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Abstract: The aim of this study was to compare 11C-methionine and 11C-donepezil  positron emission tomography 
(PET) with 111In-labeled leukocyte and 99mTc-DPD (Tc-99m 3,3-diphosphono-1,2-propanedicarboxylic acid) single-
photon emission computed tomography (SPECT), and 18F-fluorodeoxyglucose (18F-FDG) PET to improve detection of 
osteomyelitis. The tracers’ diagnostic utility where tested in a juvenile porcine hematogenously induced osteomy-
elitis model comparable to osteomyelitis in children. Five 8-9 weeks old female domestic pigs were scanned seven 
days after intra-arterial inoculation in the right femoral artery with a porcine strain of Staphylococcus aureus. The 
sequential scan protocol included Computed Tomography, 11C-methionine and 11C-donepezil PET, 99mTc-DPD and 
111In-labelled leukocytes scintigraphy, and 18F-FDG PET. This was followed by necropsy of the pigs and gross pathol-
ogy, histopathology, and microbial examination. The pigs developed a total of 24 osteomyelitic lesions, 4 lesions 
characterized as contiguous abscesses and pulmonary abscesses (in two pigs). By comparing the 24 osteomyelitic 
lesions, 18F-FDG accumulated in 100%, 111In-leukocytes in 79%, 11C-methionine in 79%, 11C-donepezil in 58%, and 
99mTc-DPD in none. Overall, 18F-FDG PET was superior to 111In-leukocyte SPECT and 11C-methionine in marking infec-
tious lesions. 

Keywords: 11C-methionine, 11C-donepezil, 111In-labelled leukocytes, 99mTc-DPD, 18F-FDG, Staphylococcus aureus, 
osteomyelitis, porcine, swine, pig, PET/CT, scintigraphy, SPECT/CT, CT

Introduction

Bone infections in children result primarily  
from hematogenous seeding of bacteria in  
long bones in the lower extremities [1], and 
Staphylococcus aureus (S. aureus) is by far the 
most frequent contributing agent. Juvenile 
hematogenous osteomyelitis (HO) has an inci-
dence of 2-13/100,000 in high-income coun-
tries [2-4] but is more frequent in low-income 
countries affecting approximately 1.5% of all 
children [5-10]. It is particularly common be- 
tween 2-12 years of age and is more common 
in boys (Boy:Girl of 3:1) [11]. Approximately 
50% of cases occur in preschool children. 

Younger children primarily experience acute HO 
due to the rich vascular supply in their growing 
bones. Circulating microorganisms tend to start 
the infection in the metaphyseal ends of the 
long bones due to seeding of septic emboli 
aided by the slow circulation in the capillary 
loops in the metaphyseal growth zone. The 
presence of vascular connections between the 
metaphysis and the epiphysis, the transphyseal 
blood vessels, makes infants particularly sus-
ceptible to epiphyseal spread and arthritis of 
the adjacent joint. HO is always a serious dis-
ease because of a tendency to become chronic 
or recurrent. Early diagnosis and initiation of 
therapy is essential to prevent disease progre- 
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ssion and to reduce potentially serious compli-
cations. Conventional radiography on hospital 
admission cannot rule out acute osteomyelitis. 
Osteomyelitic foci must extend at least 1 cm 
and lead to a 30-50% reduction of bone min-
eral content to produce noticeable radiographic 
changes [12]. Early findings may be subtle, and 
changes may not be obvious within the first 5-7 
days in children and 10-14 days in adults. 
Magnetic resonance imaging (MRI), bone scin-
tigraphy, and computed tomography (CT) are 
central imaging modalities for diagnosing acute 
osteomyelitis in children [13], the latter two, 
however, adding substantially to the radiation 
exposure of the child. MRI is often considered 
the best imaging method but is not always 
available and requires anesthesia in young  
children. Bone scintigraphy demonstrates os- 
teoblastic activity and is considered highly  
sensitive but not particularly specific. 18F-fluor- 
deoxyglucose (FDG) positron emission tomog-
raphy (PET) may have the highest diagnostic 
accuracy for confirming or excluding chronic 
osteomyelitis in comparison with bone scintig-
raphy, MRI, and leukocyte scintigraphy. How- 
ever, most studies have addressed 18F-FDG 
PET for use in the axial skeleton [14, 15] and 
not in the appendicular skeleton. Highly sensi-
tive inflammation and infection specific tracers 
especially for PET imaging are much needed 
and the focus of several research projects. 
When using imaging modalities in children,  
the balance between radiation exposure and 
faster diagnostics could favor the latter, de- 
pending on the individual case.

In search for superior inflammation/infection 
tracers, we have previously compared 111In-leu- 
kocytes, 18F-FDG and 11C-methionine in a por-
cine model of S. aureus osteomyelitis 7 days 
after inoculation [16]. The study included 5 
osteomyelitis lesions. Based on this rather lim-
ited number of lesions, we concluded that 18F-
FDG was superior to 111In-leukocytes to identify 
bone lesions; however, the labeled leukocyte 
SPECT was performed as early scans only 6 h 
after injection. 11C-methionine was the least 
successful among the three tracers to identify 
osteomyelitis, but did accumulate in soft tissue 
lesions. By increasing the injection to scan time 
interval to the more traditional 24 h we aim to 
demonstrate that this protocol is comparable 
to the 6 h labeled leukocyte protocol, but infe-
rior to 18F-FDG PET. Furthermore, by increasing 
the activity of 11C-methionine, we aim to dem-
onstrate that this tracer can be used as an 

alternative to 18F-FDG in early osteomyelitis.  
As a consequence of the so called “choliner- 
gic anti-inflammatory pathway” mediated by 
acetylcholine, acetylcholine esterase activity 
should be upregulated in inflammatory tissue 
[17]. Thus, we hypothesized that the C-11-
labeled acetylcholine esterase inhibitor done-
pezil might serve as a marker of osteomyelitis. 
Finally, we aimed to reveal the utility of bone 
scintigraphy in juvenile pigs with osteomyelitis.

