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Abstract: Glucose stimulates the secretion of the incretin hormones: glucagon-like peptide-1 (GLP-1)
and glucose-dependent insulinotropic peptide (GIP). It is debated whether the sweet taste receptor
(STR) triggers this secretion. We investigated the role of STR activation for glucose-stimulated
incretin secretion from an isolated perfused rat small intestine and whether selective STR activation
by artificial sweeteners stimulates secretion. Intra-luminal administration of the STR agonists,
acesulfame K (3.85% w/v), but not sucralose (1.25% w/v) and stevioside (2.5% w/v), stimulated GLP-1
secretion (acesulfame K: 31 ± 3 pmol/L vs. 21 ± 2 pmol/L, p < 0.05, n = 6). In contrast, intra-arterial
administration of sucralose (10 mM) and stevioside (10 mM), but not acesulfame K, stimulated GLP-1
secretion (sucralose: 51 ± 6 pmol/L vs. 34 ± 4 pmol/L, p < 0.05; stevioside: 54 ± 6 pmol/L vs.
32 ± 2 pmol/L, p < 0.05, n = 6), while 0.1 mM and 1 mM sucralose did not affect the secretion.
Luminal glucose (20% w/v) doubled GLP-1 and GIP secretion, but basolateral STR inhibition by
gurmarin (2.5 µg/mL) or the inhibition of the transient receptor potential cation channel 5 (TRPM5)
by triphenylphosphine oxide (TPPO) (100 µM) did not attenuate the responses. In conclusion, STR
activation does not drive GIP/GLP-1 secretion itself, nor does it have a role for glucose-stimulated
GLP-1 or GIP secretion.

Keywords: sweet taste receptor; GLP-1; GIP; glucose; sucralose

1. Introduction

A high consumption of sugar may lead to a higher prevalence of unhealthy metabolic conditions,
like diabetes type 2, obesity, and metabolic syndrome. Therefore, it is of great importance to understand
how sugars are metabolized in the body and which feedback mechanisms regulate this process, and
thus how it could be controlled or manipulated. As an alternative to sugars, artificial sweeteners have
attracted considerable interest in the battle with obesity and diabetes, as they do not elevate blood
glucose levels and are not a source of additional calories. Nevertheless, epidemiological studies show
that their consumption may still be associated with weight gain and diabetes type 2 due to adaptive
mechanisms [1,2], although randomized controlled trials, investigating the effects of sweeteners on
body weight, show that they may reduce weight compared to groups consuming water [3,4].

In response to meal ingestion, several hormones that regulate blood sugar levels and appetite
are secreted. The incretin peptide hormones, glucose-dependent insulinotropic hormone (GIP) and
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glucagon-like peptide 1 (GLP-1), secreted from the intestinal K- and L-cells, respectively, play an
important role in this process, as they both stimulate insulin secretion, and GLP-1 suppresses appetite
and slows gastric emptying [5].

Glucose is an efficacious stimulus for the secretion of both GLP-1 and GIP, stimulating secretory
responses that are comparable to the response after the intake of an isocaloric mixed meal [6].
While it is well established that glucose stimulates the secretion of GIP and GLP-1, several different
molecular sensors may be involved. A main driver for secretion appears to be glucose transportation
through sodium-glucose dependent transporter 1 (SGLT1) [7–12], triggering hormone secretion by
the depolarization of the K/L-cell plasma membrane and the opening of voltage sensitive calcium
channels [7]. Electroneutral GLUT2-mediated uptake may potentiate glucose-stimulated GLP-1
secretion [7], potentially by the closure of the KATP channel upon intracellular glucose metabolism
to ATP [7,13]. Another molecular sensor that has been suggested to be implicated in the secretory
response is the sweet-taste receptor (STR). It is activated by glucose and other sweet-taste molecules,
and is found not only in the taste buds, but also in the enteroendocrine K- and L-cells along the
gastrointestinal tract, with the highest expression rates found in the proximal intestine [14–17].

