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REVIEW

Recent advances in covalent, site-specific protein
 immobilization [version 1; referees: 3 approved]

Morten Meldal, Sanne Schoffelen
Center for Evolutionary Chemical Biology, Department of Chemistry & Nano-Science Center, University of Copenhagen, Copenhagen,
Denmark

Abstract
The properties of biosensors, biomedical implants, and other materials based
on immobilized proteins greatly depend on the method employed to couple the
protein molecules to their solid support. Covalent, site-specific immobilization
strategies are robust and can provide the level of control that is desired in this
kind of application. Recent advances include the use of enzymes, such as
sortase A, to couple proteins in a site-specific manner to materials such as
microbeads, glass, and hydrogels. Also, self-labeling tags such as the
SNAP-tag can be employed. Last but not least, chemical approaches based on
bioorthogonal reactions, like the azide–alkyne cycloaddition, have proven to be
powerful tools. The lack of comparative studies and quantitative analysis of
these immobilization methods hampers the selection process of the optimal
strategy for a given application. However, besides immobilization efficiency, the
freedom in selecting the site of conjugation and the size of the conjugation tag
and the researcher’s expertise regarding molecular biology and/or chemical
techniques will be determining factors in this regard.
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Introduction
Protein immobilization plays an important role in the fields of 
life science and medicine. It forms the basis for many bio-based 
applications involving protein–protein or protein–ligand inter-
actions, such as biosensors, biomedical implants, recyclable  
biocatalysts, and protein arrays for drug screening1. For these 
devices to perform in an optimal manner, a high level of con-
trol over the immobilization process is crucial (see Figure 1). In 
the case of biosensors, such control will ensure that the analyte  
binding site of a receptor molecule is optimally accessible and a 
device with maximum sensitivity is generated. Similarly, biocat-
alysts are preferably immobilized in a directed fashion such that  
their active site can easily be reached by substrate molecules and, 
hence, maximum activity is obtained. Control over the immobili-
zation process also contributes to the homogeneity of the surface  
coverage, such that devices are generated with uniform and well-
defined characteristics, providing reproducible and accurate output2.

In the past few decades, researchers have devoted substantial effort 
to developing new strategies for site-specific protein immobiliza-
tion. Non-covalent approaches, also referred to as affinity-mediated 
immobilization, include the use of protein A or G for binding of 
antibodies, peptide tags such as polyhistidine, protein tags such 
as maltose-binding protein and glutathione-S-transferase, DNA-
directed immobilization, and the biotin–streptavidin interaction 
pair. While highly useful, these approaches will not be discussed 
in this review. Instead, the reader is referred to excellent reviews 
published elsewhere2–7.

The present review focuses on covalent methods for site-specific 
protein immobilization. Covalent immobilization provides a 
distinct, more robust, and stable way of tethering proteins to a 
surface. Such modification of surfaces becomes important where 
more permanent properties are required, e.g. in medical sensors 
and implants. To a large extent, the advances made in this field 
represent implementations of developments in the more general 
field of site-specific protein modification. These developments 
comprise the discovery of new bioorthogonal reactions that proceed 
under physiological conditions between chemical groups that are 
absent in, and do not cross-react with, endogenous functionalities 
in proteins8,9. In addition, they include methods for the site-specific 
introduction of these bioorthogonal groups into proteins10. Worth 
mentioning, and potentially more appealing to researchers with a 
medical or biological background, are also the advances in the field 
of enzyme-mediated protein modification11,12.

Broadly speaking, we will highlight a selection of both enzyme-
mediated and chemical approaches for covalent, site-specific 
protein immobilization. Illustrative examples from the past five 
years will be provided with the intention of demonstrating the 
intriguing diversity regarding the nature of the proteins, solid 
supports, and application purposes for which these approaches have 
been employed.

Enzymatic approaches for covalent, site-specific 
protein immobilization
Enzyme-mediated immobilization: sortase A
Sortase A is a transpeptidase from the Gram-positive bacterium 
Staphylococcus aureus that recognizes a LPXTG sequence at the 
C-terminus of a target protein. Using a cysteine thiol nucleophile, 
it cleaves between the T and G residues of this sequence, yielding 
an acyl-enzyme intermediate. Subsequently, an N-terminal  
pentaglycine amine nucleophile attacks the thioester to complete 
the ligation reaction. The use of sortase for protein modification 
was introduced in 200713,14. Since then, the approach has been 
exploited for a range of biotechnology applications including  
protein immobilization (see Figure 2)15.