Materials and methods

Pigs and the S. aureus model

Five pigs (A-E), all clinically healthy, specific 
pathogen-free Danish landrace-Yorkshire cro- 
ss-breed female pigs aged 8-9 weeks, were 
purchased from a local commercial pig far- 
mer. After one week of acclimatization the  
pigs were, under anesthesia, inoculated with  
a suspension of a porcine strain of S. aureus 
(S54F9) (105 colony forming units per kg in  
1.0 to 1.5 mL) into the femoral artery of  
the right hind limb, to induce osteomyelitis, as 
described elsewhere [16, 18-20]. After onset  
of clinical signs e.g. limping of the right hind 
limb, which occurred in all pigs, the pigs were 
once supplied with a single intramuscular (IM) 
procaine benzylpenicillin 10,000 IE/kg (Peno- 
vet, Boehringer Ingelheim, Copenhagen, Den- 
mark) injection. Buprenorphine (45 µg/kg Tem- 
gesic (Reckitt Benckiser, Berkshire, England)) 
were given three times daily from time of inocu-
lation until euthanasia [21]. One week after 
inoculation the pigs had obtained a body wei- 
ght of 21-23.5 kg (Table 1). The pigs were  
then scanned and finally euthanized with an 
overdose of pentobarbitale (100 mg/kg IV).

We have previously reported that some pigs  
in this osteomyelitis model will develop hema-
togenous dissemination of S. aureus leading  
to e.g. embolic pneumonia [16, 19]. In order  
to reduce the frequency of these additional 
lesions we used animals aged 8-9 weeks  
and administered procain benzylpenicillin in- 
tramuscularly as described by Alstrup et al. 
[20]; these measures also aimed to reduce  
suffering of the pigs. On signs of anorexia  
for more than 24 hours, shallow respiration, or 
fever decision of euthanasia was taken by  
a veterinarian. The study was approved by  
the Danish Animal Experimentation Board  
(no. 2012-15-2934-000123). All facilities were 
approved by the Danish Occupational Health 
Surveillance.



11C-methionine and 11C-donepezil PET for diagnostic imaging in porcine osteomyelitis model

288 Am J Nucl Med Mol Imaging 2016;6(6):286-300

Table 1. Body weight of pigs, sequence of tracer injection, tracer activity, and time points of diagnos-
tic scans

Pigs Tracer  
sequence

Time points,  
injection

Time points,  
diagnostic scan

Injected activity (MBq) 
and labeling percent

A, body weight 22 kg
11C-methionine 10:18 11:21 516
11C-donepezil 12:04 13:09 491
99mTc-DPD 14:08 16:20 180-200
111In-leukocytes 17:00 previous day 16:35 20.8; 69.7%a

18F-FDG 23:40 00:46 following day 415
B, body weight 23 kg

11C-methionine 10:05 11:11 537
11C-donepezil 12:04 13:08 472
99mTc-DPD 13:45 15:45 180-200
111In-leukocytes 16:25 previous day 16:28 15.7; 57.7%a

18F-FDG 21:07 22:14 398
C, body weight 21 kg

11C-methionine 10:52 12:00 363
11C-donepezil 12:55 14:17 525
99mTc-DPDb 14:48 16:55 180-200
111In-leukocytesb 16:26 previous day 17:04 24.4; 74.6%a

18F-FDGb NT NT NT
D, body weight 23 kg

11C-methionine 10:40 11:46 530
11C-donepezil 12:46 13:50 486
99mTc-DPD 14:20 17:00 198
111In-leukocytes 17:05 previous day 17:15 19.3; 62.5%a

18F-FDG 23:46 00:52 following day 393
E, body weight 23.5 kg

11C-methionine 11:19 12:27 551
11C-donepezil 13:16 14:20 520
99mTc-DPD 14:50 17:54 197
111In-leukocytes 17:00 previous day 18:11 18.8; 67.0%a

18F-FDG 00:21 following day 01:26 following day 497
a: Labeling efficacy. b: Pig died 15:20; thus 99mTc-DPD and 111In-leukocyte SPECT were performed on a dead pig and 18F-FDG 
PET was not performed.

Blood glucose and serum C-reactive protein 

Blood glucose was measured using a Radio-
meter ABL (Radiometer, Brønshøj, Denmark) or 
a fast-test system for diabetic patients. Serum 
C-reactive protein (CRP) measurements were 
performed according to Heegaard et al. [22].

Preparation of tracers

11C and 18F were produced at the PET Centre 
Aarhus University Hospital using either a 
PETtrace 800 series cyclotron (GE Healthcare, 
Uppsala, Sweden) or a Cyclone 18/18 cyclotron 
(IBA, Louvain La Neuve, Belgium).

