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a viable light DM candidate with correct relic density while obeying all direct and indirect
detection limits.
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1 Introduction

One of most outstanding failures of the Standard Model (SM) is the lack of a candidate for
dark matter (DM), the latter constituting 27% of the energy of the universe [1]. Many models
have been proposed for DM in a variety of beyond-the-SM theories. Higgs bosons could play
an important role in two ways. First, one or more Higgs could mediate interactions between
nucleons and DM. Second, DM could itself be a Higgs boson. In this letter, we consider
a two-Higgs-doublet model (2HDM) within which there are two CP-even Higgs bosons, h
and H (mh < mH), where one fits the SM-like state at 125 GeV. We show that if the
h and H mediate the interactions of DM with quarks we can arrange for the DM-nucleon
interactions to be isospin-violating, thereby allowing light dark matter to be consistent with
the LUX (2016) limits [2] at low DM mass, independent of the nature of the DM particle itself.
Next, we demonstrate that if the 2HDM is extended to include a stable singlet scalar boson,
S, whose interactions with quarks are mediated by the h and H, we can choose parameters
so that the S can provide the observed relic density even for mS < 60 GeV without violating
any theoretical or phenomenological constraints.

The minimal SM extension (called xSM) for which DM might be a Higgs boson is to
add a scalar singlet field S protected by a Z′2 symmetry under S → −S, communicating with
the SM via a λS2H†H interaction [3, 4]. However, to achieve correct relic DM abundance,
ΩSh

2, for mS <∼ 60 GeV a rather large value of the portal coupling λ is required. This leads
to both too large BR(HSM → SS) and a direct DM detection cross section exceeding the old
LUX (2013) upper limit [5].

Both problems can be cured in the 2HDMS model [6] in which a real gauge-singlet scalar,
S, is added to the two doublet fields of the 2HDM. As above, if a Z′2 symmetry is imposed
and we require that S not have a vacuum expectation value (vev) then the h and H of the
2HDM will be mass eigenstates and the S can be dark matter. The main idea is that if the
h (H) is identified as the 125 GeV state (the h125 and H125 scenarios, respectively) it can
have a very small portal coupling to S (and therefore small SS branching ratio) while correct
relic abundance can be achieved via relatively strong interactions of the H (h) with the S.

In addition to being able to achieve correct ΩSh
2 for a light S with small SS branching

ratio of the SM-like Higgs, in the 2HDMS model with Type II Yukawa couplings one can

– 1 –



J
C
A
P
1
0
(
2
0
1
6
)
0
4
0

avoid the LUX (2016) exclusion bounds for low mass DM. The key point is that in Type II
models the couplings of the non-SM-like Higgs to up- and down-type quarks, and therefore
to protons and neutrons are not the same, and, for appropriate parameter choices, can even
have opposite sign leading to a very suppressed cross section for DM scattering off of a
nucleus [5–9].

The paper is organized as follows. In section 2 we briefly describe the current status of
direct detection experiments and show how isospin-violating interactions of DM are possible
in the Type II 2HDM context, independently of whether or not dark matter is a Higgs boson.
In section 3 we introduce the Type II 2HDMS and find parameters for which the S is a fully
viable dark matter candidate. We end with a summary of our results.

2 Direct detection of dark matter and isospin-violation

DM is a compelling window to new physics and a primary means for its direct detection is
via scattering off nucleons. Experimental results are typically translated into the event rate
(or limit) for the spin-independent cross section for DM scattering off a nucleon σSI

DM−N as a
function of DM mass. The strongest exclusion limits are currently those from LUX [10] and,
in the very-low mass regime (i.e. DM mass below 15 GeV), SuperCDMS [11].

Translating from experimental data to σSI
DM−N involves many assumptions, including use

of the Standard Halo Model (as in [10]) and elastic scattering at zero-momentum transfer
with a short range contact interaction. In particular, limits on σSI

DM−N are typically given
assuming that DM couples equally to the neutron and proton, the strengths of these couplings
being denoted by fn and fp — see [6] for details using our conventions. If fn/fp 6= 1, one
must apply a rescaling factor ΘX to convert the predicted DM-proton cross-section σSI

DM−p
to the DM-nucleon cross section σSI

DM−N obtained assuming fn/fp = 1:

σSI
DM−N = σSI

DM−p ΘX(fn, fp), (2.1)

where the rescaling factor ΘX for a multiple isotope detector is defined in [6]. When fn/fp 6=
1, ΘX(fn, fp) will depend upon the isotope abundances (which are detector-dependent) and
can be as small as ∼ 10−4 when fn/fp is close to −1, −0.8, −0.7 for target nucleons Si, Ge,
and Xe, respectively, (with weak dependence on mS) [12].

