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SUMMARY

Intracellular oscillators entrain to periodic signals by
adjusting their phase and frequency. However, the
low copy numbers of key molecular players make
the dynamics of these oscillators intrinsically noisy,
disrupting their oscillatory activity and entrainment
response. Here, we use a combination of computa-
tional methods and experimental observations to
reveal a functional distinction between the entrain-
ment of individual oscillators (e.g., inside cells) and
the entrainment of populations of oscillators (e.g.,
across tissues). We demonstrate that, in the pres-
ence of intracellular noise, weak periodic cues
robustly entrain the population averaged response,
evenwhile individual oscillators remain un-entrained.
We mathematically elucidate this phenomenon,
which we call stochastic population entrainment,
and show that it naturally arises due to interactions
between intrinsic noise and nonlinear oscillatory dy-
namics. Our findings suggest that robust tissue-level
oscillations can be achieved by a simple mechanism
that utilizes intrinsic biochemical noise, even in the
absence of biochemical couplings between cells.

INTRODUCTION

Oscillators are known to play a large number of functional roles in

biology (Vicker, 2002; Aulehla and Pourquié, 2008). For example,

intracellular oscillators are responsible for generating circadian

rhythms (Herzog et al., 2004), mounting immune (Tay et al.,

2010) and stress responses (Batchelor et al., 2008), regulating

signaling networks, and controlling cell proliferation (Cohen-Sai-

don et al., 2009). Generally, these oscillators are nonlinear (Pikov-

sky et al., 2001), and in the long run, their dynamics are con-

strained to a stable-limit cycle in state-space, that is, the space

inwhich the trajectories lie. The periodicmotion of the oscillator’s

state on this limit cycle can be described as a function of time t by

x(u0t +f0), where x is a periodic function with period 2p,u0 is the

natural frequency of the oscillator, andf0 is its phase.When such

an oscillator is stimulated by a periodic forcing input (e.g., light in

the case of circadian oscillators), it can lose its natural frequency

and adopt the forcing frequency, uf, of the input and also lock its

phase in a fixed relationship with the forcing input phase, trans-
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forming the dynamics from x(u0t+f0) to x(uft +ff). This phenom-

enon is called entrainment, and it has numerous physical, biolog-

ical, and engineering applications (Pikovsky et al., 2001).

The most prominent example of a biological oscillator is a

circadian clock that generates rhythms that are responsible for

regulating a variety of physiological processes for a wide range

of organisms (Reppert and Weaver, 2002). In mammals, the su-

prachiasmatic nucleus (SCN) of the hypothalamus is the domi-

nant circadian pacemaker, but peripheral circadian clocks are

present throughout the body (Brown et al., 2002). The SCN clock

gets constantly entrained by the day’s light/dark cycles and this

helps in maintaining robust rhythmicity with a period of almost

exactly 24 hr (Bagheri et al., 2008). Furthermore, the circadian

rhythms produced by SCN subsequently entrain the peripheral

circadian clocks that reside in various tissues throughout a

mammalian body (Albrecht, 2012). These peripheral clocks

then coordinate other cellular processes and drive many physio-

logical functions in their respective tissues (Richards and Gumz,

2012). Hence, the phenomenon of entrainment plays a crucial

role in the normal functioning of an organism on many scales.

Like circadian clocks, many intracellular oscillatory circuits

receive extracellular inputs, such as cytokine concentrations

(Tay et al., 2010) or stress signals (Baker et al., 1984), which

can be periodic (Han et al., 2012; Dolmetsch et al., 1998) perhaps

due to various biological rhythmspresent in an organism. In these

cases, entrainment can help the cells respond to the external pe-

riodic signal in a synchronizedmanner. Furthermore, recent work

in single cells has uncovered many transcription factors that that

exhibit periodic pulses in activity in the presence of constant

extracellular inputs (Purvis and Lahav, 2013; Lin et al., 2015).

These observations suggest that intracellular signaling dynamics

may serve as entrainment cues for various genetic oscillators.

Oscillatory dynamics within cells are invariably affected by the

random fluctuations or intrinsic noise that arises due to the

involvement of molecular species with low copy numbers (Elo-

witz et al., 2002). This randomness creates cell-to-cell heteroge-

neity among identical cells, thereby enabling a population of

cells to have a different dynamical behavior than individual cells.

Therefore, it is important to study entrainment at both the sin-

gle-cell level and at the bulk or the population level, where the

output of several single cells is averaged. The latter context is

biologically relevant because the population averaging may

occur in vivo at the tissue level or in the bloodstream; it is

conceivable that in comparison to the single-cell outputs, this

averaged output has a more direct influence on the physiolog-

ical processes of an organism. Without an entraining cue, it is

known both experimentally and theoretically, that intrinsic noise
21–531, December 21, 2016 ª 2016 Published by Elsevier Inc. 521
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Figure 1. Single-Cell and Population-Average Dynamics of the NF-kB-TNFa System

(A andB)Analysis of the experimental data onNF-kB-TNF-a system reported inKelloggandTay (2015)with two input timeperiods: 90 (A) and105 (B). These two input

timeperiods represent forcing frequencies ofuf=2p/1.5 hr�1 anduf=2p/1.75hr�1. The natural frequency for this system isu0 = 2p/1.667 hr�1 that corresponds to a

time period of 100. For each input time period, we plot several single-cell trajectories (n = 52 in [A] and n = 58 [B], along with their average [black curve]). Only those

single-cell trajectories are chosen from the sample that are not entrained to the input by themselves. Observe that the single-cell behavior is quite complex and

incoherent, but the population-averageddynamics oscillates nicelywith a frequency very close to the forcing frequencyuf. In the panel insets,weplot the normalized

