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A NOTE ON TRIANGULATED MONADS AND CATEGORIES

OF MODULE SPECTRA

IVO DELL’AMBROGIO AND BEREN SANDERS

Abstract. Consider a monad on an idempotent complete triangulated cate-
gory with the property that its Eilenberg-Moore category of modules is also
triangulated, in the unique compatible way. We show that any other trian-
gulated adjunction realizing this monad is ‘essentially monadic’, i.e. becomes
monadic after performing the two evident necessary operations of taking the
Verdier quotient by the kernel of the right adjoint and idempotent completion.
In this sense, the monad itself is ‘intrinsically monadic’. It follows that for
any highly structured ring spectrum, its category of homotopy (a.k.a. näıve)
modules is triangulated if and only if it is equivalent to its category of highly
structured (a.k.a. strict) modules.

1. Triangulated monads and their realizations

Let C be an idempotent complete triangulated category. Given a monad A on C,
we can ask whether the Eilenberg-Moore category A -ModC of A-modules in C

(a.k.a. A-algebras) is also triangulated, in a way that makes the forgetful functor
UA : A -ModC → C exact. As the following lemma shows, there can be at most one
such triangulation on A -ModC, so we can regard it as a property of the monad A :

1.1. Lemma. Let U : M → C be a faithful functor to a triangulated category C.
There exists at most one triangulation on the category M making U exact, and it
must coincide with the triangulation created by U , i.e. a triangle in M is exact if
and only if it is mapped by U to an exact triangle in C.

Proof. Assume M has a triangulation such that U preserves exact triangles. Let
x → y → z → Σx be a diagram in M such that U(x → y → z → Σx) is exact
in C. In particular U(x → y → z) is zero, hence so is the composite x → y → z
because U is faithful. Therefore, making use of the given triangulation on M, we
find a commutative diagram in M as follows

x //

idx

��

y //

idy

��

c //

��

Σx

Σ idx��
x // y // z

��

// Σx

d

��
Σc

where the first row and the third column are exact triangles. After applying U
both rows and the third column become exact, hence U(c → z) is an isomorphism,
hence U(d) ∼= 0. As U is faithful, this implies that d ∼= 0 and thus that c → z is an
isomorphism. Therefore the given triangle x → y → z → Σx is distinguised in M,
and we conclude that U not only preserves but also reflects exact triangles. �
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Although it is rare for A -ModC to be triangulated, there are notable cases where
it is. This happens, for example, if A is idempotent (i.e. a Bousfield localization).
More generally, Balmer [Bal11] proved that this is the case when the monad A is
separable (provided that C is endowed with an ∞-triangulation, which is always
the case when it admits an underlying model or derivator). Some non-separable
examples are also known (see [Gut05] and Example 1.12).

In this note, we consider the consequences of A -ModC being triangulated. We
prove that if this is the case then any triangulated realization of A is essentially
monadic, i.e. monadic after applying two necessary operations: a Verdier quotient
and an idempotent completion. In a slogan:

Triangulated monads which have triangulated Eilenberg-Moore ad-
junctions are intrinsically monadic.

The proof of this amusing fact is easy and will be given in Proposition 1.7 below (see
also Corollary 1.9). Applications to categories of module spectra will be discussed
at the end (e.g. Corollary 1.11).

1.2. Terminology. We recall some basic facts about monads from [ML98, Chap. VI],
mostly to fix notation. Every adjunction F : C ⇄ D : G with unit η : idC → GF
and counit ε : FG → idD defines a monad A on C consisting of the endofunctor
A := GF : C → C equipped with the multiplication map GεF : A2

→ A and unit
map η : idC → A. We say the adjunction F ⊣ G realizes the monad A. Given any
monad A on C, there always exists an initial and a final adjunction realizing A:

(1.3) C

F

�� FA ((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
FA

vv♥♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥

A - FreeC

UA

66♥♥♥♥♥♥♥♥♥♥♥♥♥♥

∃!K
// D

G

OO

∃!E
// A -ModC .