The STR is a heterodimer, formed by the subunits T1R2 and T1R3, coupled to the G-proteins
α-gustducin and/or transducin [18]. Around one fifth of the cells expressing α-gustducin co-express
GLP-1 and GIP [16,19,20]. Depending on the ligand, receptor activation activates adenylate cyclase and
the formation of cAMP (Gαs-coupling), or mobilizes calcium from intracellular stores (Gq-coupling)
by the activation of phospholipase C (PLC) and inositol triphosphate (IP3) [21]. The increase in
intracellular Ca2+ opens the nonselective transient receptor potential monovalent cation channel 5
(TRPM5), which plays a critical role in sweet, bitter, and umami taste signal transduction, leading to
Na+ influx, depolarization of the cell, and eventual hormone or neurotransmitter secretion [22]. Natural
sweeteners (sucrose, glucose, fructose) activate STR in the range of 100 mM, while less than 10 mM of
the artificial sweeteners is sufficient for activation [18]. Studies on incretin secreting cell lines (derived
from human and mouse gut carcinomas) have shown that STR activation by artificial sweeteners
elicits GLP-1 secretion [16,17], and in humans, the inhibition of the gut sweet taste receptor by lactisole
attenuated the glucose-stimulated GLP-1 secretion [19]. However, these findings remain inconclusive,
as other studies found no effect of artificial sweeteners on GLP-1 secretion in humans [11,23–27] and
rats (in vivo and using isolated perfused intestine preparations) [7,28]. The only studies in humans that
found an increase in GLP-1 secretion after artificial sweetener consumption investigated combinations
of artificial sweeteners in diet drinks or studied whether sweeteners potentiated glucose-stimulated
GLP-1 secretion rather than driving secretion per se [29,30]. An important question, which none of
the studies explored by means other than immunohistochemistry, is whether the sweet receptors are
located apically or at the basolateral side of the L-cells, which might play a role in the lack of a response
in vivo as artificial sweeteners, like sucralose, are incompletely absorbed.

The purpose of this study was to investigate the importance of sweet taste receptor activation for
glucose-stimulated hormone secretion, with a primary focus on GLP-1 secretion and a secondary focus
on GIP secretion. For this investigation, we used the isolated perfused rat small intestine, which is a
physiological model, maintaining the enteroendocrine cells in their normal environment, polarized
form with preserved vascular circulation and contact to normal neighbor cells, paracrine cells, and
neurons, while the input and output from the organ was strictly controlled. Due to the preservation
of natural polarity, this model also has the advantage that it can be used to investigate whether the
stimulus has an effect on the apical or basolateral membrane of the cell.

2. Materials and Methods

2.1. Perfusion of the Proximal Small Intestine

Studies were performed with permission from the Danish Animal Experiments Inspectorate
(2013-15-2934-00833) and the local ethics committee (EMED, P-15-408) in accordance with the guidelines
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of the Danish legislation governing animal experimentation (1987) and the National Institutes of Health.
The experimental method and protocol have been described elsewhere in detail [7]. In brief, male
Wistar rats (weight: mean + SEM = 283 ± 28.8 g) were obtained from Janvier labs (Le Genest-Saint-Isle,
France), and were housed two per cage on a 12:12 h light/dark cycle, with ad libitum access to standard
chow and water. On the experimental day, animals (non-fasted) were anesthetized with a subcutane
Hypnorm/Midazolam injection and placed on a 37 ◦C heating plate. The abdominal cavity was
opened; the entire large intestine and the distal half of the small intestine was carefully removed,
leaving 44 ± 5.2 cm of the upper small intestine in situ (approximately half of the entire small intestine).
A plastic tube was inserted into the proximal part of the lumen and the intestinal content was carefully
removed by flushing with isotonic saline (room temperature). Next, the lumen was perfused with
saline at a steady flow of 0.5 mL/min. A catheter was placed in the superior mesenteric artery and the
intestine was vascularly perfused with gassed perfusion buffer (95% O2−5% CO2) warmed to 37 ◦C
at a rate of 7.5 mL/min. Perfusion effluent was collected each minute from a catheter inserted in the
vena portae and samples were instantly transferred to ice and stored at −20◦C until analysis. The
perfusion buffer consisted of a Krebs-Ringer bicarbonate buffer supplemented with 0.1% BSA (albumin
fraction V; Merck, cat. no. 1.12018.0500, Ballerup, Denmark), 3.5 mmol/L glucose, 5% dextran T-70
(to balance oncotic pressure; Pharmacosmos, Holbaek, Denmark), 5 mmol/L pyruvate, 10 µmol/L
3-Isobutyl-1-methylxanthine (IBMX) (Sigma-Aldrich, cat. no. 5879), fumarate, glutamate, and 2 mL/L
of Vamin (cat. no. 11338; Fresenius Kabi, Uppsala, Sweden). The pH was adjusted with hydrochloric
acid to 7.4–7.5. After the successful perfusion of the proximal small intestine, rats were sacrificed by
cardiac perforation and the preparation was left to stabilize hormone secretion for approximately 30
min before the samples were collected.