PSD (total power is 1) for a single-cell and the population average.Wealsodisplay the averagePSDof all the cells. Theseplots clearly show that unlike the single cells,

the population-averaged trajectory puts most of its power at the forcing frequency uf and it entrains better than single-cell response to the periodic input.
can cause the oscillations of an individual oscillator or a single

cell to be sloppy and incoherent (Welsh et al., 1995; Bagheri

et al., 2008) to such an extent that phase variability among the

cells becomes extreme, and the oscillatory activity is wiped

out at the population level (Tay et al., 2010; Bagheri et al.,

2008; Welsh et al., 1995; Aton et al., 2005). Even when an en-

training periodic cue is present, we can expect intrinsic noise

to hamper the entrainment response of single cells (Bagheri

et al., 2008; Aton et al., 2005), but it has been unclear until

now if the same effect will persist at the population level. The

present study investigates this issue and demonstrates that

intrinsic noise in fact benefits and even induces the popula-

tion-level entrainment response.

RESULTS

This paper is motivated by an intriguing experimental discovery

that we now describe. It is well known that the localization of

the nuclear factor kB (NF-kB) transcription factor oscillates be-

tween the cytoplasm and the nucleus in response to treatment

with extracellular cytokines such as tumor necrosis factor alpha

(TNF-a) (Tay et al., 2010). In a recent work (Kellogg and Tay,

2015), microfluidics and time-lapse microscopy was used to

study entrainment of this NF-kB-TNF-a system for several un-

coupled single cells driven by a common input. The authors

found that noise can improve as well as deteriorate the entrain-

ment response of single cells, depending on the input signal’s

frequencies and strengths.

When we analyzed the experimental data presented in Kellogg

andTay (2015),weobserved that if one averagesseveral noisysin-

gle-cell signals, then the resulting population-level signal always
522 Cell Systems 3, 521–531, December 21, 2016
entrainsbetter toaperiodic input.We illustrate thiseffect inFigure1

that shows several noisy and incoherent single-cell traces along

with their population average. Observe that unlike the single-cell

traces, the population-level signal oscillates coherently with a fre-

quency close to the input frequency uf, indicating that it is en-

trained. This is demonstrated by the power spectral density (Fig-

ure 1, inset) plots that show that the relative power assigned to

the input frequency is small for the single-cell traces but large for

the population-level signal. These analyses suggest that the pop-

ulation-averaged response of several uncoupled cells can entrain

more easily than the individual oscillations of uncoupled single

cells. Below, we provide computational and theoretical analyses

that generalize these findings. We implicate intrinsic noise as the

main cause for this enhancement of entrainment at the population

level that we call stochastic population entrainment from now on.

To thebestofour knowledge, thisbeneficial effectof intrinsicnoise

has not been reported so far either experimentally or theoretically.

Characterization of Stochastic Population Entrainment
in Three Contexts
The robustness of an oscillator’s entrainment response can be

identified with the area under its Arnol’d Tongue (Pikovsky

et al., 2001; Mitarai et al., 2013) that plots the values of input

amplitudes (A) and input frequencies (uf) for which the oscillator

dynamics is entrained (Figure 2). Even though this concept is pri-

marily defined for deterministic systems, we can appropriately

modify it for stochastic systems (see the Quantification and Sta-

tistical Analysis section of the STAR Methods), which allows us

to examine the role of intrinsic noise in population entrainment.

The first oscillator model we consider is the NF-kB signaling

system (Krishna et al., 2006) that is activated by periodic TNF-a



Figure 2. Illustration of Stochastic Population

Entrainment

This figure illustrates the main finding of the paper. It

considers an oscillator forced by a periodic input

and compares its steady-state response in three

scenarios: deterministic, single-cell, and popula-

tion-level. The input frequency uf is close to the

natural frequency u0 of the oscillator. Based on the

deterministic Arnol’d Tongue (top), two amplitude

values are selected that correspond to a weak

input (red bubble) and a strong input (blue

bubble), respectively. When intrinsic noise is pre-

sent, the single-cell oscillations become sloppy

but are similar to the deterministic case. In both

these scenarios, the oscillator dynamics is not

entrained (unentrained) if the input is weak, but it

gets entrained if the input is strong. However,

unlike these two scenarios, the population-level

dynamics gets entrained even in the presence of

weak input, suggesting that intrinsic noise can

enhance the entrainment response at the population

level.
inputs (see Figure 3A). This is a simple network consisting of five

non-elementary reactions and three species: nuclear NF-kB,

cytoplasmic IkB, and IkB mRNA. In the deterministic setting,

the entrainment properties of this model were examined in Jen-

sen and Krishna (2012). In the stochastic setting, themain source

of intrinsic noise in the network is the transcription of IkB mRNA

(Hayot and Jayaprakash, 2006). We approximate the noisy state

dynamics (x(t))t R 0 by a Langevin (Gillespie, 2000) stochastic dif-

ferential equation (SDE) of the form:

dx

dt
=Fðx; tÞ+Sðx; tÞxðtÞ; (Equation 1)

where F(x,t) is the drift term, S(x,t) is the diffusion matrix and x(t)

