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Abstract

In these proceedings an overview of the main ALICE results on soft probes of the Quark-Gluon Plasma (QGP) in
Pb–Pb collisions at

√
sNN = 2.76 TeV is presented. It comprises measurements of light flavour hadron production,

azimuthal flow, and system size. All of the results are compared to hydrodynamical calculations to extract global
properties of the QGP. In addition, particle production is also compared to results from statistical models. In order
to show the evolution of soft probes with system size, some of the measurements from pp and p–Pb collisions are
compared to those from Pb–Pb collisions.
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1. Introduction

The main goal of the heavy-ion program at the
Large Hadron Collider (LHC) is to study properties of
the Quark-Gluon Plasma (QGP), a state of deconfined
quarks and gluons. The evolution of the system created
during ultrarelativistic heavy-ion collisions can be un-
derstood as divided into a few phases. In our current un-
derstanding, a preequlibrium phase [1], which eventu-
ally reaches an approximate local thermalization, exists.
This stage is followed by an expansion in a common
velocity field [2, 3]. During the expansion, the system
behaves very much like a perfect liquid and cools down
until it forms hadrons as a result of chemical freeze-
out at the temperature Tch [4]. The formed hadron gas
cools down further until it reaches the kinetic freeze-out
temperature (Tkin) after which the collective expansion
stops [5].
The initial shape and energy density of the system are
given by the overlapping region of the two Lorentz con-
tracted colliding nuclei. This results in an initial spa-
tial anisotropy which is transformed during the evolu-
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tion into an anisotropy in the momentum distribution of
the produced particles. This effect is called anisotropic
flow and it can be characterized by the coefficients of
the Fourier expansion of the dN/dφ distribution of pro-
duced particles. The Fourier coefficients vn are sensi-
tive to the properties of the system created in the colli-
sions such as the ratio of shear viscosity to the entropy
(η/s). The particle type dependence of anisotropic flow
can also probe the system freeze-out conditions and the
hadronization mechanism.
In summary, particle species dependent studies of soft
particle production, transverse momentum (pT) and cor-
relations between the particles provide methods to char-
acterize the dynamical evolution of the system created
in ultrarelativistic heavy-ion collisions.
In the highest multiplicity class of p–Pb collisions at the
LHC, the pseudorapidity density of produced particles
is comparable to peripheral heavy-ion collisions. This
opens up the possibility to have collective phenomena
developing in p–Pb collisions, which could have similar
signatures as in heavy-ion collisions. This hypothesis
was also checked using LHC data.
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2. ALICE detector

The combination of multiple particle identification
systems along with precise tracking (pT resolution
lower than 2% for pT below 5 GeV/c) makes ALICE
(A Large Ion Collider Experiment) an effective tool for
studying the soft probes of the QGP. The results pre-
sented here are obtained using data from the pp collision
from 2010 and Pb–Pb collisions from 2010 and 2011,
and p–Pb collisions from early 2013. During those peri-
ods the Inner Tracking System (ITS) and the Time Pro-
jection Chamber (TPC) were the main detectors used for
reconstructing of charged particle tracks and measuring
their momenta in the pseudorapidity range |η| < 0.9.
The ITS was also used for triggering and reconstruct-
ing the interaction point. Particle identification was
performed using the ITS, TPC and the Time-of-Flight
(TOF) detectors. The V0 detector, composed of two
scintillator arrays measuring particles in range −3.7 <
η < −1.7 (V0-C) and 2.8 < η < 5.1 (V0-A), was used
for the centrality determination and triggering. The full
performance of ALICE during the first LHC run is re-
ported in [6].

3. pT-spectra of identified hadrons

The collective behaviour of the system created during
ultrarelativistic, heavy-ion collision can be described by
hydrodynamical models. The identified hadron produc-
tion at low pT is a major constraining factor for those
models. Figure 1 presents the pT spectra for pions,
kaons and protons measured by ALICE for the 5% most
central Pb–Pb collisions at

√
sNN = 2.76 TeV [7, 8].