As we now describe, such fn/fp values can be achieved in multi-Higgs models, indepen-
dently of the nature of DM. One Higgs must be identified with the SM-like state at 125 GeV
and have very weak coupling to DM, while one or more of the other Higgs bosons should
be primarily responsible for mediating DM-quark interactions. As derived in [6], the general
expression for fn/fp is

fn
fp

=
mn

mp

Fn
u λ̃U + Fn

d λ̃D

F p
u λ̃U + F p

d λ̃D
(2.2)

where

FN
u = fNTu +

∑
q=c,t

2

27
fNTG

(
1 +

35

36π
αS(mq)

)
(2.3)

FN
d = fNTd + fNTs +

2

27
fNTG

(
1 +

35

36π
αS(mb)

)
(2.4)

– 2 –



J
C
A
P
1
0
(
2
0
1
6
)
0
4
0

-1.00 -0.98 -0.96 -0.94 -0.92 -0.90 -0.88
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

λ
˜
U/λ
˜
D

f n
/f p

Figure 1. The correlation between fn/fp and λ̃U/λ̃D with (red) and without (blue) QCD NLO
corrections and using fnTu = 0.011, fnTd = 0.0273, fnTs = 0.0447 and fpTu = 0.0153, fpTd = 0.0191, fpTs =
0.0447, all as employed in micrOMEGAs [14]. The yellow band corresponds to fn/fp in the range
-0.67 to -0.8.

(N = p, n) and the scale-dependent αS terms account for the QCD NLO corrections (not
included in [6]) while fNTG = 1−

∑
q=u,d,s f

N
Tq. λ̃U and λ̃D are defined as follows

λ̃U =
∑
H

ΛH
m2
H
CHU , λ̃D =

∑
H

ΛH
m2
H
CHD , (2.5)

where
∑
H sums over the Higgs mediators contributing to the t-channel diagrams, CHU,D

denote theH couplings to up-, down-type quarks, respectively, normalized to their SM values,
while the ΛH are dimensionless parameters specifying the strengths of the H couplings to a
pair of DM particles. Figure 1 shows the ratio fn/fp as a function of λ̃U/λ̃D. A negative
value of fn/fp is obtained in a narrow range of λ̃U/λ̃D around −0.9. The exact fn/fp value
is very sensitive to the QCD corrections. The choice which gives maximal suppression for
Xe as well as maximal relative scaling between Xe and Si is fn/fp ' −0.7, which occurs at
λ̃U/λ̃D ' −0.89 and −0.92 when the QCD NLO correction is included or not, respectively.1

The key ingredient in achieving λ̃U/λ̃D ∼ −0.9 is that the Higgs mediators have appro-
priately different couplings to up and down quarks. A 2HDM of Type II is such a model.
Using eq. (2.2) and the Higgs-quark couplings CU , CD of table 1, a given value of fn/fp
requires:

tanβ = −(fn/fp)F
p
u − (mn/mp)F

n
u

(fn/fp)F
p
d − (mn/mp)Fn

d

w + tanα

1− w tanα
(2.6)

where w = Λh
ΛH

m2
H

m2
h

. Requiring that the SM-like Higgs has zero coupling to a pair of DM

particles so as to avoid its having invisible decays, implies w → 0 (w → ∞) for the h125
(H125) scenario. In figure 2, we plot tanβ versus sinα in these two cases for various values
of fn/fp. The value of fn/fp ∼ −0.7 needed to suppress Xe limits corresponds to the very
narrow band between the solid blue and cyan lines. In the figures, we also show (dashed) lines
of constant Ch

V = sin(β − α) (CH
V = cos(β − α)) in the left (right) panels. Requiring Ch

V ∼ 1
(CH

V ∼ 1) for the h125 (H125) to be very SM-like implies that tanβ and sinα must lie within

1The possible role of NLO/multi-particle interactions in determining the precise fn/fp value needed to
minimize Xenon dark-matter scattering rate is discussed in [13].
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Higgs CV CU CD

h sin(β − α) cosα/ sinβ −sinα/ cosβ

H cos(β − α) sinα/ sinβ cosα/ cosβ

A 0 cotβ tanβ

Table 1. Tree-level vector boson couplings CV (V = W,Z) and fermionic couplings CF (F = U,D)
normalized to their SM values for the Type II 2HDMs.
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Figure 2. The left and right panels show contour plots (solid lines) of constant fn/fp in the
(tanβ, sinα) space for the case mh ∼ 125 GeV (H is the mediator) and mH ∼ 125 GeV (h is the
mediator), respectively. NLO QCD corrections are taken into account. The dashed lines are contours
of constant sin(β − α) and cos(β − α) in left and right panels, respectively.