is the multi-dimensional white-noise process that captures the

effects of intrinsic noise. The periodic input with frequency uf

is noiseless (deterministic) and it appears in both F(x,t) and

S(x,t), making them time-dependent functions that are periodic

with frequency uf for a fixed state x. Solutions of this SDE gives

us the single-cell traces that can be averaged (at each time

point) to yield the population-level signal. To discern the effects

of intrinsic noise, we also simulate the ordinary differential

equation (ODE)

dx

dt
=Fðx; tÞ; (Equation 2)
Cell S
corresponding to the equivalent noise-free

or deterministic model (Kurtz, 1978) of the

network. We focus on dynamic heteroge-

neity, rather than heterogeneity in initial

conditions, andwe assume that all the cells

start from the same initial condition. This

implies that in the deterministic case,

there is no source of cell-to-cell heteroge-

neity, and hence, the population-averaged

response is the same as the response of a

single cell. From Figure 3B, one can see

that while the population-level signal oscil-
lates coherently with a frequency close to the input frequencyuf,

the deterministic and the single-cell signals do not.

To judge the robustness of entrainment response, we numer-

ically compute Arnol’d Tongues in all the three cases: single-cell,

population-level, and deterministic. We find that in comparison

to the deterministic case, the area of the single-cell Arnol’d

Tongue shrinks by nearly 10% (see Figure 3C), but the area of

the population-level Arnol’d Tongue expands by almost 50%

(see Figure 3D). These results indicate that the presence of

intrinsic noise makes the population-level entrainment response

more robust than either the single-cell response or the determin-

istic response. Note that for any input frequency (close to the

natural frequency), if the input amplitude is large relative to the

natural amplitude of the oscillator, then all the three signals will

entrain. Notably, our precise finding is that there exists a range

of small amplitude values where only the population-level signal

entrains but the other two signals do not (see the blue region in

Figure 3D). Observe that all the three signals will coincide in

the absence of intrinsic noise. Hence, the intrinsic noise induces

the onset of entrainment at the population level, even though it

may hinder it slightly at the individual level, as indicated by the

shrinking Arnol’d Tongue in Figure 3C. This stochastic popula-

tion entrainment effect suggests a functional role of intrinsic

noise in the context of entrainment. For clarity, this phenomenon

is illustrated as an idealized cartoon in Figure 2.
ystems 3, 521–531, December 21, 2016 523
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Figure 3. Stochastic Population Entrainment

of the Spiky NF-kB Model

(A) Numerical results for the spiky NF-kB model

(Krishna et al., 2006).

(B) Three single-cell trajectories (green, blue, and

cyan), the population average of 10,000 trajectories

(orange) and the corresponding deterministic tra-

jectory. Note that this population average is cali-

brated with the second y axis is on the right, to show

the oscillations more clearly. The values of input

frequency and amplitude used for this simulation are

marked with 3 in the Arnol’d Tongues below. From

these plots it is evident that the single-cell trajec-

tories are incoherent but similar to the deterministic

trajectory, while the population-averaged trajectory

oscillates regularly with a lower amplitude and with

frequency uf.

(C) The entrainment regions (Arnol’d Tongues) for

deterministic and single-cell cases are compared.

These two tongues nearly overlap but there is a

small region (yellow) where only the deterministic

response entrains but the single-cell response

does not.

(D) The Arnol’d Tongues for deterministic and

population-level cases are compared, and one can

clearly see that the population-level tongue is much

broader. Specifically in the blue region, only the

population-level signal entrains while the deterministic signal does not, again corroborating our main finding that intrinsic noise enhances entrainment at the

population level. The Arnol’d Tongues are computed using 1,000 single-cell trajectories at each input frequency and amplitude.
Our analysis indicates that stochastic population entrainment

can be expected to hold in two other biological oscillators that

we now explore. First, we consider the detailed circadian clock

model given in Leloup and Goldbeter (2003) with 16 species

and 52 reactions (see Figure 4A). Here, the transcription of Per

gene is modulated by the periodic light input and the resulting

PER-mRNA is tracked as the output of the system. For this

model, we simulate the full stochastic dynamics using Gillespie’s

algorithm (Gillespie, 1977), rather than using the SDE approxima-

tion for the dynamics as in the NF-kB example. This allows us to

capture the low copy-number effects in the circadian clock dy-

namics more accurately.

In our analysis of this circadian clock, we observe in all

three cases (single-cell, population-level, and deterministic) the

signals (see Figure 4B) as well as the corresponding Arnol’d

Tongues (see Figures 4C and 4D) are qualitatively similar to

the NF-kB example. In comparison to the deterministic case,

the area of the single-cell Arnol’d Tongue decreases by nearly

20% for this example, but the area of the population-level Arnol’d

Tongue increases by more than 40%.