Recent examples of the use of sortase for site-specific protein 
immobilization include the conjugation of adhesion proteins to 
fluorescent microsphere beads16, the modification of liposomes 
with green fluorescent protein (GFP)17, the production of an influ-
enza virus protein array on glass slides18, antibody and enzyme 
immobilization on cellulose nanocrystals19, immobilization of a 
bait protein to agarose beads for application in affinity purification 
mass spectrometry20, and layer-by-layer immobilization of two 
fluorescent proteins on gold21. An interesting aspect of the last- 
mentioned study is the fact that two sortase variants were used 
with orthogonal substrate specificities. This facilitated the 
immobilization of GFP as the second protein layer on top of a layer 
of immobilized red fluorescent protein.

Sortase-mediated reactions reach a dynamic equilibrium because 
the reaction product is also a substrate for the enzyme. As a 
consequence, sortase-mediated reactions have low efficiency, and 
a large excess of both enzyme and substrate is required to obtain 
sufficient conversion. The reaction efficiency has been improved 
in different ways, amongst others by using a β-hairpin structure 
around the ligation site22 or depsipeptide substrates23. Both strat-
egies prevent the reversible reaction from occurring. In addition, 
sortase variants with increased ligation activity have been evolved24. 

Figure 1. Schematic representation of oriented immobilization of (left) antibodies and (right) biocatalysts. Control over the site of 
immobilization ensures maximum accessibility to the analyte binding site and the biocatalyst’s active site.
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Of particular interest in this context is the work by Heck et al. 
in which the authors developed an assay to follow the sortase- 
mediated ligation on microparticles by real-time flow cytometry25. 
This assay allows for the comparison of different enzymatic (and 
chemical) immobilization strategies and the optimization of reac-
tion parameters for enhanced immobilization performance.

The reversibility of the sortase-mediated reaction can be advanta-
geous in applications in which the protein is denatured or deac-
tivated over time. In such a case, sortase can be used for the 
regeneration of the bioactive surface, as demonstrated by Ham 
et al.26. In addition, the reversibility of the reaction allows for the 
assessment of the degree of immobilization by cleaving the pre-
viously tethered protein followed by quantification using well- 
established solution-phase techniques. This approach was employed 
by Cambria et al. to determine the amount of immobilized human 
epidermal growth factor on functionalized hydrogels27.

Immobilization by an enzyme self-labeling tag: the SNAP-
tag
The SNAP-tag, which was first reported in 2003 by Keppler  
et al., is one of the most versatile self-labeling protein tags28. 
The protein, which is a mutant version of the human DNA repair  
protein O6-alkylguanine-DNA-alkyltransferase (AGT), reacts with 
benzylguanine derivatives via an internal reactive cysteine residue, 
thereby forming a covalent thioether bond upon the release of 
guanine. In order to facilitate covalent, oriented protein immo-
bilization, the SNAP-tag, which is 20 kDa in size, is fused to a 
target protein, while the solid support is functionalized with a  
benzylguanine derivative (see Figure 3A)29.

In the past few years, the technology has been employed for the 
immobilization of GFP and extracellular fragments of the adhesion 
protein E-cadherin on gold surfaces containing a self-assembled 
monolayer of benzylguanine thiol mixed with methoxy-capped 
tri(ethylene glycol) undecanethiol30,31. Variation of the benzyl-
guanine thiol concentration allowed for control over the protein 
density. The method was applied to investigate the adhesive func-
tionality of E-cadherin surfaces by adhesion force spectroscopy. In 
a second example, SNAP-tagged fluorescent proteins and cadherin 
were coupled to quantum dots coated with amino-poly(ethylene 
glycol) and functionalized with an N-Hydroxysuccinimide ester 
derivative of benzylguanine32. The fluorescent properties of the 

quantum dots and the model protein GFP enabled estimation of 
the immobilization efficiency. Recker et al. employed the SNAP-
tag technology for the immobilization of cytokines on polystyrene 
particles33. The directionally immobilized cytokines were shown to 
be fully signaling competent in cell culture, supporting the potential 
use of this approach for basic research on cytokine signal transduc-
tion and the improvement of biomaterials through functionalization 
with cytokines.