the broad central yellow band. Combining this with the fn/fp ∼ −0.7 requirement leaves
only a small region in each of the (tanβ, sinα) parameter spaces, located near tanβ ∼ 1
and sinα ∼ −0.7 (+0.7), implying CH

D ∼ −CH
U ∼ 1 (Ch

U ∼ −Ch
D ∼ 1) for the h125 (H125)

scenario.

3 The 2HDMS dark-matter model

Let us now consider the 2HDMS model in which a singlet scalar Higgs, S, is added to the
2HDM. The Z′2 symmetric and gauge-invariant 2HDMS scalar potential was given in [15]
and [6]. In the end, the terms associated with the S in the potential of importance to this
study are:

VS =
m2

S

2
S2 + v (λhh+ λHH)S2 + λH+H−H+H−S2 +

λS
4!
S4

+ (λhhhh+ λhHhH + λHHHH + λAAAA)S2 . (3.1)

(The previously employed generic portal couplings appearing in eq. (2.5) are given by
Λh,H = −2λh,H .)

– 4 –
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Because its interactions are invariant under S → −S, the S can be DM provided it does
not acquire a vev. Further, the S does not affect the fits of [16, 17] to the LHC Higgs data
so long as the 2HDM state of mass 125 GeV has small branching ratio to SS pairs. To avoid
such decays we require λh = 0 or λH = 0 in the h125 or H125 scenarios, respectively. For our
numerical work, we employ the mh = 125 GeV or mH = 125 GeV parameter points of [16, 17]
that described the LHC Higgs data at the (rather stringent) 68% CL, supplemented by the
latest b→ sγ constraint of mH± >∼ 480 GeV for the Type II model [18]. For each such point,
we scan over the independent singlet-sector parameters (mS and λH or λh, respectively, fixing
λS = 2π) and accept only points that satisfy perturbativity, tree level vacuum stability, tree
level unitarity and for which a proper electroweak vacuum is achieved. We also require that
the precision electroweak S and T parameters fall within ±3σ of their observed values.

Dark matter relic abundance, ΩSh
2, is determined by the total DM annihilation rate.

The relevant processes depend upon whether we consider the h125 or H125 scenario. For
the h125 scenario, the amplitude diagrams for light dark matter (mS ≤ 50 GeV) are SS →
H → ff , SS → H → γγ, and (relevant for mA <∼ mS) SS → H → AA and SS → AA
via contact interaction. In the H125 scenario the SS annihilation tree-level diagrams are
SS → h→ ff , SS → h→ γγ, SS → h→ hh, SS → hh via t, u-channel S exchange and via
contact interaction. (SS → AA annihilation does not occur since mA > 420 GeV and the hh
final states do not contribute unless mS ≥ mh.) Also note that the parameter constraints
needed to avoid large BR(h→ AA) (BR(H → hh)) when mA < mh/2 (mh < mH/2) in the
h125 (H125) scenarios were studied in [17] and are incorporated in our 2HDM fits — they
cause some variations of the phenomenology with mA (mh). For example, in the h125 case if
mA < mh/2 then correct ΩSh

2 cannot be obtained if mA ≥ mS , whereas if mA > mh/2 then
mA > mS for the range of mS we consider and correct ΩSh

2 is easily obtained. Finally, we
note that in the H125 case if mh ∼ 2mS then s-channel h exchange processes are strongly
enhanced due to a resonance effect, whereas in the h125 case mH ∼ 2mS is not possible.

Thus, the main free parameter that determines ΩSh
2 in the h125 (H125) scenarios is λH

(λh). As studied in [6], for any 2HDM parameter point accepted by the analysis of [16, 17] it
is straightforward to find singlet-sector parameter choices for which the observed relic density
lies within the ±3σ window, ΩSh

2 = 0.1187± 0.0017, after satisfying all the theoretical and
experimental constraints related to the Higgs sector. (This is in sharp contrast to the xSM
model mentioned in the Introduction.) In the figures to follow, only points that have ΩSh

2

in the above band (“correct” ΩSh
2) are shown.