Second, we consider the classical Van der Pol oscillator

(Pikovsky et al., 2001) that is used to model many physical and

biological processes (Pikovsky et al., 2001). It is one of the

simplest limit cycle oscillators and hence it has been extensively

used in the study of oscillatory dynamics. Our analysis demon-

strates that the Van der Pol model also exhibits stochastic

population entrainment (see the Method Details section of the

STARMethods and Figure S1). Moreover, we performed a sensi-

tivity check for this example by systematically perturbing the

model parameters and computing the area under the associated

Arnol’d Tongues. Our results show that the stochastic population

entrainment effect is quite robust to perturbations in the model
524 Cell Systems 3, 521–531, December 21, 2016
parameters (see the Method Details section of the STAR

Methods and Table S1).
The Basis of Stochastic Population Entrainment
The role of noise in inducing entrainment, as we describe above

for various oscillators, arises from the intricate interaction be-

tween noise and dynamics. This is elucidated using a simple

heuristic example and rigorous mathematical analysis (see the

Method Details section of the STAR Methods). We now outline

the main ideas of this explanation. Suppose that the noise-free

dynamics of a single cell under a constant forcing input, is given

by an ordinary differential equation of the form of Equation 2 with

some nonlinear time-invariant vector field F(x,t) = F0(x). We as-

sume that this deterministic system admits a stable limit cycle

and in the long run and its solutionsmove periodically on this limit

cycle with natural frequency u0. Hence, for large values of t, we

can express any solution as

xðtÞzx0ðu0t +f0Þ; (Equation 3)

where x0 is some 2p-periodic function and f0 is the initial phase.

When intrinsic noise is present in the dynamics, it causes a phe-

nomenon called phase diffusion (Pikovsky et al., 2001), whereby

the solution trajectories diffuse like Brownian motion on the limit

cycle, in addition to moving at the natural frequency u0. In this

case, the dynamics can be represented by a stochastic differen-

tial equation of the form of Equation 1 and its solutions can be ex-

pressed as xðtÞzx0ðu0t +f0ðtÞÞ. Here, f0(t) is a random variable

that varies from cell to cell and it corresponds to the natural

phase of the trajectory. We prove in the Method Details section

of the STARMethods that intrinsic noise has a phase-uniformiza-

tion effect on the natural phase variable f0(t), which makes the
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Figure 4. Stochastic Population Entrainment

of the Circadian Clock Model

(A) Numerical results for the circadian clock model

(Leloup and Goldbeter, 2003).

(B) Three single-cell trajectories (green, blue,

and cyan), the population average of 1,000 trajec-

tories (orange), and the corresponding deter-

ministic trajectory are shown. The values of input

frequency and amplitude used for this simula-

tion are marked with 3 in the Arnol’d Tongues

below. It can be seen that the single-cell tra-

jectories are incoherent but similar in behavior

to the deterministic trajectory, while the pop-

ulation-averaged trajectory undergoes regular

oscillations with a lower amplitude and with fre-

quency uf.

(C) The entrainment regions (Arnol’d Tongues) for

deterministic and single-cell cases are compared.

These two tongues match closely but there is a

small area (yellow) where only the deterministic

response entrains but the single-cell response does

not.

(D) The Arnol’d Tongues for deterministic and pop-

ulation-level cases are compared, and one can

clearly see that the population-level tongue is much

broader. Specifically in the blue region, only the

population-level signal entrains while the determin-

istic signal does not, illustrating that intrinsic noise causes the entrainment response to be more robust at the population level in comparison to both single-cell

and deterministic cases. The Arnol’d Tongues are computed using 500 single-cell trajectories at each input frequency and amplitude.
steady-state distribution of f0(t)/2p (f0(t) modulo 2p) to be

almost uniform over [0,2p]. Using this fact and the 2p-periodicity

of x0, we can show that the population-level response EðxðtÞÞ
(where E denotes the expectation operator) of several noisy sin-

gle-cell trajectories reduces to some constantC0 for large values

of time t:

EðxðtÞÞzEðx0ðu0t +f0ðtÞÞÞ=
1

2p

Z 2p

0

x0ðu0t +fÞdf

=
1

2p

Z 2p

0

x0ðfÞdf : =C0:

(Equation 4)

This implies that for large t, the phase variability between

different single cells becomes so extreme that the oscillatory

activity cancels out at the population level. Such a behavior is

consistent with the existing theoretical results on noisy oscilla-

tors (Gupta et al., 2014), as well as particular computational

and experimental studies on uncoupled circadian clocks with

noisy dynamics (Bagheri et al., 2008; To et al., 2007; Tay et al.,

2010; Ohta et al., 2005; Welsh et al., 1995; Aton et al., 2005).

Note, however, that this behavior is quite unlike the noise-free

system (Equation 3) where the solutions oscillate consistently

with frequency u0.

We now consider the single-cell dynamics under a weak

periodic forcing input of the form εuf(uft), for some 2p-periodic

function uf. Here, ε � 1 is the input strength anduf is the forcing

frequency. The dynamics of noisy single cells under this input

signal can be described by a stochastic differential equation of

the form Equation 1 with Fðx; tÞ=F0ðxÞ+ εuf ðuf tÞ. Note that due

to nonlinearities in the dynamics, the dependence of the sin-

gle-cell trajectories ðxðtÞÞtR0 on the periodic input can be very
complicated. However, using perturbation analysis we can

show that these trajectories can be viewed as the superposition

of two signals: a strong signal with natural frequency u0 and a

weak signal with forcing frequency uf:

xðtÞzx0ðu0t +f0ðtÞÞ+ εxf ðuf t +ffðtÞÞ; (Equation 5)

where x0,f0(t) are as before, xf is some 2p-periodic function, and

ff(t) is a random variable that corresponds to the phase of the

forcing component.

