), (φ̂, h, d̂) is a Q2-proper effort-based information triple over
I ×W. The triple has affine marginals φ̂w.

With the thorough preparations, this is evident.
If h = h, i.e., if h is concave, our construction has some merits over the standard Bregman

construction as smoothness is not required.
Regarding the assumption that I is open, this can be dispensed with at the cost of some comments

on degenerate control lines, lines which really only give control at one of the endpoints. This may be
formulated by allowing infinite values for the controls or one may focus on decompositions of I ×R
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into two convex sets. We leave it to the reader to work this out (and to modify the proof of Lemma A1
accordingly, working separately to the left of Q and to the right of Q).

As a trivial but illuminating example when working with a closed rather than an open interval
we take I = [0, 1] and as generator consider the identity map h on I. Then h itself is a control and we
realize that h = û for all u with 0 ≤ u < 1 whereas the constant control w1 given by 〈s, w1〉 = 1 for all
s ∈ I is the response to u = 1. You realize that with this generator, the associated information triple is
not Q2-proper, but it is Q3-proper and it also satisfies the other property demanded of what we called
standard properness, viz., that the optimal control is robust.

Among issues and further possibilities depending on the construction in this appendix we point
to a few:

Clearly, one may “change sign” and discuss utility-based systems. This involves notion of support
lines and minimal-risk supports.

Then, just as with standard Bregman constructions, one should deal with the more involved
geometric complications when functions over (convex) areas in finite dimensional Euclidean spaces
are involved.

One may replace h, first with its graph (in fact done), but further with any subset of I × R.
More generally, you may consider subsets G of a separable Hilbert space provided with a hyperplane
π and a choice of direction orthogonal to π. The hyperplane is a replacement for the abscisse-axes of
our discussion and the direction a replacement for the ordinate-axes. For such systems, height over the
hyperplane will be a replacement for function values.

It does appear quite natural to allow continuous and concave, but not necessarily smooth
generators. For instance, you may consider the generator h(s) = 1− |s| on I = [−1, 1]. In that
case, it is easy to find examples to demonstrate that this generator is not MP(3)-negative definite.
Then, according to Proposition 11, the Jensen-Shannon divergence jsd associated with this generator is
not the square of a metric. Elaborating a bit on this in a pretty natural manner, one finds that:

Proposition A1. No Jensen-Shannon divergence constructed from a generator with bends can be the square of
a metric.

Though not that surprising, this result supports the view that the attractive cases when
Jensen-Shannon divergence is in fact a squared metric—perhaps even related via embedding to
a squared Hilbert metric—requires a strong degree of smoothness for an underlying generator.

Appendix B. Protection against Misinformation

We present a possible variation of the interpretations emphasized in Section 2 of our study.
This involves a theme which has been important for the development of the notion of proper score
functions. For this appendix, X = Y is assumed.

In a sense, what we shall discuss here is what happens if Nature can communicate. Then we
speak instead about Expert. Moreover, Observer becomes Customer. Expert holds the truth, x, or rather,
x represents Experts best evaluation of what the truth is. Customer wants to know what Expert
thinks about a certain situation and asks Expert for advice—against payment, to be agreed upon.
For despicable reasons, Expert may be tempted to advice against better knowing, i.e., to give as advice
y, instead of the honest advice x. Misinformation could either be due to the difficulty Expert may
have in reaching a true expert opinion or it could be out of self-interest, with Expert taking advantage
of false information given to Customer. Or Expert may try to mislead Customer in order to hide
a business secret.

We assume that truth will be revealed to both Expert and Customer soon after Expert has given
advice to Customer and further, that a proper effort function Φ = Φ(x, y) is known to both Expert and
Customer. We shall device a payment scheme which will protect Customer against misinformation.
The idea is simple. At the time of signing a contract—before advice is given—Customer pays a flat
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sum to Expert and further, Expert and Customer agree on an insurance scheme stipulating a penalty to
be payed by Expert to Customer proportional to Φ(x∗, y) where x∗ represents what really happened
and y is the advice given. If Expert is confident that he knows what will happen, he will assume that
x∗ = x will hold and it will be in his own interest to give to Customer the honest advice y = x.

In the literature this scheme is mainly considered based on a proper score function, the same as
a proper utility function. This gives an obvious variation of the payment scheme with the score function
determining payment from Customer to Expert. The most often treated situation is probably that of
weather forecasting with Brier [42] the first and Weijs and Giesen [105] a recent contribution. However,
also situations from economy and statistics have been studied frequently. Apart from sources just cited
we refer to the sources pointed to in Section 2.6 and to McCarthy [106] as well as to Chambers [107].
As a final reference we point to Hilden [108] where applications to diagnostics is discussed.

Works cited and their references will reveal a rich literature. With access to our abstract modeling,
further meaningful applications, not necessarily tied to probabilistic modeling may emerge.

Appendix C. Cause and Effect

We present one further possible variation of the interpretations emphasized in Section 2 of our
study. We assume that Y = X and put W = X̂. Elements of X are now interpreted as causes and
response, considered as a map defined on X, as the transformation of a cause into its associated
consequence. This change moves the focus from Observer’s thoughts as discussed in Section 2.3 to a
reflection of causality in Nature. The set-up is in this way conceived as a model of cause and effect.

Previously we considered possible choices of Observer in γ- or γ̂-type games. Now it is more
pertinent to focus on consequences—elements of W—as possible observations by Observer of the effect
of the actual cause. For x ∈ X and w ∈W, Φ̂(x, w) is now be interpreted as the cost to Observer if he
has observed (or believes to have observed) the effect w when the actual cause is x.

Consider the game γ̂, say with preparation P = X. With the new interpretation in mind it appears
particularly pertinent to consider Observer’s risk associated with the various possible observations.

Concrete situations where the change of interpretation makes sense, involve information
theoretical problems of capacity.

Appendix D. Negative Definite Kernels and Squared Metrics

The result needed for the proof of Proposition 11 is a simple fact leading up to a group of rather
deep results, see e.g., Chapter 6 of Deza and Laurent [103] (note that there, negative definiteness is
referred to as being of negative type). For the convenience of the reader we present a simple direct
proof of the needed more primitive result:

Proposition A2. Let X be an abstract set and D : X × X 7→ R a “kernel” which is sound (D(x, x) = 0),
proper (D(x, y) > 0 if y 6= x) and symmetric (D(x, y) = D(y, x)). Then D is a squared metric if and only if D
is negative definite over three-element sets, i.e., if and only if, for any scalers c1, c2, c3 with c1 + c2 + c3 = 0 and
any set x1, x2, x3, of elements in X, the sum S = ∑i,j cicj D(xi, xj) is non-positive.

Proof. “only if”: Assume that D = d2 with d a metric on X. With (c1, c2, c3) = (−1, t, 1− t) and α =

d(x1, x2), β = d(x2, x3) and γ = d(x3, x1), one finds that S = −2
(
β2t2 +(α2− β2−γ2)t+γ2). The second

order polynomium in the parenthesis has the discriminant (α2− β2− γ2)2− 4β2γ2 which is non-positive
as |α2− β2− γ2| ≤ 2βγ (consider separately the cases α2− β2− γ2 ≥ 0 and α2− β2− γ2 < 0). Thus S is
non-positive.

“if”: With x1, x2, x3 given, put α =
√

D(x1, x2), β =
√

D(x2, x3) and γ =
√

D(x3, x1). As the
sum S is non-positive with scalers of the form −1, t, 1− t we find from previous calculations that
|α2− β2− γ2| ≤ 2βγ from which the desired triangle inequality α ≤ β + γ follows.
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