3.1 Collider bounds from direct searches for Higgs bosons

Having taken into account the theoretical constraints on the 2HDMS and found parameter
space points such that the S state in this model constitutes dark matter producing the
entire thermal relic abundance, we now turn to bounds from searching for non-SM Higgs
at the LHC. First of all, the available bounds for Higgs masses below 62.5 GeV were fully
implemented in [17]. Since we employ the points from that paper in the present work, these
bounds are automatically taken into account. In this section we shall discuss additional
collider bounds that must be imposed coming from searches for light Higgs bosons in the
mass range of 62.5− 125 GeV at the LHC.

Possibly relevant direct Higgs production searches are: i) CMS [19] and ATLAS [20]
limits on a light Higgs with mass & 90 GeV decaying to ττ produced via gluon fusion or
via bb̄ associated production; and ii) CMS [21] limits on a light pseudoscalar Higgs boson of

– 5 –
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mass 25− 80 GeV produced in association with bb̄ and decaying to a pair of τ leptons.2 We
find that these two constraints do not eliminate any of our points due to the fact that the
predicted cross sections are about 1–3 orders in magnitude below the experimental limits.

Next, we examine the consistency of our model points with the recent CMS result [22]
on the search for a new heavy resonance decaying to a Z boson and a light resonance (h
in our case), followed by Z → `` and the light resonance decaying to bb̄ or ττ . In our
model, these limits apply to the process A → Zh → ``h with h → bb̄ or ττ . Unfortunately,
since the experimental limits are given using overlapping color coding, it is not possible to
use the experimental plots to get precise limits as a function of mh and mA. However, it
is possible to extract the weakest and the strongest upper bounds at any given (mh,mA).
For mh < 62.5 GeV, we find that the strongest (weakest) bound in the bb̄ final state is 30 fb
(100 fb) with corresponding bounds of 10 fb (100 fb) in the ττ final state. For mh > 62.5 GeV,
the strongest (weakest) bound in the bb̄ final state is 10 fb (30 fb) with corresponding bounds
of 3 fb (10 fb) in the ττ final state. It is convenient to compare these bounds to our model
predictions by dividing the bound by the cross section for gg → A predicted in our model
(taking tanβ = 1, as appropriate in our model). This gives us the “weak” and “strong”
bounds on BR(A→ Zh→ ``bb̄/ττ).

In figure 3, the points show our predicted BR(A → Zh → llbb̄/ττ) as a function of
pseudoscalar mass mA, with coloring according to the mh value. The results are displayed
separately for two different mh ranges relevant for the subsequent discussion. In order to
visualize the impact of the experimental data on our model, both the strong (minimal) and
weak (maximal) upper limits on the cross section are shown by the black and gray curves in
each plot, respectively. The points above the black (gray) curves would be excluded by the
strong (weak) limits. We see that the strong upper limit in the bb̄ final state removes many
points with mh > 30 GeV and thus significantly constrains the light Higgs h in the H125
scenario. In particular, for the case mh > 62.5 GeV, this limit entirely eliminates the points
in the bulk with BR(h → bb̄) ≥ 70%, pushing this branching ratio down to the 20% level.
The ττ limits also have an impact for the mh ≤ 30 GeV points as shown in the lower left
plot, while their importance becomes marginal below 15 GeV. For the purpose of showing the
consistency of our model, we choose to adopt the ultra-conservatiove approach of imposing
the strong upper limits — that is in subsequent plots and discussions we retain only the
points below the black solid curves.

3.2 Collider bounds from jet plus missing energy final states

In this subsection, we consider the bounds from mono-jet+/ET searches for dark matter.
Such searches have been performed by the LHC experimental groups [23, 24], although, to
date, results from Run 2 are only available from ATLAS [25]. Unfortunately, they present
their results under assumptions that do not apply to our model. Most critically, the effective
operator approach is adopted to present the results. However, since the /ET cuts employed are
of order 100’s of GeV, the energy transfer in the collision exceeds the mediator (h) masses
of interest to us and the effective operator approach is very inaccurate. In addition, our
values of mh are such that the h is mainly produced on-shell. Thus, we do not think that
the bounds presented in the experimental papers can be applied to our analysis.

2Direct computation reveals that the cross section for a light A and for a light h are very similar in
magnitude in bb̄ associated production (and gluon fusion). Thus, the limits of [21] are, in principle, relevant
for H125 scenario in which there is a light h present.