Equation 5 forms the basis for mathematically understanding

the enhancement of entrainment at the population level (that is,

the stochastic population entrainment we describe above) and

the role of intrinsic noise in causing this effect. In the absence

of this noise, f0(t) and ff(t) become deterministic constants,

and the resulting deterministic (single-cell and population-level)

signal oscillates incoherently (see Figure 5A). This signal is

clearly not entrained as can be seen from its power spectral den-

sity shown in Figure 5B.We explained above that in the presence

of intrinsic noise, the natural phase variablef0(t) (modulo 2p) has

a steady-state distribution that is almost uniform over the interval

[0,2p]. This intrinsic noise also affects the forcing phase variable

ff(t), but notably, this effect is strikingly different. Instead of

having the phase-uniformization effect, intrinsic noise imposes

on the forcing component a phase-focusing effect, which en-

sures that the steady-state distribution of the forcing phase

variable ff(t) (modulo 2p) is unimodal in the sense that it is

concentrated around a certain value f�
f .

Both these effects can be clearly observed for the spiky NF-kB

and the circadian clock model in Figures 6A and 6B. At the sin-

gle-cell level, f0(t) and ff(t) assume different values for different
Cell Systems 3, 521–531, December 21, 2016 525
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D

B Figure 5. Understanding Stochastic Popula-

tion Entrainment

(A–F) For the dynamics given by Equation 5, deter-

ministic (A) and single-cell trajectories (C) show

incoherent behavior, while the population-level

average of 1,000 trajectories (E) is nicely oscillating.

As expected, the normalized PSD (total power is 1)

of the deterministic (B) and a single trajectory (D)

show two peaks, one at the natural frequency and

one at the forcing frequency. On the other hand, in

the normalized PSD of the population-level average

of 1,000 trajectories (F), the power in the natural

frequency almost disappears and nearly all the power

is concentrated at the forcing frequency. The tra-

jectories were computed according to Equation 5

with x0ðtÞ= xf ðtÞ= cosðtÞ, ε = 0.3, u0 = 3, and uf = 7.

For the deterministic trajectory f0ðtÞ=ff ðtÞ= 0

and for the single-cell and population-level tra-

jectories f0ðtÞ � Uð0; 2pÞ and ff ðtÞ � Uð0; ðp=2ÞÞ,
where Uða;bÞ denotes the uniform distribution over

the interval (a,b).

See also Figure S4.
cells, resulting in variability among trajectories of Equation 5 (see

Figure 5C). These trajectories oscillate incoherently as in the

deterministic case and their power spectral density (see Fig-

ure 5D) confirms that they are not entrained. However, the asym-

metric action of intrinsic noise on the natural and the forced

components of Equation 5 results in the cancelling out of the

oscillations in the natural component in Equation 5 at the

population level, even though the oscillations in the forcing

component still remain, thereby yielding a coherent popula-

tion-level signal (see Figure 5E) that is entrained to the input

signal as indicated by its power spectral density (see Figure 5F).

To see this mathematically, note that the steady-state expecta-

tion of single-cell dynamics (Equation 5) can be computed as

EðxðtÞÞzEðx0ðu0t +f0ðtÞÞÞ+ εEðxfðuf t +ffðtÞÞÞ
=C0 + εxf

�
uf t +f�

f

�
;

(Equation 6)

where C0 is the same as in Equation 4, and xf ðuf t +f�
f Þ=

Eðxf ðuf t +ff ÞÞ is the expectation with respect to some [0,2p]-

valued random variable ff whose distribution is concentrated

around f�
f . Because xf is also a 2p-periodic function, the popu-

lation-level signal (Equation 6) oscillates coherently with the forc-

ing frequency uf, implying that it is entrained.

The behavior of deterministic, single-cell, and population-level

trajectories that we inferred using Equation 6 is in good qualita-

tive agreement with the stochastic population entrainment we

observe in our examples (see Figures 3B and 4B). We conclude

that this effect results from intrinsic noise and the way it interacts

with the nonlinear dynamics to generate two disparate effects:

phase-uniformization and phase-focusing. Effectively, while the

former tries to make the distribution of the natural phase more

uniform, the latter tends to constrain the distribution of the

forcing phase to be unimodal. Due to phase-uniformization, the

natural oscillatory component cancels out at the population

level, but thanks to phase-focusing, the forcing component is

preserved, leading to a signal that is entrained to the periodic
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forcing input. The canceling caused by phase-uniformization

cannot arise in the absence of intrinsic noise or within single cells

that explains why the population-level trajectories entrain more

readily than deterministic and single-cell trajectories (recall the

Arnol’d Tongues in Figures 3C, 3D, 4C, and 4D). Moreover the

population-level entrainment achieved this way is robust under

environmental or extrinsic variability among cells or to levels

of intrinsic noise within the cells (see the Method Details section

of the STAR Methods and Figure S3). This latter robustness

is unlike the phenomenon of stochastic resonance, as we will

discuss later.

Throughout the paper, we assume that all cells in the popula-

tion start from the same initial state. This assumption implies that

the only source of heterogeneities among cells are the random

fluctuations or intrinsic noise in their intracellular dynamics.

It also ensures that in the deterministic setting, the population-

level signal coincides with a single-cell signal. Clearly, this

assumption of all cells having the same initial state is unrealistic

from a biological standpoint, and therefore it is natural to ask if

the phenomenon we report will persist if this assumption is

violated. Furthermore, we must check if the proposed enhance-

ment of population-level entrainment region can be produced

by simply distributing the initial states of cells randomly, but

keeping their dynamics deterministic. If population-level entrain-

ment holds under these conditions, then it raises the possibility

that the effect we discover might essentially be an outcome of

averaging over heterogeneous cellular states, and intrinsic noise

could simply be a mechanism for creating these heterogeneities

rather than playing a dynamical role as we claim above. We

investigate these issues theoretically and also computationally

using simulations of the NF-kB model in the Method Details

section of the STAR Methods. We randomize the initial states

of cells and compare the entrainment response of population

averages with both types of intracellular dynamics, deterministic

and stochastic (see Figure S2). We find that in both these

cases, randomizing the initial states of cells has an insignificant
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Figure 6. Phase-Distributions for the NF-kB

and Circadian Clock Models

(A and B) In (A), we use 1,000 single-cell trajectories

of the NF-kBmodel to plot the histograms exhibiting

the spreadout distribution of the natural phase (f0)

and the concentrated distribution of the forcing

phase (ff) modulo 2p. The same is demonstrated

for the circadian clock model in (B).