Additional examples of self-labeling protein tags include the 
HaloTag (33 kDa)34 and the engineered variant of the SNAP-tag, 
CLIP-tag (see Figure 3B)35. Interestingly, the orthogonality in 
substrate specificity (O2-benzylcytosine vs. O6-benzylguanine) 
allows for simultaneous and specific reaction of SNAP and CLIP 
fusion proteins with different molecular probes or, potentially, with 
positional control of immobilization on the same substrate surface.

Chemical approaches for covalent, site-specific 
protein immobilization
In the past few decades, several bioorthogonal chemistries have 
been developed for site-specific labeling of proteins and other 
biomolecules8,9. The development of these chemical reactions 
has greatly been driven by the desire to selectively label a target 
molecule in complex mixtures of biomolecules, such as cells or 
living organisms. In the following section, it will be shown how 
these bioorthogonal reactions can be very useful for the ligation of 
proteins in chemically less complicated media (that is, for immobi-
lization purposes) as well.

The site-specific nature of these approaches depends on the fact that 
the functional groups which are employed in the different reactions 
are absent and do not cross-react with endogenous amino acids. 
Different site-specific methods can be used to introduce these 
groups into the protein of interest, after which the chemical immo-
bilization reaction can occur. What is noteworthy is that the same 
method (for example, enzyme-mediated modification) has been 
used to introduce different functionalities (such as aldehydes, 
azides, or alkynes). This section is not meant to be exhaustive but 
rather describes a selection that, in our opinion, clearly demon-
strates the value of the best chemical approaches for protein immo-
bilization. A description of additional approaches, such as native 
chemical ligation, the Staudinger ligation, thiol-ene chemistry, pho-
tochemistry, and more specifically the combination of non-covalent 

Figure 2. Sortase-mediated protein immobilization. Instead of pentaglycine, the solid support can be modified with substrate nucleophiles 
consisting of a smaller number of glycine residues. Alternatively, the LPXTG recognition sequence is coupled to the surface, and the protein 
of interest is tagged with an N-terminal oligoglycine motif.
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Figure 3. Site-specific protein immobilization by fusion to self-labeling tags. (a) The SNAP-tag, 20 kDa in size, reacts with 
O6-benzylguanine. (b) The CLIP-tag (also 20 kDa) reacts with O2-benzylcytosine substrates, whereas the HaloTag (33 kDa) forms a covalent 
bond through nucleophilic displacement of halides from alkyl halide substrates.

interaction with photochemistry, can be found elsewhere1,36–39. An 
overview of the five elegant approaches discussed here is depicted 
in Figure 4.

Oxime ligation
The condensation of aldehydes or ketones with aminooxy or 
hydrazide compounds to give a stable oxime or hydrazone linkage, 
respectively, is known as the oxime ligation. The reaction is 
generally slow at neutral pH and is normally performed at pH 4–6. 
The fact that neither the ketone/aldehyde nor the aminooxy/
hydrazide is naturally present in proteins makes this reaction ideal 
for oriented protein immobilization.

Ketones or aldehydes can be introduced into proteins in a site- 
specific manner through the incorporation of non-natural amino 
acids, expressed protein ligation (EPL), or enzyme-mediated  
strategies8. Additionally, the aldehyde or ketone moiety can be  
introduced by N-terminal transamination, by periodate oxida-
tion of an N-terminal serine or threonine residue, or by periodate  
oxidation40 or metabolic labeling41 of glycans in antibodies and 
other glycoproteins. Importantly, a recent advancement with  
respect to the oxime ligation (a reaction which itself has been 
known for decades) is the discovery that aniline can be used as a 
catalyst42. It allows the reaction to be performed at neutral pH, mak-
ing it useful for pH-sensitive proteins as well. However, it may be 
noted that oxime ligations are carried out under reversible condi-
tions and although equilibrium is in strong favor of the product, 

oximes are prone to slow exchange reactions and hydrolysis. There-
fore, in situations requiring high stability, the oxime or hydrazone 
bond is typically reduced with sodium cyanoborohydride.

Cho et al. reported one of the latest examples utilizing the  
oxime ligation for oriented protein immobilization. Two enzymes, 
alkaline phosphatase and methyltryptophan oxidase, were  
tethered to amine-coated beads and similarly coated surfaces of a  
96-well plate43. In order to introduce the aldehyde moiety into 
these model proteins, the researchers utilized formylglycine- 
generating enzyme, which is known to oxidize the cysteine of a 
six-amino-acid recognition sequence. This ligation was stabilized 
by oxime reduction44.