11C-methionine and 11C donepezil were synthe-
sized as described elsewhere [23, 24]. Briefly, 
11C-methionine was synthesized by [11C] S-me- 
thylation of L-homocysteine thiolactone with 
methyl iodide [25] followed by preparative HP- 
LC using a GE Healthcare Tracerlab FXC PRO 
synthesizer. L-homocysteine thiolactone was 
supplied by Sigma (Sigma-Aldrich Denmark, 
Brøndby, Denmark). Other chemicals including 
iodine or acetone were supplied by either 
Sigma-Aldrich (Sigma-Aldrich A/S, Brøndby, 
Denmark) or Aarhus University Hospital Phar- 
macy (Aarhus, Denmark). The radiochemical 
purity exceeded 95% and the specific radioac-
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tivity generally was higher than 37 GBq/ 
μmol at end of production. 363-551 MBq of 
11C-methionine was injected and PET/CT was 
performed 63-68 min later (Table 1).

In brief, 11C-donepezil synthesis started with 
the conversion of cyclotron-derived 11C-carbon 
to 11C-methyliodide, which was trapped in 
dimethyl sulphoxide (300 mL) containing 1 mL 
of 2 M NaOH and 5-O-desmethyl donepezil  
(0.5 mg). The mixture was heated at 80°C for  
5 min; purification of 11C-donepezil was per-
formed by high-performance liquid chroma- 
tography. 5-O-desmethyl donepezil was sup-
plied by Toronto Research Chemicals (Toronto, 
Canada) and all other chemicals were supplied 
by either Sigma-Aldrich A/S or Aarhus Univer- 
sity Hospital Pharmacy (Aarhus, Denmark). The 
chemical purity exceeded 99.9%. Specific ra- 
dioactivity generally exceeded 40 GBq/μmol at 
time of injection. 472-525 MBq 11C-donepezil 
was injected and PET/CT was performed after 
64-82 min (Table 1). 

111In-labeled leukocytes may not be recom-
mended in children due to the effective dose 
equivalent being about three times as high  
in children (5 years old) as in adults [26], but 
are occasionally used in order to perform the 
dual isotope technique using different energy 
windows to detect 99mTc and 111In simultane-
ously. We chose 111In for this reason also to 
carry out both bone and leukocyte scintigra- 
phy within a tight time schedule. 111In-labeled 
leukocytes were prepared according to the 
instructions given by the producer. The 111In 
oxine was obtained from Mallinckrodt, Phar- 
maceutical, Copenhagen, Denmark. The 111In- 
labelling of leukocytes included isolation of the 
leukocyte fraction from autologous full blood 
using sedimentation and centrifugation [27]. 
Labeling of the leukocyte preparations and 
reinjection were performed on day 6 post inoc-
ulation (PI), i.e. one day in advance of the SPECT 
and PET scans (day 7 PI). Injected activity of 
111In-labeled leukocytes was 15.7-24.4 MBq 
and imaging was performed about 23 h-25  
h after injection (Table 1). Scintigrams were 
complemented by regional SPECT/CT of pelvis 
and hind limbs.

99mTc-DPD was prepared according to the in- 
structions given by the manufacturer (Mallin- 
krodt Pharmaceuticals). The bone scintigra-
phies were performed 120-160 min after in- 
travenous injection of 180 to 200 MBq 99mTc-

labeled methylene diphosphonate thus using  
a medium energy collimator. Normal activity  
for children is 9.3 MBq per kg (Table 1).

18F-FDG was produced by a standard proce- 
dure applying a GE Healthcare MX Tracerlab 
synthesizer, Mx cassettes supplied by Rotem 
Industries (Arava, Israel) and chemical kits  
supplied by ABX GmbH (Radeberg, Germany). 
The radio chemical purity was higher than 99%. 
Normal recommended activity in children is 
3.7-5.2 MBq per kg [15]. Pigs were given 17.1-
21.1 MBq/kg, and scanning performed 64-67 
min after injection (Table 1).

PET, CT, scintigraphy, and SPECT

All examinations at the PET Center Aarhus 
University Hospital were performed with an 
integrated PET/Computed tomography (CT)  
system (Siemens Biograph True point 64 PET/
CT, Siemens, Erlangen, Germany), one bed po- 
sition spanning 21 cm. The pigs were anaesthe-
tized with propofol, intubated (for mechanical 
ventilation) and placed in dorsal recumbence 
as described by Alstrup and Winterdahl [28]. 
Initially a scout view was obtained to secure 
body coverage from snout to tail. A CT scan  
for attenuation correction of PET data was ob- 
tained first. PET images were reconstructed 
using the iterative TrueX algorithm (Siemens) 
and CT and PET data were co-registered for 
image fusion by the system. 

At the Nuclear Medicine Department, Aalborg 
University Hospital pigs were placed in a dorsal 
recumbent position and PET/CT scanned apply-
ing an integrated system (GE VCT Discovery 
True 64 PET/CT 2006, GE Healthcare, USA), 
one bed position spanning 15 cm. PET images 
were reconstructed using an iterative algori- 
thm (ViewPoint algorithm (GE Healthcare)) and 
attenuation correction based on low-dose CT.