(C and D) Illustrations of the phase-resetting

property of entrainment for the circadian clock

model. Shown in (C) is the linear mapping from the

input phase to the phase of the population-level

signal (output phase) modulo 2p. Here, q0 is some

constant denoting the phase shift between input

and output. To demonstrate this phase resetting

more clearly, in (D), we consider two input phases

0 and p and plot the phase-distribution histograms

for the output phases. Both these distributions are

concentrated over a narrow region (see the insets)

and their means are separated by p as predicted by

the linear nature of the mapping in (C).

See also Figure S4.
influence on the Arnol’d Tongues, and the entrainment region

for the population average is still much wider for the stochastic

case in comparison to the deterministic case. This supports

our assertion that the phenomenon we describe depends criti-

cally on the dynamical nature of intrinsic noise and it cannot be

replicated using static noise in the form of heterogeneous initial

states.

Note that expression in Equation 5 is an approximation for

single-cell oscillator dynamics that is only valid in the ‘‘weak

forcing’’ regime. If the difference between forcing frequency uf

and natural frequency u0 is large, then for regions near the

boundary of Arnol’d Tongue, this expression and the ensuing

analysis may not be accurate. Nevertheless, our computational

results show that noise-induced entrainment still holds in

these regions at the population level. It is known that in these re-

gions the single-cell oscillators experience the ‘‘injection pulling’’

effect (Adler, 1946; Stover, 1966) that enables them to have

oscillatory components with a variety of frequencies of the

form uk =u0 + kðuf � u0Þ, for any integer k. Our computational

results on the expansion of Arnol’d Tongues at the population

level then suggest that in the presence of intrinsic noise, for

each frequency uk with k s 1, the corresponding oscillatory

component undergoes phase-uniformization and hence gets

eliminated at the population level, while for k = 1, the component

undergoes phase-focusing and is therefore preserved at the

population level, leading to an entrained signal. Of course, this

needs to be verified mathematically by deriving relations similar

to Equation 5 but with additional contributions from oscillatory

components with frequencies uk’s for k s 0,1. These consider-

ations will be explored elsewhere.

DISCUSSION

The dynamics of intracellular oscillators is generally affected by

intrinsic biochemical noise, and at first glance, this noise appears

to be a nuisance that may disrupt their normal functioning.

Our finding in this paper indicates that exactly the opposite is
true—the intrinsic noise may actually be vital in ensuring the

normal functioning of oscillators in contexts where population-

level behavior matters. Specifically, we show that intrinsic noise

facilitates the entrainment of population-averaged response of

such oscillators, a phenomenon that we call stochastic popula-

tion entrainment.

There are many examples in the existing literature where

noise, in various forms, can add certain desirable oscillatory

characteristics to biological systems. We discuss some of these

examples and indicate how stochastic population entrainment is

different. We begin with the reported observation that intrinsic

biochemical noise can impute oscillations to individual relaxation

oscillators, which are otherwise stable in the noise-free or deter-

ministic case (Vilar et al., 2002). In contrast, our paper considers

the entrainment of so-called limit-cycle oscillators, where oscil-

lations are sustained by the nonlinearities of the deterministic

model. Indeed, the noise-induced phenomenon we present

can be attributed to the interaction of these nonlinearities with

intrinsic noise present within each oscillator (see The Basis of

Stochastic Population Entrainment section of the Results),

which is generated independently in each oscillator. This inde-

pendence of noise makes our work fundamentally different

both in biological context and in the mechanism of action,

because in other works, a common source of noise is shared

by all oscillators (Teramae and Tanaka, 2004; Jensen, 2002; But-

zin et al., 2016) or the dynamics of oscillators are coupled (Zhou

et al., 2002; Ullner et al., 2009).

The phenomenon of stochastic population entrainment is

similar in effect to the well-known phenomenon of stochastic

resonance that has been discovered in several natural and

man-made systems (Gammaitoni et al., 1998; McDonnell and

Abbott, 2009). In both these phenomena, dynamical noise con-

spires with system’s nonlinearities to produce coherent oscil-

lations at the forcing frequency. However, these phenomena

are fundamentally different in their underlying mechanisms and

particularly in the role of noise in creating oscillatory coherence.