In other applications, however, the reversible nature of the oxime 
ligation can be exploited. Rashidian et al. describe the chemoen-
zymatic, reversible immobilization of GFP and the therapeutic 
protein glucose-dependent insulinotropic polypeptide. Protein 
farnesyl transferase (PFTase) was used for the introduction of 
the aldehyde moiety45. Interestingly, the proteins, containing a 
C-terminal tetrapeptide as the PFTase recognition sequence, could 
be captured selectively from a crude cellular extract. After coupling 
to hydrazide-modified agarose beads, the proteins were released 
under mild conditions by the addition of an alkoxyamine. The use 
of synthetically modified alkoxyamines, containing a fluorophore 
or a PEG chain, allowed for the simultaneous modification of the 
purified proteins.

Page 5 of 11

F1000Research 2016, 5(F1000 Faculty Rev):2303 Last updated: 25 DEC 2016



Azide–alkyne cycloaddition
The 1,3-dipolar cycloaddition between azides and alkynes is one 
of the best-known click reactions46–48. Essential for its popularity 
has been the discovery by both the Meldal and Sharpless research 
groups that the reaction proceeds at room temperature if Cu(I) 
is used as the catalyst49–51. The reaction has found widespread 
use in a myriad of applications, including the investigation and 
manipulation of proteins52–55. Also for protein immobilization, 
the Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) and its 
strain-promoted variant (SPAAC)56 have become more and more 
popular. Like aldehydes and ketones, azides and alkynes are not 
naturally present in proteins and thus have to be introduced using 
either a biosynthetic or a chemical approach.

The incorporation of non-natural amino acids, in particular, has  
been shown to be an attractive approach. Both site-specific  
introduction using the amber suppression method57 and the more 
straightforward approach of residue-specific replacement58 have 
 been employed for this purpose. For example, an engineered variant 

of GFP, functionalized with a single azide by expression in an auxo-
trophic bacteria strain using azidonorleucine as a methionine sur-
rogate, was immobilized on SPR sensor surfaces via the SPAAC  
reaction59. The same protein, site-specifically functionalized via 
genetic encoding of a cyclooctyne-containing amino acid, was 
used to demonstrate the use of the SPAAC reaction in biomolecular 
patterning of glass surfaces60. In this proof-of-concept study, the 
increase in fluorescence of azidocoumarin-modified glass upon 
reaction with a cyclooctyne provided a convenient read-out of the 
immobilization process.

GFP also acted as the model protein in an interesting study in 
which the effect of the type of solid support, the linker length, 
and the immobilization site on CuAAC-mediated immobilization 
efficiency was investigated61. For this purpose, the amber suppres-
sion method was utilized to facilitate the introduction of para- 
azidophenylalanine at three different positions in the protein. 
Polystyrene, TentaGel – consisting of poly(styrene-oxyethylene) 
graft copolymer – and Sepharose (cross-linked agarose) resins  

Figure 4. Selection of chemical approaches for covalent, site-specific immobilization of proteins. (a) Oxime ligation, (b) Cu(I)-catalyzed 
azide–alkyne cycloaddition (CuAAC) reaction, (c) strain-promoted azide–alkyne cycloaddition (SPAAC) reaction, (d) strain-promoted alkyne–
nitrone cycloaddition (SPANC) reaction, and (e) inverse electron-demand Diels–Alder reaction (IEDDA) reaction.
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were selected as solid supports. Sepharose derivatized with  
propargyl alcohol afforded the highest yield of immobilization. 
Up to 2-fold difference in immobilization efficiency was observed 
depending on the location of the clickable handle.

Trilling et al. combined non-natural amino acid incorporation 
with the SPAAC reaction for oriented immobilization of antibody 
fragments62. The variable domain of a llama antibody was func-
tionalized with a single azidohomoalanine residue and coupled 
to a bicyclononyne-modified SPR chip. It was shown that the ori-
ented immobilization led to a strongly increased sensitivity of the 
biosensor when compared to an SPR chip containing randomly 
immobilized antibodies. More recently, Lühmann et al. demon-
strated the site-specific conjugation of fibroblast growth factor  
2 to agarose beads through genetic encoding of propargyl-lysine 
followed by the CuAAC reaction63. The immobilized growth factor 
was shown to have retained its ability to induce cell proliferation. 
Of interest for the field of biocatalysis is the study reported by Wu 
et al. The model enzyme T4 lysozyme was immobilized on super-
paramagnetic beads64. Site-specific, CuAAC-mediated immobili-
zation enhanced the stability of the enzymes towards freeze-thaw 
cycles and the denaturant urea when compared to enzyme immobi-
lized in a random manner on epoxy-modified beads. The activity of 
the immobilized enzyme was shown to vary depending on the site 
of conjugation.