UA

hh◗◗◗◗◗◗◗◗◗◗◗◗◗◗

The final one is provided by the Eilenberg-Moore category A -ModC, whose objects
are A-modules (x, ρ : Ax → x) in C, together with the forgetful functor UA : (x, ρ) 7→ x
and its left adjoint free-module functor FA. The full image of FA, together with
the restricted adjunction, provides the initial realization A - FreeC (often called the
Kleisli category). For any adjunction F ⊣ G realizing the monad, the fully faith-
ful inclusion A - FreeC → A -ModC uniquely factors as a composite E ◦ K of two
comparison functors satisfying KFA = F,GK = UA and EF = FA, UAE = G. The
functor K is always automatically fully faithful. Finally, an adjunction F ⊣ G is
monadic if the associated Eilenberg-Moore comparison E is an equivalence.

1.4. Remark. If C is a triangulated category then we can also consider triangulated
realizations of A, i.e. realizations by an adjunction F : C ⇄ D : G of exact functors
between triangulated categories. (Of course, A : C → C must be exact for a trian-
gulated realization to exist.) Note that if A -ModC is triangulated such that UA is
exact, then the free module functor FA : C → A -ModC is also automatically exact,
hence the adjunction FA ⊣ UA is a triangulated realization of A. However, A -ModC
need not admit a triangulation in general.

1.5. Remark. As C is assumed to be idempotent complete, one easily checks that
the Eilenberg-Moore category A -ModC is also idempotent complete. Moreover UA

is faithful, so in particular it detects the vanishing of objects; since UA is an exact
functor, the latter is equivalent to being conservative, i.e. reflecting isomorphisms.
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1.6. Remark. If F : C ⇄ D : G is any triangulated realization of A, then we can

always canonically modify it to a triangulated adjunction F̃ : C ⇄ D̃ : G̃ where, as

with the Eilenberg-Moore adjunction, the target category D̃ is idempotent complete

and the right adjoint G̃ is conservative. Indeed, construct the Verdier quotient
D/KerG, embed it into its idempotent completion (D/KerG)♮ (see [BS01]), and

let F̃ be the composite D → D/KerG → (D/KerG)♮ =: D̃. Since C is idempotent

complete, G extends to a functor G̃ : D̃ → C right adjoint to F̃ and one easily

verifies that the adjunctions F̃ ⊣ G̃ and F ⊣ G realize the same monad.

Our aim is to study all possible triangulated realizations of A under the hypoth-
esis that the Eilenberg-Moore adjunction is triangulated. By Remarks 1.5 and 1.6,
this problem reduces to the case where the target category is idempotent com-
plete and the right adjoint is conservative. But surprisingly, such an adjunction is
necessarily monadic :

1.7. Proposition. Let C be an idempotent complete triangulated category equipped
with a monad A such that A -ModC is compatibly triangulated, i.e. such that the free-
forgetful adjunction FA ⊣ UA is triangulated. Let F : C ⇄ D : G be any triangulated
realization of the same monad A = GF . If D is idempotent complete and G is
conservative, then F ⊣ G is monadic, i.e. the comparison functor D

∼
→ A -ModC is

a triangulated equivalence.

Proof. Keep in mind (1.3) throughout and consult [ML98, Chap. VI] if necessary.
Let d ∈ D be an arbitrary object. By definition, the A-module Ed consists of the
object Gd ∈ C equipped with the action

Gεd : A(Gd) = GFGd −→ Gd

where ε denotes the counit of the adjunction F ⊣ G. As for any module, its action
map can also be seen as a map in A -ModC

Gεd : FAUAEd = (GFGd,GεFGd) −→ (Gd,Gεd) = Ed

providing the counit at the object Ed for the Eilenberg-Moore adjunction. By
hypothesis, the right adjoint UA : A -ModC → C of FA is a faithful exact functor
between triangulated categories, hence the counit Gεd admits a section σ : Gd →

GFGd = FAUAEd in A -ModC (see e.g. [BDS16, Lemma 4.2]). Thus we have in
A -ModC the split idempotent p2 = p := σ ◦ Gεd on the object FAUAEd with
image Ed:

FAUAEd

Gǫd &&▼▼
▼▼

▼▼
▼▼

p // FAUAEd

Ed
σ

88qqqqqqqq

Since the composite functor EK is fully faithful and the free module FAUAEd
belongs to its image, we must have p = EKq for an idempotent q in A - FreeC,
hence p = Er for the idempotent r := Kq in D on the object FGd. As D is
idempotent complete by hypothesis, r must split:

(1.8)

∃ d′
β

%%❑❑
❑❑

❑❑
❑

FGd

α
99sssssss

r
// FGd.
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Applying E to (1.8), we see that the idempotent p of A -ModC splits in two ways:

Ed′
Eβ

&&▼▼
▼▼

▼▼
▼

EFGd

Eα
88qqqqqqq

Gǫd &&▼▼
▼▼

▼▼
▼▼

p=Er // EFGd

Ed
σ

88qqqqqqqq

Applying the functor UA (i.e. forgetting actions), this yields in C the two splittings

Gd′
Gβ

&&▼▼
▼▼

▼▼
▼

GFGd

Gα
88rrrrrrr

Gǫd &&▼▼
▼▼

▼▼
▼▼

p // GFGd

Gd
σ

88qqqqqqqq

of the idempotent p on GFGd. It follows that the composite G(εd) ◦ G(β) =
G(εd ◦ β) is an isomorphism Gd ∼= Gd′ of the two images. Since G is assumed to
be conservative, this implies that εd ◦β is already an isomorphism d′ ∼= d in D. We
conclude from (1.8) that d is a retract of an object FGd = K(Gd) in the image of
the functor K.

As d ∈ D was arbitrary, we have proved that the fully faithful functor K is
surjective up to direct summands. Consider now the idempotent completions

A - FreeC
∃!K

//
� _

��

D� _

≃
��

∃!E
// A -ModC� _

≃
��

(A - FreeC)
♮

K♮

// D♮

E♮

// (A -ModC)
♮

together with the induced functors K♮ and E♮. The two rightmost canonical inclu-
sions are equivalences, since D and A -ModC are idempotent complete. What we
have just proved amounts to K♮ being an equivalence too, i.e. the Kleisi comparison
functor induces an equivalence

K♮ : (A - FreeC)
♮ ∼
−→ D

♮ ∼= D

after idempotent completion.
We can now easily see that E is an equivalence by chasing the above diagram:

as (EK)♮ = E♮K♮ is fully faithful and K♮ is an equivalence, E♮ is fully faithful,
hence so is E. As already observed, the faithfulness of UA implies that FA = EF
is surjective up to summands, so E must be too. But E is fully faithful and its
domain D is idempotent complete, hence it must be essentially surjective. �

1.9. Corollary. Let A be a monad on an idempotent complete triangulated cate-
gory C. If the Eilenberg-Moore adjunction C ⇄ A -ModC is triangulated, then any
triangulated realization F : C ⇄ D : G of A induces canonical equivalences:

(A -FreeC)
♮ ∼
−→ (D/KerG)♮

∼
−→ A -ModC .

1.10. Example. Let C := SH denote the stable homotopy category of spectra. If
A is a highly structured ring spectrum (S-algebra, E∞-ring spectrum, brave new
ring, . . . ), then we may consider its derived category D(A), defined to be the ho-
motopy category of highly structured A-modules; see [EKMM97]. The unit map
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f : S → A induces a triangulated adjunction f∗ = A ∧ − : SH = D(S) ⇄ D(A) :
HomA(AS ,−) = f∗. On the other hand, by forgetting structure, A is also a monoid
in SH and therefore we may consider modules over it in SH. The resulting category
A -ModSH of näıve or homotopy A-modules is nothing else but the Eilenberg-Moore
category for the monad associated with the adjunction f∗

⊣ f∗. Thus we obtain
a comparison functor as in (1.2), which can be thought of as forgetting the higher
structure of an A-module:

SH

f∗

�� FA ((❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘

D(A)

f∗

OO

∃!E
// A -ModSH

UA

hh❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘

Note that both triangulated categories SH and D(A) are idempotent complete; e.g.
because they admit infinite coproducts. Moreover, the right adjoint f∗ is conser-
vative by construction; this is equivalent to A = f∗S ∈ D(A) weakly generating
D(A). Hence Proposition 1.7 immediately implies the following result.

1.11. Corollary. Let A be any highly structured ring spectrum. Then the category
A -ModSH of näıve A-modules is triangulated if and only if the canonical compari-
son functor D(A) → A -ModSH is a (necessarily exact) equivalence. �

1.12. Example. The comparison between strict and näıve modules was studied by
Gutiérrez [Gut05] in the special case where A = HR is the Eilenberg-Mac Lane
spectrum of an ordinary associative and unital ring R. He showed that the com-
parison map is an equivalence if R is a field or a subring of Q, for instance the ring
of integers Z.

Acknowledgements: We would like to thank Paul Balmer and Javier Gutiérrez
for useful discussions on these topics.
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