Planar gamma imaging supplied with single 
photon emission computed tomography (SPE- 
CT)/CT was performed in Aalborg on the pel- 
vic limbs and region included in a single bed 
position using a Symbia T16 SPECT/CT (Sie- 
mens Medical Solutions, Hoffman Estates, Illi- 
nois, USA). The residual activity from PET iso-
topes was recognized as a source of back-
ground radiation on the SPECT scanner, and  
we therefore applied the medium-energy colli-
mators as suggested in [29]. Whole-body pla-
nar images were acquired on a dual-headed 
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gamma camera with simultaneous anterior and 
posterior whole-body acquisition. 

All PET scans were first performed as dynamic 
PET of the pelvic and hind limb region follow- 
ed by a later static whole body scan of 5 min 
(PET Centre Aarhus) and 6 or 12 min (Dept.  
of Nuclear Medicine Aalborg) duration per bed 
position. 

Tracers were injected into a surgical placed 
catheter in the jugular vein. The tracers applied, 
their activity, and their sequence in the individ-
ual pigs (pigs A-E) are presented in Table 1. The 
minimum time span from the first injection to 
last scan was 6 h 12 min (pig C that died); the 
maximum time span was 14 h 56 min (pig A).

Arterial blood samples were collected from a 
surgically placed catheter in a carotid artery 
and tested for intact PET tracer content in  
order to determine input function and to allow 
kinetic modeling. However, the results of the 
dynamic PET scans, 15O-water scan, and kine- 
tic modeling will be reported elsewhere, as  
will the results of the 68Ga-Siglec-9 scan. 

Reading the scans

PET with 11C-Methionine, 11C-donepezil, and 18F- 
FDG, as well as scintigraphy and SPECT with 
99mTc-DPD and 111In-leukocytes and CT were 
read individually. PET and scintigraphy were 
also read as fused images with CT. All scans 
were evaluated by an experienced specialist  
in nuclear medicine and CT.

Gross pathology, histopathology, and microbi-
ology

Following euthanasia, the carcass was kept  
at 4°C for 8 hrs, transported for another 4 hrs  
at room temperature, and necropsied as de- 
scribed earlier [30]. During necropsy, prede- 
fined biopsies or swabs for microbial cultiva- 
tion were obtained from the bone marrow, 
lungs, brain, liver, spleen, and kidney. Prede- 
fined tissues and organs were sampled for  
histopathology, including bone samples from 
the right pelvic limb and the lungs. Identification 
of gross lesions at necropsy resulted in addi-
tional sampling for histopathology and micro- 
biology. On average 13 specimens were ob- 
tained for culture per autopsy. The full set of 
results will be presented elsewhere. Here we 
report macroscopic and CT findings, histopa-
thology including immunohistochemistry for S. 

aureus, and microbiology findings sufficient to 
secure the final diagnosis.

Histopathology (hematoxylin and eosin stain) 
and immunohistochemistry for S. aureus was 
performed as previously described [19]. For 
microbiology, biopsy material and swabs were 
inoculated on 5% horse blood agar (SSI Diag- 
nostica, Hillerød, Denmark) and inoculated at 
35°C in ambient atmosphere for 24 hours. S. 
aureus was confirmed by Gram stain and a  
positive commercial clumping factor test. A full 
antibiogram was performed to distinguish the 
pan-susceptible challenge strain from methi- 
cillin-resistant S. aureus (clonal complex 398) 
which is prevalent in Danish pig farms.

Results

Tracer activity, injection time, and scan time 
concerning pig A-E are summarized in Table 1. 
Labeling efficacies of leukocytes were 57.7-
74.6%, which is about the same as expected in 
humans [27, 31].

Pig clinical presentation and lesions  

All five pigs (A-E) were without clinical signs of 
disease prior to inoculation. Serum C-reactive 
protein (CRP) content was 2-7 mg/L, normal 
ranges (0-15 mg/L) in pig A-D. The CRP in pig E 
was 109 mg/L prior to inoculation, but no 
cause was found for this elevation. The pig had 
prior to inoculation a normal leukocyte count, 
normal neutrophile count, no clinical signs of 
disease, no tail or ear bite lesions, and no skin 
wounds in other locations; and a normal pulse 
rate and oxygen-saturation. At necropsy, no 
lesions besides those associated with inocula-
tion with the well characterized S. aureus strain 
were observed. We have retrospectively con-
tacted the laboratory where this CRP was ana-
lyzed, and we have been informed that the 
serum sample could have been desiccated at 
the time of analysis and the result thus not reli-
able. All pigs developed clinical signs of infec-
tion after inoculation. CRP increased in all pigs, 
also in the pig E to reach a level ranging from 
23 to 218 mg/L (pig E 155 mg/L). On day 7 the 
pigs had body temperature peaks of 37.2-
41.7°C. Pig C that died had a normal core tem-
perature and the lowest heart rate of the 5 
pigs. Highest heart rates during the examina-
tion period ranged from 88 to 136 beats per 
min. The oxygen saturation was mostly between 
99 and 100%.
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Table 2 displays the S. aureus lesions diag-
nosed by gross pathology, histopathology, and/
or CT and/or microbial cultivation for each of 

the pigs. Evaluation of hematoxylin and eosin 
stained sections of bone lesions from pig A and 
E identified subacute, suppurative, and necro-