While stochastic resonance relies on noise reinforcing the weak
Cell Systems 3, 521–531, December 21, 2016 527



Figure 7. Schematics of the Stochastic Pop-

ulation Entrainment of Peripheral Clocks

This figure shows how the master clock (SCN) can

reliably entrain the peripheral circadian clocks (in

kidneys, liver, lungs, etc.) at the tissue level. The

multicellular SCN entrains to visually observed light/

dark cycles and the intercellular coupling mecha-

nism keeps its cellular population synchronized

(top right). The SCN passes periodic cues to pe-

ripheral circadian clocks that either have no

coupling or weak coupling among cells. Our results

indicate that even weak periodic cues are sufficient

for the SCN to reliably entrain the peripheral circa-

dian clocks at the tissue level due to Stochastic

Population Entrainment, as shown here for the

kidney (bottom left). Moreover, this population-level

entrainment holds even though the individual

circadian clocks may be out of phase with each

other due to biochemical noise.
oscillatory mode of ‘‘hopping’’ between two stable states, sto-

chastic population entrainment relies on noise acting differen-

tially on the phases of the natural and the input oscillatory modes

(as discussed in The Basis of Stochastic Population Entrainment

section of the Results). Due to this difference in mechanisms,

unlike stochastic resonance, the noise-induced phenomenon

we describe is quite insensitive to the levels of noise in the sys-

tem (this is demonstrated in the Method Details section of the

STAR Methods).

While stochastic population entrainment is of interest in its

own right as a dynamic phenomenon, its biological signifi-

cance derives from the considerable importance of oscillator

entrainment in biology and the critical role such entrainment

plays in anticipating future physiological states and coordinating

appropriate response mechanisms. In mammals, the central

pacemaker SCN consists of circadian clocks that are individually

sloppy and unreliable due to intrinsic noise (Welsh et al., 1995).

However, the multicellular SCN exhibits remarkable time-keep-

ing precision (Herzog et al., 2004) that persists in constant dark-

ness (Yamazaki et al., 2000) but not in constant light (Ohta et al.,

2005). Experimental (Aton et al., 2005) and computational (Ba-

gheri et al., 2008; To et al., 2007) studies have revealed that

entrainment by light/dark cycles and coupling between the indi-

vidual clocks are both responsible for creating this population-

level coherence in SCN from several noisy single-cell clocks.

The circadian rhythms generated by SCN act as periodic cues

for the peripheral circadian clocks, which are present in tissues

throughout a mammalian body (Albrecht, 2012; Dibner et al.,

2010; Richards and Gumz, 2012). These periodic cues are trans-

mitted through electrical, endocrine, ormetabolic signaling path-

ways (Albrecht, 2012; Levi and Schibler, 2007) and they cause

reliable entrainment of peripheral clocks at the tissue level

even though the individual peripheral clocks are considerably

noisy (Balsalobre et al., 1998).

However, unlike the SCN, the peripheral circadian clocks are

either uncoupled or weakly coupled, and the loss of periodic
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signal leads to rapid desynchronization

(Nagoshi et al., 2004; Liu et al., 2007).

Therefore, we cannot use the insights
fromSCN-based studies to understand how tissue-level (or pop-

ulation-level) coherence is generated and maintained by periph-

eral circadian clocks. Such an understanding is vital because a

lack of synchrony in the circadian system is believed to lead to

many diseases such as obesity, diabetes, and other psychiatric

disorders (Levi and Schibler, 2007; Kalsbeek et al., 2014). Our re-

sults provide this understanding as they show that even without

intercellular coupling, the peripheral circadian clocks can

perfectly entrain at the tissue level to even weak periodic cues

from SCN or any other source, due to stochastic population

entrainment (see Figure 7). Our results also provide a possible

explanation to the experimental results that show that phase dif-

ferences between SCN and the peripheral tissues can be

induced just by altering the feeding cycles (Damiola et al.,

2000). In this case, our results suggest that the phase can be reli-

ably set to any value (modulo 2p) simply by adjusting the phase

of the input signal. This is illustrated for the circadian clockmodel

(Leloup and Goldbeter, 2003) in Figures 6C and 6D, and this

phase-resetting property is yet another interesting effect of

intrinsic noise.

The circadian rhythms produced either by the SCN or the

peripheral tissues can give rise to periodic cues for many intra-

cellular oscillatory circuits. An individual oscillator may produce

a noisy biochemical signal, but generally several such noisy

signals get pooled at the tissue level or in the bloodstream result-

ing in a population-averaged signal that then drives various

physiological functions. Hence, the population-level entrainment

response needs to be robust, and our results provide insights on

how this robustness may be achieved by a simple mechanism

that utilizes intrinsic biochemical noise. As an example, consider

glucose metabolism in which the production of insulin is modu-

lated by a circadian rhythm (Boden et al., 1996), and the insulin

produced by individual cells gets averaged in the bloodstream.

Even though individual cells may produce noisy incoherent insu-

lin signals, our results demonstrate that, in principle, it is possible

for the population-level insulin signal to be nicely entrained to the



underlying circadian rhythm, thereby facilitating glucose homeo-

stasis (Kalsbeek et al., 2014).

Generation of coherent tissue-level oscillations from several

noisy single-cell oscillators is also important for pattern forma-

tion during embryogenesis (Oates et al., 2012). This coherence

is frequently attributed to intercellular coupling, even though

such coupling mechanisms have not been generally established.

Our results indicate that even without this coupling, tissue-level

coherence can readily emerge in the presence of a entraining pe-

riodic cue that can be weak in strength as long as it is observed

by all the cells. In this sense, our results offer a fresh outlook in

the study of tissue-level biological oscillations and their under-

lying mechanisms.