Instead of non-natural amino acid incorporation, EPL can facilitate 
N- or C-terminus-specific functionalization of proteins with azides 
or alkyne moieties65–67. The method has been combined with the 
azide–alkyne cycloaddition, amongst others, to immobilize GFP 
and aldo-keto reductase on a PEG-based solid support68, GFP 
and single-chain variable fragment antibodies on agarose beads69, 
and nanobodies on polymersome vesicles70. A HER2 affibody, a 
6.5 kDa protein with high affinity for the oncogene HER2/neu 
receptor, has been tethered to superparamagnetic iron oxide  
(SPIO) nanoparticles71. This approach was used to target the nano-
particles, acting as imaging agents, to tumor cells. What is note-
worthy is that these HER2–SPIO nanoparticles, obtained by the  
combination of EPL and CuAAC chemistry, were shown to perform 
better than SPIO nanoparticles to which the same affibody was  
conjugated using random immobilization approaches.

As a third approach, enzymes have been employed for the intro-
duction of azides and alkynes into proteins. For example, Keillor 
and colleagues showed that microbial transglutaminase is able 
to catalyze the attachment of propargyl amine to the C-terminus 
of proteins72. A heptapeptide, also called Q-tag, functioned as 
the recognition sequence. In a proof-of-principle experiment, 
a Q-tagged fluorescent protein was immobilized to magnetic 
azide-modified nanoparticles using the CuAAC reaction as the 
conjugation method. Moreover, Qu et al. combined enzymatic 
modification with the SPAAC reaction for the immobilization of 
thrombomodulin73. Sortase A was employed to introduce an azide 
moiety at the C-terminus of this blood-coagulation-reducing 
protein. Subsequently, the protein was tethered to dibenzocy-
clooctyne-modified vascular grafts, which were thus rendered 
thromboresistant. Interestingly, it was shown that the dibenzocy-
clooctyne-modified surfaces could be sterilized by ethylene oxide 

prior to the strain-promoted [3+2] cycloaddition. In this way, the  
described strategy has great potential for clinical application by 
providing a sterile off-the-shelf product ready to be coated with 
azide-modified therapeutic protein right before implantation.

As a chemical alternative to the abovementioned biosynthetic 
methods, we recently showed that a single azide can be site- 
specifically introduced at the N-terminus of GFP using the 
pH-controlled and metal-free diazo transfer reaction74. This 
straightforward procedure was combined with the SPAAC reac-
tion to immobilize azido-functionalized GFP on bicyclooctyne- 
modified vertical GaAs nanowires75. It was shown by fluorescence 
microscopy that anti-GFP antibody bound to the immobilized 
protein. The experiment functioned as a proof-of-concept study, 
demonstrating the feasibility of functionalizing vertical semicon-
ductor nanowires for biological applications, such as biosensing 
and the study of protein–protein interactions.

Other click reactions
In 2010, the need for a bioorthogonal reaction faster than SPAAC 
for the labeling of proteins in living systems led to the development 
of the strain-promoted alkyne–nitrone cycloaddition (SPANC)76. 
The 1,3-dipole nitrone is used as a more reactive alternative for 
an azide, leading to reaction rates that are up to 30 times faster. 
Despite the fact that its use for protein labeling in general has been 
limited so far, the reaction has already been successfully applied 
for protein immobilization. Single-chain variable fragment antibod-
ies against the tumor marker HER2 were coupled to fluorescent, 
superparamagnetic nanoparticles77. The nitrone group was intro-
duced specifically at the N-terminus of the antibody molecules. 
Binding of the targeted nanoparticles to HER2-positive cells was 
observed, demonstrating the feasibility of the approach and its 
potential use as a general strategy for the development of a new 
generation of targeted nanoparticles.