2.2. Perfusion Protocol and Test Substances

Each experimental protocol started with ten minutes of baseline collection (pre-stimulatory
period), followed by a stimulation for ten minutes, either luminally or vascularly. The intestine was
stimulated luminally with 20% (w/v) glucose (1.1 mol/L) (Sigma-Aldrich, cat. no. G8270), 1.25% (w/v)
sucralose (31.4 mmol/L) (Sigma-Aldrich, cat. no. 69293), 3.85% (w/v) acesulfame K (191.3 mmol/L)
(Sigma-Aldrich, cat. no. 04054), or 2.5% (w/v) stevioside (31.1 mmol/L) (Sigma-Aldrich cat. no.
CDS020802). The concentrations of the sweeteners employed correspond to 50 times the sweetness
of 20% (w/v) glucose, given that sucralose, acesulfame K, and stevioside are 800, 260, and 400 times
sweeter, respectively [31,32], and are all far beyond their respective EC50 values (0.3 mM for sucralose,
1 mM for acesulfame K, and 0.1 mM for stevioside [33]). Therefore, all of the solutions maximally
activated the receptor. Luminal test stimulants were dissolved in isotonic saline without the addition
of detergents and were applied at an initial rate of 2.5 mL/min for the first three minutes, followed
by a rate of 0.5 mL/min during the rest of the stimulation. After the stimulation, isotonic saline was
infused in the same pattern to replace test stimulant solution and reestablish baseline conditions.
Vascular test stimulants (acefulfame K, sucralose, and stevioside) were dissolved in perfusion buffer to
a final concentration of 10 mM (for sucralose also concentration 1 mM and 0.1 mM). To allow hormone
secretion to return to the baseline after test stimulant application, stimulant applications were separated
by 15 min. In separate experiments, the murine sweet taste receptor inhibitor gurmarin [34] (2.5 µg/mL)
(provided by Rasmus Eliasen, synthetized at Novo Nordisk A/S as previously described [35]), was
infused on the vascular side mixed with sucralose (10 mM) or simultaneously with glucose 20% (w/v)
on the luminal side. Before the stimulation, the sweet taste receptor was primed with gurmarin for
15 min to ensure full inhibition at the time of test substance application. Using the same protocol,
the TRPM5 channel was inhibited by the vascular administration (100 µM) of triphenylphosphine
oxide (TPPO) (IC50 = 30 µM) (Sigma-Aldrich, cat. No T84603) [36]. To dissolve TPPO, it was mixed
in 1% dimethyl sulfoxid solution and perfusion buffer. At the end of each experiment, the intestine
was stimulated vascularly with bombesin (10 nM) (a potent GLP-1 secretagogue), to ensure that the
preparation was viable until the end of the experiments. The perfusion pressure and effluent output
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were measured continuously, in order to evaluate the gut integrity and health during the experiment.
Since all experiments were conducted with constant perfusion flow rates, all effluent hormone or
metabolite concentrations correspond to the total secretion or absorption rates.

2.3. Hormone Secretion Analysis

GLP-1 concentrations in the venous effluents were analyzed using an in-house radioimmunoassay
(RIA), employing a rabbit antiserum directed against the C-terminus of GLP-1 (code no. 89390), thus
reacting with all amidated forms of GLP-1 (1-36NH2, 7-36NH2 and 9-36NH2).

GIP concentrations were quantified with an ELISA assay for the rat total GIP (Millipore, Merck,
cat. no. EZRMGIP-55K), following the provided instructions.