Table 2. Lesions defined by gross pathology, histopathology and/or CT in 5 juvenile pigs with he-
matogenous S. aureus osteomyelitis induced by right femoral artery inoculation. S. aureus culture 
results after necropsy is summarized in the lower row
Pig lesion A B C D E Total
OsteomyelitisA 3 5 6 4 6 24

Sequestration 3 5 4 4 6 22

Osteolysis adjacent cortical bone 1 3 4 3 6 17

Contiguous periosseous abscess 0 0 1 1 2 4

Arthritis 0 0 0 0 1 1

Hematoma/abscess at inoculation site 0 1 0 0 1 2

Lymph node enlargement 2 1 2 1 2 8

S. aureus culture confirmed after necropsy NTB Femur 
biopsy

Tibia biopsy and  
periosseous abscess

Femur biopsy and  
periosseus abscess hock

Periosseus  
abscess 4th digit

A: Location of the lesions in right hind limb is presented in Figure 1. B: NT: not tested. Immunohistochemical staining for S. aureus was performed on femur instead (see 
Figure 1).

Figure 1. Histopathology of osteomyelitis in pig A (pictures A-C) and pig E (picture D). Pig A: (A) shows the center of a 
bone lesion with necrotic trabecular bone surrounded by necrotic neutrophils (hematoxylin and eosin stain); at the 
right hand side of the figure is a colony of bacteria (blue) which in (B) are identified as S. aureus (brown) (immunohis-
tochemistry); (C) shows the periphery of the lesion, disclosing blood vessels packed with erythrocytes (1), necrotic 
bone (2), fibroplasia (3), new bone formation (4) and osteoclasts (5) (hematoxylin and eosin). Pig E: (D) presents a 
similar lesion to that in in pig A, i.e. a subacute, suppurative, and necrotizing osteomyelitis, here bordering the cortex 
of the bone (left hand side) (hematocylin and eosin); insert is a close up of the bacteria seen in the necrotic center. 
Bar (A and B) = 25 μm, (C) = 50 μm, and (D) = 100 μm.
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tizing osteomyelitis with extensive osteomyeli-
tis (Figure 1). No microbial cultivation was per-
formed in pig A. Instead, positive identification 
of S. aureus was performed in one of the 
lesions by immunohistochemistry (Figure 1B). 
A total number of 24 osteomyelitic lesions were 
found close to the metaphyses in long bones 7 
days after inoculation with S. aureus. Two pigs 
had embolic seeding in the lungs. Data are not 
shown.

Figure 2 shows the anatomical localization of 
the osteomyelitic lesions 7 days after inocula-
tion with S. aureus. Typical locations after injec-
tion into the right femoral artery were distal 
femur and proximal and distal tibia covering 
61% of lesions in hind limb. Locations were 
more variable in the smaller and more periph-
eral bones. In one of the pigs, we also saw a 
lesion in the right humerus (not shown in the 
figure).

Performance of the tracers 11C-methionine, 
11C-donepezil, 111In-leukocytes, 99mTc-DPD , and 
18F-FDG

11C-methionine lesion to background activity 
was improved in this study using higher activity 

DPD scintigraphy is shown in Figure 4E and 
111In-leukocyte scintigraphy is shown in Figure 
4F. The corresponding CT is shown in Figure 
4D. Finally, 18F-FDG PET is shown in Figure 4H 
with the corresponding CT shown in Figure 4G. 
The SUV color-scale is the same in all PET-
pictures, showing that 18F-FDG (Figure 4H) and 
11C-methionine (Figure 4B) had higher accumu-
lation of activity than 11C-donepezil (Figure 4C).

11C-methionine accumulated in all enlarged 
probably reactive regional lymph nodes, i.e. 
8/8, whereas 11C-donepezil accumulated in 
6/8, 18F-FDG accumulated in 3/6 detected, and 
111In-labled leukocytes accumulated in 3/8. All 
tracers accumulated in all the contiguous peri-
osseous and inoculation related abscesses. 

111In-leukocyte distribution in anterior and pos-
terior projections 24 h after inoculation in an 
adult human without demonstrable infection is 
compared to the distribution of 111In-leukocytes 
in ventral and dorsal projection in a juvenile pig 
also without infection (Figure 5). Activity was 
seen in lungs, spleen and liver of the pig. The 
area without activity in the upper abdomen rep-
resents a full stomach. There is only a very 
short transient hold-up in normal lungs in 

Figure 2. 3D skeleton generated from CT-scan of a healthy juvenile pig. Pelvis 
and hind limbs are shown. Numbers of osteomyelitic lesions are shown in 
individual bones and femur, tibia, tarsal bones, metatarsus III, and middle 
phalanx of digit IV are indicated.

(Figures 3, 4B) compared to 
our previous study [19] and  
so was the ability to detect 
osteomyelitic lesions. Methio- 
nine seems to accumulate  
in the profound part of the 
lesions. 

Table 3 summarizes the per-
formance of the different tra- 
cers. 18F-FDG detected 18/ 
18 osteomyelitic foci (100%), 
11C-methionine 19/24 (79%), 
111In-leukocytes 19/24 (79%), 
11C-donepezil 14/24 (58%), 
and 99mTc-DPD 0/24 (0%). 