– 6 –
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Figure 3. BR(A → Zh → llbb) (upper) and BR(A → Zh → llττ) (lower) as a function of mA.
The point color indicates the value of mh, which is below 62.5 GeV (left) and in the range of 62.5–
125 GeV (right). We display the (strong and weak — see text) experimental upper limits on the these
branching ratios assuming A production via gluon-fusion, where for each point the branching ratio
limit is computed by dividing the cross section limit by σ(gg → A) as computed taking tanβ = 1.
In this scenario the heavy Higgs H is identified as the SM-like state at 125 GeV. All points shown
can produce correct relic abundance and are not excluded by the LUX (2016) limit. Points below the
black (gray) curve satisfy the strong (weak) constraints from non-SM-like Higgs searches at the LHC.

Generally speaking, constraints from mono-jet+/ET searches will be applicable to our
scenarios when properly analyzed. In our model, the h mediator is mainly produced on-
shell and will yield /ET if the dark matter mass mS is below mh/2 and if h → SS decays
are dominant, as is the case for many of our scan points (but not all). When the narrow
width approximation is applicable, the jet+/ET cross section is the same as for jet+h times
BR(h → SS). For the bulk of our points, BR(h → SS) ' 100% implying little dependence
of the cross section on the nature of DM. Further, if the /ET cuts are large, the implied jet
energy will also be much larger than mh and the jet+h cross section will then depend weakly
on mh, rising only slowly as mh decreases. For these reasons, the scalar-mediator results from
the phenomenological analysis of [26] are applicable to our model despite the fact that they
assume fermion dark matter and only consider mediator masses above 125 GeV. Their figure
5 displays, as a function of mh, the limit on the ratio, defined as µ, of the cross section for
jet+/ET relative to that predicted if the mediator couplings to SM fermions have SM values.
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In the narrow width approximation, this ratio is equal to the ratio of the mediator-coupling-
squared to SM particles relative to SM strength. In their figure, only values of mediator
mass, mh, above 125 GeV are plotted, for which the limit is of order 2− 4, falling slowly as
mh decreases. Extrapolation to lower mh values suggests that it would only fall below 1 for
mh values below 20− 30 GeV and maybe not even then. Since our h couplings are such that
µ = 1 is predicted, we conclude that the experimental limits from the 8 TeV, Run 1 data
(and the projected limits from the 14 TeV, Run 2 data) do not exclude our preferred points.

Of course, many of our scan points have mh < 2mS , for which the mediator h decay is
off-shell. While the mono-jet cross section in this case is more involved (proportional to the
square of the product of the h couplings to DM and to SM fermions divided by the off-shell
h propagator), the current constraints in this regime from the LHC turn out to be extremely
weak [27].

3.3 Dark matter direct detection

In figure 4, we show the expected cross sections for S scattering off nuclei in Xenon-based
detectors for both the h125 and H125 cases together with LUX (2016) results and the
XENON1T future projection. The points are colored with respect to fn/fp. Note that,
in accordance with expectations, points for which the cross section is suppressed correspond
to fn/fp approaching −0.7. The conclusion from the plots is that, after including isospin-
violation, the 2HDMS could easily be consistent with both the LUX (2016) limits and also
the limits anticipated for XENON1T. Conversely, future improved exclusion limits or positive
signals will either place an upper bound on fn/fp or favor a particular value of fn/fp.

We have also examined the predicted cross sections for Si and Ge detectors. For both
the h125 and H125 scenarios, our points (which satisfy the SuperCDMS and LUX (2016)
limits) have cross sections at least two orders of magnitude below any of the tentative signals
(CDMS-II [29, 30], DAMA [31], CoGeNT [32], and CRESST-II [33]) found in the low mass
region.

3.4 Dark matter indirect detection

Finally, we consider the limits from indirect detection of SS annihilation products. If DM
annihilates it could produce pairs of SM particles, such as electron-positron pairs or photons.
Currently, there are limits from the Fermi-LAT collaboration, see [34] and [35], on this
annihilation cross section coming from the observation of the dwarf spheroidal galaxies of
the Milky Way, which are the most DM-dominated objects we know of. We do not consider
limits related to the observation of the Galactic Center [36] since they depend strongly on
the choice of the DM profile.