2.4. Statistical Analysis

Changes in the hormone secretion were assessed by comparing the mean concentrations during
the stimulation period with the baseline mean concentrations calculated as a mean of five consecutive
one-minute observations before the stimulation and five one-minute observations before the start of
the following stimulation. The stimulation period was defined as the start of the stimulant application
until the end of the application. Statistical significance was assessed by one-way ANOVA, followed
by Bonferroni post hoc analysis or a paired t-test, in the case that only two groups were compared.
In the experiments where responses to stimuli with or without the presence of an inhibitor were
compared, differences were assessed by a two-way paired t-test. Statistical analysis was performed
using GraphPad Prism 7 (La Jolla, CA, USA). Data are expressed as averaged means ± SEM. p < 0.05
was considered significant.

3. Results

3.1. Glucose-Induced Incretin Secretion

3.1.1. Glucose Stimulates GLP-1 and GIP Secretion from the Perfused Rat Small Intestine

Luminally administered glucose 20% (w/v) was rapidly absorbed, increasing venous effluent
glucose concentrations by two to three times compared to the baseline (glucose 1st: 11.5 ± 0.9 mmol/L
vs. baseline 1st: 5 ± 0.4 mmol/L, p < 0.001; glucose 2nd: 14.2 ± 0.9 mmol/L vs. baseline 2nd:
5.2 ± 0.5 mmol/L, p < 0.001, n = 6, Figure 1a,b). At the same time, we observed a doubling in
the GLP-1 (glucose 1st: 50.7 ± 2.9 pmol/L vs. baseline 1st: 22.6 ± 3 pmol/L, p < 0.0001; glucose 2nd:
49.3 ± 4.4 pmol/L vs. baseline 2nd: 30.8 ± 3.5 pmol/L, p < 0.01, n = 6, Figure 1c,d) and GIP secretion rate
(glucose 1st: 12.2 ± 1.2 pmol/L vs. baseline 1st: 6.7 ± 0.6 pmol/L, p < 0.05; glucose 2nd: 12.6 ± 0.2 pmol/L
vs. baseline 2nd: 8.4 ± 0.7 pmol/L, p < 0.01, n = 6, Figure 1c,e), and in both cases, the second secretory
response was not significantly different from the first (GLP-1 p = 0.55; GIP p = 0.73). GLP-1 and GIP
showed a similar dynamic of secretion. In all experiments, a robust GLP-1 response to bombesin,
administered at the end of the experiments (61–65 min), was observed, indicating that the experimental
model was working until the end of the protocols (Figure 1c).
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Figure 1. Glucose is a potent GLP-1 and GIP secretagogue and it is rapidly absorbed in the upper small
intestine. Data is shown as averaged mean values ± SEM. (a) Glucose output in venous effluents in
response to administration of luminal glucose. (b) Comparison between the venous glucose output
upon glucose (stimulation) or saline (baseline). (c) GLP-1 (red line) and GIP (green line) secretion in
response to luminal glucose. (d,e) Comparison between total GLP-1 or GIP output caused by glucose
or saline. (f) GLP-1 (red line) and GIP (green line) secretion by luminal glucose administration and
inhibition of the sweet taste receptor. (g,h) Comparison between the mean values of GLP-1 or GIP
output upon glucose infusion ± gurmarin and saline. * p < 0.05, ** p < 0.01, *** p < 0.001. BBS bombesin;
GLP-1 glucagon-like peptide 1; GIP glucose-dependent insulinotropic peptide.
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3.1.2. Inhibition of the Murine Sweet Taste Receptor Does Not Change Glucose-Induced GLP-1 and
GIP Secretion

In another series of experiments, the murine sweet taste receptor antagonist gurmarin was
administered 15 min before and concomitantly with glucose (20% w/v). The inhibition of the sweet
taste receptor did not attenuate glucose-induced GLP-1 secretion compared to glucose administration
alone (Figure 1f), as the responses did not differ significantly (p = 0.73). Glucose increased GLP-1
secretion close by nearly two times, independently of whether it was added alone or concomitantly
with gurmarin (glucose: 48.5 ± 4.6 pmol/L vs. baseline 1: 21.1 ± 1.9 pmol/L, p < 0.01; glucose + gurmarin:
50.3 ± 5.5 pmol/L vs. baseline 2: 29.4 ± 3 pmol/L, p < 0.01, n = 6, Figure 1f,g). The glucose-stimulated
GIP response was also not significantly altered due to the presence of gurmarin (p = 0.58) (glucose:
15.1 ± 2.4 pmol/L vs. baseline 1: 7.1 ± 0.7 pmol/L, p = 0.13; glucose + gurmarin: 13.8 ± 0.8 pmol/L vs.
baseline 2: 11.9 ± 1.3 pmol/L, p = 0.24, n = 4, Figure 1f,h).