A representative example of 
accumulation and performan- 
ce of the different tracers  
in an osteomyelitic lesion of 
medial distal femur condyle  
is presented in Figure 4. 11C- 
methionine PET is shown in 
Figure 4B and 11C-donepezil 
PET is shown in Figure 4C. 
The corresponding CT scan  
is shown in Figure 4A. 99mTc-
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humans [27]. In juvenile pigs the lungs, howev-
er, serve as a retriculoendothelial organ hous-
ing many intravascular macrophages, and the 
pig had scintigraphy performed 6 h after inocu-
lation of 111In-leukocytes [19].

Distribution of 99mTc-DPD in a juvenile pig was 
comparable to distribution in a seven years old 
child (Figure 6). Note the accumulation in 
growth zones in both species, and absence of 
accumulation in lesions in the pig (Figure 6, 
and Figure 4E). There were no photopenic 
areas on bone scintigraphy of any of the five 
examined pigs (A-E).

Discussion

The diagnosis of an inflammatory/infective  
process often relies on the visualization of  
anatomical changes of the affected organs. 
This may be highly dependent on the nature  
of the ongoing pathological process. Imaging 

techniques combining anatomical with func-
tional data are helpful in order to describe and 
characterize site, extent and activity of the dis-
ease as it takes place.

Conventional radiology and CT are able to eval-
uate anatomical structural changes as a conse-
quence of inflammation. The modalities show 
poor accuracy for the detection of early infec-
tion, when anatomical structures have not yet 
been affected or are only slightly affected. The 
accuracy may also be poor in immune incompe-
tent patients whose inflammatory and repair 
mechanisms have faded. Dose reduction in 
pediatric imaging has been an issue for almost 
two decades due to the increased use of CT 
and the relative high effective radiation dose 
per examination. This is another reason for 
searching for and evaluating new tracers with 
the aim of understanding what they detect. 

The different lesions seen in the pigs corre-
spond to the model-associated lesions that 
were previously recorded [16, 19]. Osteomyelitis 
may affect any bone, with a predilection for the 
tubular bones of the arms and legs [13]. We 
found that 61% of the lesions in the hind limb 
were located in femoral and tibial bones (Figure 
2) which also are common favored locations in 
children [13].  

We have no other explanation for the elevated 
CRP prior to inoculation of S. aureus in pig E 
than a possible not reliable serum sample as 
stated by the laboratory. We did not record any 
clinical signs of infections prior to inoculation 
with S. aureus, and all recorded lesions were as 
stated above, associated with the inoculated 
staphylococci. 

By comparing the performance of the different 
tracers (Table 3 and Figure 4), 18F-FDG per-
formed best for detecting osteomyelitic lesions 
(Figure 4H), followed by 111In-leukocytes (Figure 
4F), 11C-methionine (Figure 4B), and then 
11C-donepezil (Figure 4C). 99mTc-DPD did not 
accumulate in any osteomyelitic lesions at all 
(Figure 4E).  

99mTc-DPD, an indicator of osteoblast activity 
could not visualize osteomyelitis in juvenile  
pigs (Figures 4E, 6B, and Table 3). Normally, 
99mTc-DPD will accumulate within the first week 
in bone lesions as seen on bone scintigraphy 
[32]. There have been divergent results in chil-

Figure 3. MIP (Maximum Intensity Projections)s of 
two juvenile pigs ventral views showing bio distri-
butions of 11C-methionine and back ground activity 
on PETs. A: High 11C-methionine activity injected. B: 
Low 11C-methionine activity injected [19].
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dren. In the study by Riise et al. [3], bone scin-
tigraphy had a positive predictive value of 39% 
and a negative predictive value of 75%. Another 
study has found a low sensitivity in very young 
children [31] but Aigner et al. have shown high 
sensitivity in very young children [33]. The lack 

high (Figure 6B). 11C-methionine accumulation 
was however, distinguishable in osteomylitic 
lesions close to or involving the growth zones.

The increased vascular permeability in inflam-
matory sites allows the specific migration of 

Figure 4. Osteomyelitic lesion in a medial distal femur condyle of one pig 
examined with CT, PET, and scintigraphies. A: CT scan and corresponding B: 
11C-Methionine PET/CT, and C: 11C-Donepezil PET/CT. D: CT scan and corre-
sponding E: 99mTc-DPD bone scintigraphy and F: 111In-leukocyte scintigraphy, 
G: CT scan and corresponding H: 18F-FDG-PET/CT. 