For comparison RHIC results from Au-Au collisions at√
sNN = 200 GeV [9, 10] and calculations from hydrody-

namical models are also presented. Since the spectra for
positive and negative particles were found to be compat-
ible within uncertainties, the combined measurement is
presented. The spectra exhibit higher mean pT than at
RHIC, which can be attributed to stronger radial flow at
LHC energies. From the comparison with hydrodynam-
ical models, we see that VISH2+1 [11] describes well
the pion and kaon spectra when pT < 1.5 GeV/c, but
it does not describe the proton spectra. The VISHNU
model [12] that couples the hydrodynamical evolution
of the system to a hadronic cascade model seems to bet-
ter describe the spectra. The hadronic phase is also im-
plemented in the HKM Model [13] which agrees better
with the data than VISH2+1. The Kraków model [14],
which also shows good agreement with data, uses non-
equilibrium corrections due to the bulk viscosity which
changes the effective Tch. The EPOS [15] model uses

Figure 1: Measured pion, kaon and proton pT spectra for the most
central (0-5%) Pb–Pb collisions at

√
sNN = 2.76 TeV, compared to

results from lower energies and model predictions.

an approach including the breakup of flux tubes created
during initial hard scatterings to describe the spectral
shapes over a wide pT range.
Figure 2 shows the pT spectra of pions, kaons, protons,
K0

S and Λ measured by ALICE [16] in high multiplicity
p–Pb collisions. The results are compared to hydrody-
namical models (Kraków [17], EPOS LHC [18], blast-
wave [19]) and to the QCD-inspired DPMJET event
generator [20]. For pT < 2 GeV/c the hydrodynamical
models describe the ALICE measurements reasonably
well. In the same pT range, DPMJET fails to describe
the spectra but it correctly describes the pseudorapidity
distribution of charged particles, as shown in [21]. The
fact that p–Pb spectra from high multiplicity collisions
can be described by hydrodynamical models might indi-
cate the existence of collective phenomena in the system
created during p–Pb collisions at the LHC.
The particle spectra for both p–Pb and Pb–Pb were fitted
with the blast-wave function [19], which assumes a ther-
malized medium and collective expansion with a com-
mon velocity field ended with a one common freeze-out.
The results of the fits (i.e. the radial flow velocity 〈βT〉
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Figure 2: Identified hadron pT spectra in high multiplicity p–Pb col-
lisions at

√
sNN = 5.02 TeV compared to model predictions.

and the temperature of kinetic freeze-out Tkin) are sum-
marized in Figure 3. The results for p–Pb collisions fol-
low the same trend as those for Pb–Pb collisions: Tkin
decreases with increasing 〈βT〉 and multiplicity.

4. Total particle production

To estimate the chemical freeze-out temperature
(Tch), the production yields for different particle species
at mid-rapidity measured by ALICE were fitted (see
Figure 4) with three thermal models (GSI [22], THER-
MUS [23] and SHARE [24]). During the fitting pro-
cedure the baryochemical potential (μB) was set to 1
MeV since the measured yields of antiparticles and par-
ticles are equal within uncertainties. All three models
gave a temperature, Tch, around 155 ∼ 156 MeV. The
thermal models reproduce many of the ALICE parti-
cle yield results, but fail to reproduce the proton and
antiproton production yields. Possible reasons for this
are: baryon annihilation after chemical freeze-out [25],
a non-equilibrium statistical hadronization [24] (imple-
mented in SHARE but not used in the fit), flavour hier-
archy in the QCD phase transition from QGP to hadrons
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Figure 3: The results of the blast-wave fit to the ALICE results from
the Pb–Pb collisions at

√
sNN = 2.76 TeV and p–Pb collisions at√

sNN = 5.02 TeV. The 〈βT〉 stands for the radial flow velocity Tkin is
the temperature when kinetic freeze-out occurs. The centrality for the
Pb–Pb collisions and multiplicity for p–Pb collisions increase with
〈βT〉.

[26], missing higher mass resonance states in the equi-
librium thermal model, and the existence of a pion con-
densate [27]. The inability to reproduce the proton and
antiproton production by statistical models is one of the
most puzzling observations of the first LHC heavy-ion
data. The interpretation of this effect is still not clear
and needs further investigation.