3.2. Arificial Sweeteners and Incretin Secretion

3.2.1. Luminal Administration of Acesulfame K, but Not Sucralose or Stevioside, Stimulates GLP-1,
but Not GIP Secretion

Intra-luminal administration of acesulfame K at a concentration that is thought to activate the
sweet taste receptor resulted in a small, but significant, 1.5-fold increase in the GLP-1 concentrations
(acesulfame K: 31.1 ± 2.5 pmol/L vs. baseline: 21.1 ± 2 pmol/L, p < 0.05, n = 6, Figure 2a,b), whereas it
did not affect GIP secretion (acesulfame K: 4.6 ± 0.9 pmol/L vs. baseline: 5.1 ± 1 pmol/L, p = 0.53, n = 5,
Figure 2a,c). Luminal infusion of sucralose and stevioside in matched concentrations with respect to
sweetness, on the other hand, did not elevate the secretion of GLP-1 (Figure 2a,b,f,g).

3.2.2. Vascular Administration of Sucralose and Stevioside, but Not Acesulafme K, Stimulates GLP-1
and GIP Secretion

Intra-arterial administration of sucralose and stevioside significantly stimulated GLP-1 secretion
(sucralose: 51.3 ± 5.9 pmol/L vs. baseline: 33.9 ± 3.9 pmol/L, p < 0.05, n = 6; stevioside: 54 ± 6.4 pmol/L
vs. baseline: 31.5 ± 2.3 pmol/L, p < 0.05, n = 6, Figure 2d–g). However, vascular acesulfame K
did not change the secretion rate (Figure 2d,e). The results were unchanged by the administration
of acesulfame K before sucralose, suggesting that it is not the unavailability of the receptor that is
responsible for the lack of the response to acesulfame K (data not shown). Sucralose slightly elevated
GIP concentrations, although not significantly (sucralose: 9.3 ± 2 pmol/L vs. baseline: 7.2 ± 1.2 pmol/L,
p = 0.09, n = 5, Figure 3c,e).

3.2.3. Sucralose Only Stimulates GLP-1 Secretion at High Doses

In order to evaluate whether sucralose also stimulates GLP-1 secretion from the vascular side at
doses lower than 10 mM, we stimulated the gut with 10 mM, 1 mM, or 0.1 mM sucralose in a separate
line of experiments. Only 10 mM sucralose stimulated secretion (Figure 3a,b).

Stimulating the intestine with 10 mM of sucralose resulted in two secretory responses that did not
differ (p = 0.25) (sucralose 1: 45 ± 2.8 pmol/L vs. baseline 1: 23.5 ± 1.7 pmol/L, p < 0.0001; sucralose 2:
50.3 ± 5 pmol/L vs. baseline 2: 25.2 ± 2.2 pmol/L, p < 0.001, n = 6, Figure 3c,d), which allowed us to
test whether the sucralose-induced GLP-1 secretion could be inhibited by gurmarin.
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Figure 2. Effects of artificial sweeteners on incretin secretion. Data is shown as averaged mean
values ± SEM (a) GLP-1 (red line) and GIP (green line) secretion in response to luminal sucralose
and acesulfame K (b,c) Comparison between total GLP-1 or GIP output caused by luminal artificial
sweeteners (stimulation) and saline (baseline) (d) GLP-1 secretion in response to vascular sucralose and
acesulfame K (e) Comparison between the mean values of total GLP-1 secretion caused by vascular
artificial sweeteners and saline (f) GLP-1 output in response to luminal and vascular stevioside
administration (g) Comparison between the mean values of GLP-1 secretion upon liminal and vascular
stevioside and saline * p < 0.05, ** p < 0.01, *** p < 0.001. BBS bombesin; GLP-1 glucagon-like peptide 1;
GIP glucose-dependent insulinotropic peptide.
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Figure 3. Effects of sucralose on the secretion of GLP-1 and GIP. Data is shown as averaged mean
values ± SEM (a) GLP-1 secretion in response to vascular sucralose at 0.1 mM, 1 mM, and 10 mM
concentrations (b) Comparison between the mean values of total GLP-1 output caused by vascular
sucralose in increasing concentration (stimulation) and saline (baseline) (c) GLP-1 (red line) and GIP
(green line) secretion in response to vascular administration of sucralose (d,e) Comparison between the
mean values of total GLP-1 or GIP output caused by vascular sucralose and saline (e) GLP-1 secretion
in response to vascular administration of sucralose ± gurmarin (f,g) Comparison between the mean
values of GLP-1 output upon sucralose ± gurmarin * p < 0.05, ** p < 0.01, *** p < 0.001. BBS bombesin;
GLP-1 glucagon-like peptide 1; GIP glucose-dependent insulinotropic peptide.
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3.2.4. Inhibition of the Murine Sweet Taste Receptor Does Not Eliminate Sucralose-Induced
GLP-1 secretion