of accumulation cannot be 
explained solely by species 
difference and Johansen et al. 
[34] have demonstrated that 
this model using juvenile pigs 
is very suitable, since it re- 
flects the pathogenesis and 
pathology in children. An ex- 
planation for missing accumu-
lation may be lack of active 
bone forming osteoblasts or 
at least a very sparse number 
in the lesions due to a shift 
towards more osteolytic activ-
ity caused by an aggressive 
infection/inflammation as evi-
denced by presence of sequ- 
estration in 22/24 lesions. 
Johansen et al. [35] demon-
strated a drop in serum al- 
kaline phosphatase content 
in this porcine model, and 
thus decreased bone-forma-
tion, and explained this to be 
an effect of osteoblasts be- 
ing occupied with osteoclast 
activation. Histology of repre-
sentative bone lesions is pre-
sented in Figure 1 showing 
areas with high numbers  
of osteoclasts (Figure 1C); 
however a quantitative study 
would be needed to disclose 
the proportion of osteoblast 
to osteoclast. Pronounced ly- 
sis was evidenced in some 
lesions by lysis of the cortex 
at its thinnest points and 
extension of the infection into 
the periosteum (periostitis). 
Also the age of the pigs may 
influence the lack of 99mTc-
DPD accumulation in lesions 
because of the tendency of 
bacteria to seed in the grow- 
th zones of juveniles, in the 
same areas where physiologi-
cal accumulation normally is 
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radiolabeled leukocytes into inflammatory foci 
through the cells sticking to the activated endo-
thelium [36]. After a passive diffusion into the 
cells, 111In-oxine dissociates and binds irrevers-
ibly to intracellular and nuclear components, 
without any release with time [37]. 111In-labelled 
leukocytes lead to a high radiation dose for 
cells and for patients [38]. Granulocytes are 
not damaged by labeling, whereas lymphocytes 
are killed and rapidly cleared from the blood 
[39]. Leukocyte scintigraphy may be used in 
patients with vascular or orthopedic prosthe-
ses when infection is suspected [40, 41] and 
for the detection of bone infections [42]. The  
24 h leukocyte scintigraphy did not perform 
better than the shorter 6 h scheduled scintigra-
phy we presented earlier [16], detectability was 
79% (19/24) compared to 80% (4/5). Label- 
ing efficiency is about 90% in human adult leu-
kocytes and viability is 97% [43]. In juvenile 
pigs labeling efficiency was lower (58-75%). 
111In-oxine a lipophilic molecule enters cells by 
passive diffusion indicating less viable juvenile 
pig leukocytes. 111In has a toxic effect on human 
adult leukocytes and may have affected juve-

nile pig leukocytes even more. This may occur 
in juvenile human leukocytes as well. The use 
of 111In has some disadvantages: it causes  
a relatively high radiation burden to patients, 
its gamma radiation is sub-optimal for in vivo 
imaging, and it is not always easily available 
and is expensive. 99mTc is in some ways a more 
attractive alternative due to its shorter half- 
life, availability and lower cost. 111In is not rec-
ommended in children but was chosen here  
for logistic reasons. 99mTc-labelled leukocytes 
may be applied in children instead due to a 
more favorable radiation dose. Nevertheless, 
because many children referred for white cell 
scanning have had fever for several days to 
weeks, and have been extensively examined by 
other imaging techniques In-111 labeled cells 
may still have a role as in chronic sepsis in gen-
eral [44]. At least dosage should be decreased 
in pediatric patients [45]. Labeled leukocytes 
also have some other disadvantages: labeling 
is time-consuming, handling vital cells requires 
skilled personal, and technicians are exposed 
to activity during preparation procedures. 

Table 3. Performance of different tracers in selected lesions (indicated by number) in the pelvic and 
right hind limb regions in 5 juvenile pigs with hematogenous Staphylococcus aureus osteomyelitis 
induced by right femoral artery inoculation

Tracers lesion Total number 11C-methionine 11C-donepecil 99mTc-DPD 111In-leukocytes 18F-FDG
Pig A Osteomyelitis 3 2 1 0 1 3

Contiguous periosseous abscess 0 - - - - -

Hematoma/Abscess at inoculation site 0 - - - - -

Lymph node enlargement 0 - - - - -

Pig B Osteomyelitis 5 5 5 0 5 5

Contiguous periosseous abscess 0 - - - - -

Hematoma/Abscess at inoculation site 1 1 1 0 (1) (1)

Lymph node enlargement 1 1 1 0 0 0

Pig C Osteomyelitis 6 4 3 0A 4A NTB

Contiguous periosseous abscess 1 (1) 1 0A (1)A NTB

Hematoma/Abscess at inoculation site 0 - - -A -A NTB

Lymph node enlargement 2 2 1 0A (1)A NTB

Pig D Osteomyelitis 4 4 2 0 4 4

Contiguous periosseous abscess 1 1 (1) 0 1 1

Hematoma/Abscess at inoculation site 0 - - - - -

Lymph node enlargement 3 3 2 0 (1) 1

Pig E Osteomyelitis 6 4 3 0 5 6

Contiguous periosseous abscess 2 2 2 0 2 2

Hematoma/Abscess at inoculation site 1 0 0 0 0 0

Lymph node enlargement 2 2 2 0 1 2

Total Osteomyelitis 24 19/24 14/24 0/24 19/24 18/18

Contiguous periosseous abscess 4 4/4 4/4 0/4 4/4 3/3

Hematoma/Abscess at inoculation site 2 0 0 0/8 0 0

Lymph node enlargement 8 8/8 6/8 0/8 3/8 3/6
A: Scans performed on dead pig. B: NT, not tested, as the pig had died.
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Although it is mainly used for oncological imag-
ing, 18F-FDG has also been tested for inflamma-
tion imaging. 18F-FDG accumulates in cells that 
show an increased glucose metabolism. This 
non-specific behavior also allows the 18F-FDG 
to enter leukocytes present in inflammation. 
Semi quantitative analysis, which may be use-
ful for differentiating infections from inflamma-
tion and monitoring response to therapy, is  
easily performed with PET, but less feasible 
with scintigraphy. 18F-FDG PET scan can be  
performed quicker than leukocyte SPECT: 1  
hrs after injection compared to several hrs. In 
the osteomyelitic model, 18F-FDG performed 
very well, detecting all osteomyelitic lesions 
(Table 3).