5. Elliptic flow

Figure 5 presents the second Fourier coefficient v2
as a function of pT for different particles species mea-
sured by ALICE [28] in the 10-20% (upper plot) and
40-50% (lower plot) centrality intervals in Pb–Pb col-
lisions For pT below 2 GeV/c, a mass ordering (where
higher mass corresponds to lower v2 for a fixed pT) is
seen. This is an effect of the interplay between elliptic
and radial flow. For pT larger than 3 GeV/c, the v2 val-
ues tend to divide into two groups, one for mesons and
one for baryons. There is one exception, the v2 of the φ-
meson, which follows the baryons for central collisions
and moves progressively to the meson band for periph-
eral collisions.
The ALICE v2 measurements were compared to hydro-
dynamical calculations coupled to a hadronic cascade
model [12] (VISHNU). This comparison for the 10-20%
centrality bin is presented in Figure 6. The VISHNU
model can describe the main characteristics of v2 for
pT lower than 2 GeV/c qualitatively. The mass or-
dering observed in the data is not reproduced by the
model where the Λ and φ v2 is larger than the proton
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Figure 4: The production yields at mid-rapidity measured by ALICE
fitted to three different statistical models.

Figure 5: v2 as a function of pT for identified particles for two cen-
trality classes 10-20% (top) and 40-50% (bottom) in Pb–Pb collisions
at
√

sNN = 2.76 TeV measured by ALICE.
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Figure 6: v2 as a function of pT for the 10-20% centrality range in Pb–
Pb collisions at

√
sNN = 2.76 TeV compared to the VISHNU model.

Top panel shows results for pions, protons and Λ and bottom kaons,
φ and Ξ.
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Figure 7: The pT/nq dependence of v2/nq for identified particles for
two centrality classes: 10-20% (top) and 40-50% (bottom).

and antiproton v2. This suggests that the hadronic cas-
cade phase and the hadronic cross-sections in the model
require further tuning.
The ALICE v2 measurements were also used to test the
number of constituent quarks (NCQ) scaling. The re-
sults of this test for two centrality bins are shown in Fig-
ure 7, where v2/nq as function of pT/nq is plotted. The
NCQ scaling should be present for pT/nq higher than 1
GeV/c where coalescence is claimed to be dominant. In
this region, the scaling is only approximate since devia-
tions of ±20% are observed in both centrality bins.

6. Source size

The size of the particle production region was mea-
sured by ALICE based on correlation measurements of
identical bosons at low relative momentum. Figure 8
presents the ALICE results [29] of the source size ob-
tained using 2-pion correlations in pp collisions at

√
s =

7 TeV, p–Pb collisions at
√

sNN = 5.02 TeV and Pb–Pb
collisions at

√
sNN = 2.76 TeV. Those results are com-

pared to GLASMA calculations with and without a hy-
drodynamical expansion stage [30]. All GLASMA cal-
culations are scaled to match the ALICE pp data. The
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Figure 8: The 1D radii of the particle production region obtained by
Bose-Einstein correlation measurements by ALICE in pp, p–Pb, and
Pb–Pb collisions as a function of the number of charge particles com-
pared to GLASMA calculations with and without a hydrodynamical
stage of expansion.

shaded regions in Figure 8 represent the effect of the
hydrodynamical expansion. The results in Pb–Pb col-
lisions clearly indicate the existence of a hydrodynam-
ical phase. The results for pp and p–Pb collisions are
not conclusive and within the uncertainties, can be de-
scribed by both scenarios: with and without the hydro-
dynamical phase.

7. Conclusions

The ALICE collaboration has characterized the QGP
in the new energy regime using the data from the first
LHC run. The results on soft probes show that the sys-
tem created during the heavy-ion collisions undergoes a
hydrodynamical evolution. The measured radial flow is
larger than that for collisions at lower energies. Parti-
cle production is described by statistical thermodynam-
ics although some deviations for the proton yield are
observed. The possible explanation for that deviation
is still unknown and many scenarios are being investi-
gated. Some indications of hydrodynamical expansion
were also seen in p–Pb collisions, its origin is still un-
clear and require further measurements using the second
LHC run.
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