The inhibition of the sweet taste receptor before and together with sucralose administration
(10 mM) did not affect GLP-1 secretion compared to sucralose alone, as the baseline-subtracted
responses were not significantly different, and sucralose increased GLP-1 levels by around
two times, independently of gurmarin administration (sucralose: 76.4 ± 11.7 pmol/L vs. baseline 1:
31.6 ± 3 pmol/L, p = 0.09; sucralose + gurmarin: 74.2 ± 9.2 pmol/L vs. baseline 2: 30.6 ± 2.3 pmol/L,
p = 0.08, n = 3, Figure 3f,g).

3.3. Inhibition of TRPM5-Channel Does Not Attenuate Glucose or Sucralose-Stimulated GLP-1 Secretion

3.3.1. Glucose-Induced GLP-1 Secretion Was not Reduced, but Increased, by Inhibition of
TRPM5 Channels

The inhibition of the TRPM5 ion channel by TPPO did not lead to a sweet taste receptor mediated
reduction in GLP-1 secretion, but on the contrary, led to a significant increase in glucose-stimulated
GLP-1 secretion (p = 0.04). Due to an increase in basal secretion after the administration of TPPO,
differences were assessed by a comparison between the baseline-subtracted responses. Glucose
alone doubled GLP-1 secretion, whereas the addition of TPPO increased it even more (glucose:
62.3 ± 8.2 pmol/L vs. baseline 1: 31.8 ± 4.3 pmol/L, p < 0.05; glucose + TPPO: 99 ± 2.5 pmol/L
vs. baseline 2: 44.7 ± 0.4 pmol/L, p < 0.01, n = 3, Figure 4a,b).

3.3.2. Sucralose-Induced GLP-1 Secretion Is not Changed by Inhibition of TRPM5 Channels

Sucralose-induced GLP-1 secretion was not reduced in the presence of the TRPM5 inhibitor
TPPO. There was no significant difference between the responses to the administration of sucralose
alone or sucralose concomitantly with TPPO, when comparing the baseline-subtracted responses
(p = 0.11). Sucralose increased GLP-1 levels by around two times when infused alone or together
with TPPO (sucralose: 35.4 ± 2.7 pmol/L vs. baseline 1: 20.7 ± 1.9 pmol/L, p < 0.05; sucralose + TPPO:
58 ± 11 pmol/L vs. baseline 2: 28.6 ± 2.3 pmol/L, p = 0.07, n = 3, Figure 4c,d). Interestingly, TPPO
increased GLP-1 secretion when given alone (Figure 4).
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Figure 4. TRPM5 channel is not involved in glucose- and sucralose-stimulated GLP-1 secretion. Data is
shown as averaged mean values values ± SEM (a) GLP-1 secretion in response to luminal glucose alone
or in the presence of TPPO (b) Comparison between the mean values of total GLP-1 output caused by
luminal glucose ± TPPO (stimulation) and saline (baseline) (c) GLP-1 secretion in response to vascular
administration of sucralose alone or in presence of TPPO (d) Comparison between the mean values of
total GLP-1 output caused by vascular sucralose ± TPPO and saline * p < 0.05, ** p < 0.01, *** p < 0.001.
BBS bombesin; GLP-1 glucagon-like peptide 1; GIP glucose-dependent insulinotropic peptide.