Our results for indirect detection related to the bb̄ and τ+τ− final states are shown in
figure 5. As described below, the τ+τ− final state must be considered for mS ≤ mb. In
the h125 case, we observe that the points which survive the LUX (2016) limits and obey
the Fermi-LAT (2015) limits are those with mA < 62.5 GeV. Note that even a factor of 2
improvement in the Fermi-LAT limits would exclude all h125 points with mS >∼ 12 GeV.
In the H125 case, we compare points with mh < 62.5 GeV to points with mh ≥ 62.5 GeV.
Regardless of the mh choice or the value of mS , a large number of points survive the current
Fermi-LAT limits and a significant fraction will also survive improved limits. In the h125
(H125) case, all the blue (all the) points shown below the bb̄ threshold are eliminated by the
τ+τ− final state limits.
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Figure 4. For points with correct ΩSh
2, we show ΘXeσ

SI
S−p vs. mS for the h125 (upper) and H125

(lower) cases compared to the LUX (2016) bound [10] (solid dark green) and the XENON1T (2017)
projections (dark dashed green boxes) [28]. All points shown satisfy the SuperCDMS limits. The
neutrino coherent scattering dominates the recoil spectrum below the thick dashed orange line.

After all constraints, the LHC phenomenology of the non-SM-like 2HDM Higgs bosons
is easily summarized. First, all must lie in definite mass ranges below 650 GeV. The allowed
mass range for all scalar bosons in various scenarios is summarized in table 2. Second,
β ∼ π/4 (tanβ = 1) and α ∼ −π/4 (+π/4) in the h125 (H125) Type II scenarios imply
nearly unique Higgs-quark couplings. The resulting direct production cross sections at 13 TeV
for all these non-SM-like 2HDM Higgs bosons will be substantial. Further, their decays
will be such that detection should be possible. In the h125 scenario, H± → tb is always
dominant (H± → HW± is kinematically forbidden) while H → SS,AZ, tt̄ constitute the
main decays for the H. In the relevant range of mA <∼ 62.5 GeV, A→ bb̄ (ττ) dominates for
mA > 2mb (mA < 2mb). For the H125 scenario, the important modes are H± → hW±, tb
and A → Zh, tt̄. The h will decay to a mixture of bb̄ and SS (invisible) final states. As an
example, ref. [37] claims that tt̄A production with A → bb will be detectable at the LHC
Run 2 for tanβ = 1 if mA ∈ [20, 100] GeV.
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Figure 5. Indirect detection cross sections for mh ∼ 125 GeV (left) and mH ∼ 125 GeV (right)
compared to Fermi-LAT limits for bb̄ and τ+τ− annihilations shown in the upper and lower panels,
respectively. All points have correct ΩSh

2 and obey the LUX (2016) and SuperCDMS limits.

Scenario mS mh mH mA mH±

h125 . 12 125 440− 650 . 62.5 485− 630

H125 >∼ 4 10− 62.5 125 420− 650 485− 630

H125 >∼ 25 62.5− 125 125 420− 650 485− 630

Table 2. The allowed mass range for the scalars in various scenarios. The units are in GeV.

4 Conclusions

In a multi-Higgs model in which one Higgs fits the LHC 125 GeV state, one or more of
the other Higgs bosons can mediate DM-nucleon interactions. We have shown that for
appropriate Higgs-quark couplings maximal DM isospin violation is possible independent
of the nature of DM. We then considered the explicit example of a Type II 2HDM where
the h (H) is identified with the LHC 125 GeV state while the H (h) mediates the coupling
between quarks and DM. This allows us to have DM of correct relic density that can even
be maximally isospin violating (for 2HDM parameters tanβ ∼ 1 and α ∼ ±π/4), thereby
evading LUX (2016) and future XENON1T limits even at low DM mass. If DM is discovered
in the future, then the level of the observed direct detection cross section will determine the
fn/fp value and the relevant tanβ and α which can, hopefully, be checked against direct
Higgs sector observations.

We next considered the 2HDMS model in which a scalar singlet, S, is added to the
2HDM, showing that it can be a viable DM particle in both the h125 and H125 scenarios. In
the former (latter), the hSS (HSS) coupling can be sufficiently suppressed that the S does
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not affect the purely 2HDM fits of the h (H) to the 125 GeV signal, while the HSS (hSS)
coupling can be chosen to give correct ΩSh

2. By employing appropriate isospin-violating
2HDM parameters, one can avoid direct and indirect detection limits even at low mS . In
this model, the non-SM-like Higgs bosons will be discovered during LHC Run 2 due to the
fact that their masses and couplings are strongly restricted.

It is also worth mentioning that the single DM scalar scenario of the 2HDMS considered
here can be easily extended to a multi-component DM sector with N real O(N)-symmetric
scalars in the spirit of [38].
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