The inverse electron-demand Diels–Alder reaction (IEDDA) 
between 1,2,4,5-tetrazines and strained alkenes or alkynes is 
another click reaction that was recently introduced78. Especially, 
when trans-cyclooctene is used as the strained alkene, the reaction 
rate is extremely high, exceeding those of the SPAAC, SPANC, 
and CuAAC reactions79. However, speed and concomitantly lower 
usable reagent concentrations are typically of less importance in 
the case of protein immobilization. Researchers have, nevertheless, 
explored the use of the IEDDA reaction for this application80–82. 
So far, though, the method has been used only in a non-specific  
manner by functionalizing the proteins of interest with an NHS-
derivative of tetrazine or trans-cyclooctene. Non-natural amino 
acids bearing various strained alkenes, alkynes, and tetrazine 
have been synthesized and can now be incorporated into proteins 
in a site-specific manner83–85. Therefore, it is expected that the 
first reports employing the IEDDA reaction for oriented protein  
immobilization will appear in the near future.

Concluding remarks
In conclusion, we believe that the large set of methods available 
today to site-specifically immobilize proteins to solid supports 
holds great promise for future use in applications ranging 
from biosensor development to biocatalyst immobilization and  
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next-generation biomaterials. A considerable number of exam-
ples performed on a diverse set of proteins and solid supports has 
been provided that substantiate this prospect. Particularly exciting 
are those studies that are close to a final application, such as the 
thrombomodulin-modified vascular grafts73. An important note is 
that several more or fewer orthogonal click reactions have appeared 
over recent years that in years to come will allow us to carry out 
macrostructured immobilization of a range of functional proteins 
working in concert.

Unfortunately, most reports deal with proof-of-concept stud-
ies and only in a few cases has the immobilization efficiency 
been addressed. Therefore, it is currently difficult to compare the 
different approaches and to select the optimal method for a specific 
application. In our opinion, it would be extremely interesting if 
more analytical studies would be performed such as the one 
reported by Heck et al., comparing the ligation efficiency of several 
sortase variants25. Of interest is also the kind of analysis performed 
by Lühmann et al.63, in which the immobilization efficiency was 
estimated as the fraction of bound protein relative to the total 
amount of protein used. The more common measure of express-
ing the yield as the fraction of surface that got covered20,32,33 does 
not provide any information on the amount of protein that was 
lost during the immobilization process. This information will be 
valuable from an economical point of view and when protein avail-
ability is limited, for example because of low expression yields, 
often associated with less stable and more interesting proteins. 
It should be noted that regarding the surface coverage, it is the 
fraction of active protein molecules that is most relevant. When 
proteins other than fluorescent proteins are immobilized, such 
analysis will obviously be more challenging. The control of  
surface density is another aspect that has received little attention  
so far. This feature can be controlled in the primary function-
alization step in which the surface is efficiently and stably  
modified with, for example, azide or alkyne groups for the  
CuAAC or SPAAC reaction75 or pentaglycine or benzylguanine  
for sortase- or SNAP-tag-mediated protein immobilization,  
respectively15,29. As described above, Fichtner et al. used such  

an approach to vary the density of adhesion protein on gold  
surfaces31.

Undoubtedly, it is not only the efficiency of the immobilization 
strategy that plays a role in the selection process. Another decisive 
factor is the freedom in selecting the site of conjugation, which is 
highest in the case of the chemical approaches combining non-
natural amino acid incorporation with one of the click reactions. 
Low stability and sensitivity of the protein to low pH or towards 
an organic or metal catalyst will point to one of the newest click 
reactions such as SPAAC, SPANC, and IEDDA. However, one 
should be aware of the hydrophobicity of the functionalities 
involved in these reactions, which may lead to incompatibilities 
and inefficient conjugation86. Expression yields are generally lower 
when non-natural amino acids are incorporated. While studies are 
ongoing to improve these yields (as exemplified by the work of 
Schmied et al.87), this fact supports the relevance of measuring the 
fraction of immobilized protein, i.e. the yield of reaction (loss of 
protein) at a given protein concentration.

For researchers with limited expertise regarding synthesis and 
surface modification with, for example, strained alkynes and 
tetrazines, enzymatic strategies will often be appealing. An impor-
tant advantage of the last-mentioned methods is the fact that the 
protein can be produced under native conditions, providing lower 
costs and higher yields compared to the strategies involving non-
natural amino acid incorporation. In such ligations, however, an 
enzyme recognition sequence or enzyme tag will always need to be 
added to the protein.
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