4. Discussion

The involvement of the STR in glucose-stimulated GLP-1 and GIP secretion has been a matter of
controversy during the last decade, with different studies suggesting that it may or may not be acutely
involved in hormone secretion, glucose homeostasis, and appetite regulation [7,16,17,19,23–28,37]. This
study shows that the ability of artificial sweeteners to stimulate GLP-1 secretion vascularly or luminally
is sweetener-specific. Sucralose affected GLP-1 secretion when applied from the vascular side, whereas
acesulfame K exclusively stimulated secretion when administrated in the intestinal lumen and only
in pharmacological doses. This may explain why orally ingested artificial sweeteners do not trigger
incretin hormones secretion in vivo [23–28], even though cell studies show the opposite [16,17].Vascular
stimulation with sucralose in our perfusion model stimulated a secretory GLP-1 and GIP response, in
agreement with the results from cell studies on GLUTag cells and NCI-H716 cells [16,17], but only at a
concentration that must be considered to be pharmacological. However, as opposed to those studies,
the secretory response in our model was not attenuated by STR inhibition with gurmarin. The fact that
sucralose and stevioside triggered GLP-1 secretion when applied on the vascular side, but not on the
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luminal, suggests that the sweet taste receptor is either located on the basolateral membrane of the
L-cells or that the response is triggered by other mechanisms. Nevertheless, we were not able to inhibit
the sucralose-stimulated secretion by means of gurmarin or by inhibiting the TRPM5 channel, which is
involved in the Gq-coupled taste sense and hormonal secretion [22]. Therefore, it seems that sucralose
triggered hormone secretion by an STR-independent mechanism, which is consistent with our finding
that sucralose at 0.1 and 1 mM did not affect secretion, albeit the sweetness of 1 mM is above the
EC50-value of sucralose (0.3 mM) [33]. It may be argued that sucralose could stimulate GLP-1 and GIP
secretion by acting on the bitter receptors, but as TRPM5 is also involved in other taste signal pathways,
like umami and bitter [22], it is unlikely that sucralose acts on the L-cells by activating one of these
receptors. Nevertheless, TRPM5 expression on the L-cells is low [38] and may not be as important
for taste receptor signaling in the small intestine as it is for the taste cells on the tongue. Sucralose in
concentrations of 10 mM and 100 mM, seem to exert toxic effects on IP3 production in GLUTag cells,
which express the STR subunits [39] (data not shown), suggesting that it stimulates the secretion by
another signal pathway. One could argue that the response seen following the vascular administration
of sucralose and stevioside is triggered by high osmolarity. However, this is unlikely as intra-arterial
acesulfame K at 10 mM in this study, and intra-arterial glucose at concentrations of 5 to 25 mM in one
of our previous studies [7], did not affect GLP-1 secretion.

Also, glucose-stimulated GLP-1 and GIP secretion was unaffected by gurmarin, standing in
contrast to the finding from two human studies, where STR inhibtion (with lactisole—an inhibitor of
the human STR) [19,37] attenuated glucose-stimulated GLP-1 secretion by about 50%. Surprisingly,
the inhibition of the TRPM5 channel did not attenuate glucose-stimulated GLP-1 secretion, but even
slightly increased it. This once again shows that it is probably not the STR-activated signal pathway
that regulates secretion. As the IC50 of gurmarin on the STR was reported to be 0.62 µg/mL [40], and
0.5 µM gurmarin decreases the magnitude of sweet perception to sucralose by 70% on the taste buds
in rats [41]. We anticipate that the lack of the effect of gurmarin in our experimental model is unlikely
to be dose-related, as we applied the IC50 dose (2.5 µg/mL) four times, and this dose is comparable to
the dose used by Margolskee and colleagues (3 µg/mL). Experiments with GLUTag cells showed that
glucose increases intracellular calcium at a concentration of 100 mM, whereas gurmarin (5 µg/mL)
attenuated glucose-stimulated intracellular calcium by around 10% (data not shown). This proves that
gurmarin was bioactive. Nevertheless, we cannot exclude that the lack of an effect in our model is due
to an unfavorable ratio between the inhibitor and the sweet-tasting agonists, as they were applied in
high concentrations.