The naturally occurring essential amino acid 
methionine, in the form of the tracer 11C- 
methionine, is crucial for protein and phospho-
lipid synthesis and can visualize sites of cell 
growth and replication after transportation into 
the cell by the L-type amino acid transporter 
(LAT) 1 [46]; and thus will accumulate in sites  
of infection, where both amino acid transport 
and metabolism take places. Previously, we 

Figure 5. Whole body 111In-leucocyte scintigraphy of 
adult human 24 h after inoculation in A: Anterior view 
and B: Posterior view and of a 12-weeks old juvenile 
pig 6 h after inoculation [19] in C: Ventral and D: Dor-
sal view. The central sparing in the pig between liver 
and spleen represents a full stomach. As in humans 
prolonged clearance of activity from labeled leuko-
cytes from liver and spleen is seen as well as low 
excretion activity in both feces and urine. The major 
difference was the accumulation of activity in the 
lungs of juvenile pigs, which is only a transient phe-
nomenon in healthy human lungs.

Figure 6. Whole body 99mTc-DPD bone scintigraphy of 
A: 7-years old child (anterior view) and B: 12-weeks 
old pig (ventral view MIP).
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were not able to demonstrate 11C-methionine 
as a reliable marker of ostemyelitis [16, 19], as 
only 50%, i.e. 2 of 4, of subacute  osteomyelitic 
lesions were identified. By increasing the activ-
ity from approximately 8-10 MBq per kg to 18 
to 28 MBq per kg in the present study, it was 
possible to visualize osteomyelitis in 19 of 24 
cases (79%) (Table 3); and obtain far better 
lesion to background activity (Figure 3), allow-
ing improved interpretation. Methionine had  
a tendency to accumulate profound in the 
lesions. Biodistribution of 11C-methionine has 
been evaluated in children and young adults 
who were given an activity of 740 MBq of 
11C-methionine per 1.7 m2 of body surface area 
(maximum prescribed dose, 740 MBq) the age 
ranged from 2 to 29 y (median 12 y), and PET 
images were acquired approximately 5-15 min 
later [47]. In another study 11 MBq was given 
per kg bodyweight (maximum 740 MBq), age 
range 2-21 y (mean age 15 y±5 y) [48]. In the 
latter study tracer accumulation was recorded 
over 60 min directly after tracer injection or 
over 40 min beginning 20 min after tracer in- 
jection. Summed activity from 20 to 60 min 
after tracer injection was used for image re- 
construction. Only images of the brain were 
presented. The 11C-activity in our whole body 
scan presented here was reduced to 1/8  
since dynamic scans of the hind limbs (data  
not shown) were performed for the first hour 
after the tracer was given, and still the dete- 
ctability was reasonable.

11C-methoxy-donepezil is a noncompetitive re- 
versible acetylcholinesterase ligand and was 
previously validated for imaging cerebral levels 
of acetylcholinesterase [49]. The bio-distribu-
tion of 11C-donepezil for imaging acetylcho-lin-
esterase densities in human peripheral organs 
has been examined recently, and significant 
11C-donepezil uptake was also demonstrated  
in a post-operative abscess of a pig [24]. Non- 
neuronal cholinergic signaling is involved in 
immune responses to infections, especially ly- 
mphocytes [50]. We therefore tested the tra- 
cer in our osteomyelitis model. The tracer ac- 
cumulated in 14 of 24 osteomyelytic lesions 
(58%) (Table 3), indicating no or low cholines-
terase activity in some lesions, which may be 
an effect of cell type. Taking the short half-life 
of 11C into account only 1/16 to 1/8 of activity 
may be expected at time of static scan.

The aim is always to apply as low activity for 
children as possible, The choice of imaging 
modality must depend on the individual case 
and the nature of the illness; is it serious and 
life-threatening, then a rapid diagnosis may be 
required, and PET/CT may be considered, espe-
cially as our study has shown that 18F-FDG PET 
has a high accuracy, in the case of osteomyeli-
tis. The highest radiation contribution origi-
nates as a rule from CT, and low-dose CT may 
be chosen. We have planned to look further 
into these details in future experiments. 

In conclusion, 18F-FDG was a very good marker 
of osteomyelitis in the juvenile appendicular pig 
skeleton as it detected all 24 osteomyelitis 
lesions. As 18F-FDG PET/CT can be performed 
within an hour, can detect all osteomyelitic 
lesions only 7 days after inoculation it may be 
considered also in children for early diagnosis 
accelerating treatment initiation and thus spar-
ing other less reliable imaging techniques, 
which eventually may delay the diagnosis. The 
late 24 h 111In labeled leukocyte scintigraphy 
was reasonably good. However, 24 h imaging  
of 111In-labeled leukocytes did not improve de- 
tectability of osteomyelitic lesions compared to 
6 h imaging. It thus may be possible to scan 
within a shorter time schedule. 11C-donepezil 
could detect osteomyelitis but was not a suit-
able marker due to its weak accumulation in le- 
sions. This was probably due to the dynamic 
scans taking place before the static PET/CT 
delaying the static PET of the lesions. The tro-
phic markers 99mTc-DPD and 11C-methionine 
acted in completely different ways. 99mTc-DPD 
detected no lesions, whereas methionine de- 
tected 79% of lesions and showed superior 
accumulation in all enlarged, probably reactive, 
lymph nodes, indicating that methionine is a 
better marker of probably repair processes in 
early stage osteomyelitis.
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