Our finding that sucralose and stevioside did not stimulate GLP-1 secretion when applied into
the lumen, even in a very high concentration, is in agreement with the results from human studies
showing no effect of artificial sweeteners on GLP-1 secretion [23–25,27] or in vivo studies in rats [28].
Interestingly, intra-luminal acesulfame K increased GLP-1 secretion by 1.5-fold, which is in contrast to
the results of a previous study by our group [7], but may be explained by the fact that in this study a
five-times higher concentration was applied. Along this notation, the reason why luminal acesulfame
K, but not sucralose and stevioside, stimulated GLP-1 secretion may be explained by the fact that a
given dose of acesulfame K is completely recovered in the urine [42]. Therefore, it may be absorbed by
the enterocytes in non-metabolized form and acts on the basolateral side of the L-cells in contrast to
sucralose and stevioside, which are either incompletely absorbed or are metabolized by the bacteria
in the colon and then absorbed [43,44]. In this way, acesulfame K may stimulate GLP-1 secretion by
mechanisms similar to vascularly applied sucralose and stevioside, as the dose applied in the lumen
corresponds to 191 mM. On the other hand, the lack of a response to acesulfame K when applied
vascularly may be explained by the fact that it is less potent in activating the sweet taste receptor
compared to sucralose and stevioside, and the applied dose was, therefore, insufficient.

Our study further shows that GLP-1 and GIP have similar dynamics of secretion and are therefore
probably triggered by similar mechanisms, presumably involving the SGLT1 transporter as indicated
by a number of studies from different groups using different experimental models [7,8,12].
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The proximal part of the small intestine was chosen as a model in the current study, as glucose is
almost entirely absorbed in the duodenum and jejunum [45]. Therefore, studying the effects of glucose
on hormone secretion in the proximal small intestine gives a more physiologically relevant picture.
In particular, in relation to this study, the relevant anatomical area of the intestine was used, as the
sweet taste receptor is predominantly expressed in the duodenum and jejunum [14–17]. However, it
may be a limitation that the very proximal part of the small intestine (the duodenum and the most
proximal segment of the jejunum) was not included for technical reasons.

The advantage of the isolated perfused organ model, over in vivo studies, is that the confounding
effects of several whole body parameters can be excluded. These include the effect of gastric emptying,
the breakdown of various substances by whole body metabolism, and the impact of other regulatory
hormones, while the physiological impact of specific compounds can be studied locally in the preserved
organ. This gives the opportunity to establish a cause and effect relationship between the studied
agent and the outcome. The risk of having the results influenced by indirect factors is minimal, since
all compounds entering the system are strictly controlled. Therefore, in the present study, it could be
established that sucralose and stevioside stimulate GLP-1 secretion when infused vascularly, but not
when infused luminally. Compared to isolated cell studies, an alternative controlled system for the
study of hormonal secretion, the perfused model also has the benefit that the natural polarity, inter-cell
connection, and neural communication are preserved [46].

Limitations of the study include the limited translatability of the findings to humans in respect to
artificial sweeteners, as they were applied in doses in the toxic range for humans. However, this was
justified by the aim of the study to use them as a tool to explore sweet taste receptor functions, rather
than to explore their physiological relevance.

5. Conclusions

This study does not support the view that the activation of the gut sweet taste receptor plays
a crucial role in the glucose-stimulated incretin secretion, as the inhibition of the receptor did not
significantly reduce this secretion, suggesting that other mechanisms are fundamental for the GLP-1
secretion upon glucose administration. Our work suggests that the presence of pharmacological
concentrations of sucralose and stevioside on the basolateral membrane may increase GLP-1 secretion.
However, given the high concentrations needed to stimulate secretion, this finding is probably of
limited clinical relevance. Future research should concentrate on compounds that target SGLT1- and
GLUT2-mediated GLP-1 and GIP secretion, instead of compounds targeting the sweet taste receptor.
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