The results in this paper only apply to populations of single-

cell oscillators that are dynamically uncoupled and they show

that intrinsic noise can interact with the underlying nonlinear

dynamics to induce entrainment of the population mean. Strictly

speaking, this assumption of ‘‘no intercellular coupling’’ may be

biologically untenable in many situations, because one is often

interested in cell populations confined to a small spatial region

(like a tissue), where some form of intercellular communication

cannot be ruled out. In such situations, our results could still pro-

vide insights into the population-level entrainment phenomenon

when the dynamic coupling is sufficiently weak on the timescale

of oscillatory dynamics. For example, it is known that coupling

between the circadian clock cells in SCN makes it resistant to

entrainment (Abraham et al., 2010), which in turn makes the

organism susceptible to jet lag when there is a phase shift in

the light/dark cycles. Recent experimental results have revealed

that genetic deficiencies in the coupling mechanisms or their

pharmacological inhibition can enable the organism to be less

prone to jet lag because their SCN can entrain more easily (Ya-

maguchi et al., 2013). These experimental findings are consistent

with our results as they also point toward the ease of population-

level entrainment of uncoupled noisy oscillators. The influence of

coupling in setting the entrainment range has been studied both

experimentally and theoretically (Bagheri et al., 2008; Abraham

et al., 2010; Hafner et al., 2012) in the context of circadian

clocks. However, in light of our results, it is evident that further

analyses are required to understand how coupling mechanisms

and intrinsic noise interact in setting the entrainment profiles of

biological oscillators, both for single cells and the population

mean. It is possible that even with coupling, intrinsic noise en-

ables the population mean to entrain first to a periodic stimulus

and then the coupling mechanisms take over to bring all the cells

in unison with the population mean. This two-step process could

be a reliable mechanism for synchronizing cellular populations

to common periodic signals. We are pursuing these ideas in an

ongoing work.
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METHOD DETAILS

We used computational models for studying the dynamics of various oscillators. All the oscillators were represented as reaction

networks. In the noise-free (deterministic) setting the oscillatory trajectory of a single-cell is simulated by representing the reaction

dynamics as an ordinary differential equation (ODE). In the stochastic setting, this dynamics is modeled as a continuous timeMarkov

chain, and it is either simulated exactly using Gillespie’s Stochastic Simulation Algorithm (Gillespie, 1977) or its Langevin approxima-

tion (Gillespie, 2000) is derived and the resulting Stochastic Differential Equation (SDE) is simulated. Below we provide more details

on the reaction network models and their simulations.

Model Descriptions
In the paper we consider two examples of biological oscillators: the circadian clock model (Leloup and Goldbeter, 2003) and the

Spiky NF-kB model (Krishna et al., 2006). Additionally, we also study the classical Van der Pol oscillator (van der Pol, 1926; Kana-

maru, 2007; Mitarai et al., 2013) which is used to model many physical and biological processes (Cartwright et al., 1999; FitzHugh,

1961).

Each oscillator can be modeled as a reaction network with d species andM reactions. In the deterministic (noise-free) setting, the

dynamics can be simulated by solving the ODE given by the Reaction Rate Equation (RRE) for the reaction network. In the stochastic

setting we either simulate the exact copy-number dynamics using Gillespie’s Stochastic Simulation Algorithm(SSA) (Gillespie, 1977)

or we assume that the copy-numbers of all the species are large enough to ensure that the random effects areweak and the dynamics

can be well-approximated by an appropriately formulated Langevin equation (Gillespie, 2000; Kurtz 1978). This assumption is made

to make the subsequent analysis more computationally tractable, as it allows us to express the dynamics as a stochastic differential

equation (SDE) (Øksendal, 2003) which is easier to simulate. This SDE has the form

dXt =mðXt; tÞdt + 1ffiffiffiffi
U

p sðXt; tÞdWðtÞ (1)

where Xt ˛ ℝd is the state vector representing the species concentrations at time t, mðXt; tÞ ˛ ℝd is the time-dependent drift term,

sðXt; tÞ is the time-dependent diffusion matrix of size d3M, WðtÞ= ðW1ðtÞ;.;WMðtÞÞ is the standard Brownian motion in ℝM and U

is the system-size or volume parameter. Suppose that when Xt = x, the flux of the k-th reaction at time t is lkðx; tÞ and this reaction

displaces the state by the stoichiometry vector sk . Then the Langevin SDE has the form (1) with

mðXt; tÞ=
XM
k = 1

lkðXt; tÞsk (2)

and sðXt; tÞ being the d3K matrix with columns s1ðXt; tÞ;.;sMðXt; tÞ where

skðXt; tÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lkðXt; tÞ

p
sk ; (3)

for each k = 1;.;M.
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In this paper we solve the above SDE using the Euler-Maruyama scheme (Kloeden and Platen, 1992). Note that we can turn-down

the level of intrinsic noise by increasing U. In particular if we set U to beN, then the intrinsic noise is completely switched-off and we

recover the RRE corresponding to the deterministic model

dXt

dt
=mðXt; tÞ: (4)

This is consistent with the dynamical law of large numbers for stochastic models of reaction networks (Kurtz, 1978).

Note that each stochastic trajectory can be viewed as the dynamics of a single oscillator (or a single cell) in the presence of intrinsic

noise. By pooling together several such trajectories and taking their average (at each time-point) we obtain a signal which corre-

sponds to the population-level response of an ensemble of oscillators (or single cells) in the presence of intrinsic noise. If intrinsic

noise is absent then the response of each oscillator is identical to the trajectory obtained by simulating the RRE (Equation 4) for

the deterministic model.

In each of the examples, we consider the oscillatory dynamics under a forcing mechanism of the form:

uðtÞ= u0 +Asinðuf tÞ; (5)

where u0 is the forcing offset, A is the forcing amplitude and uf is the frequency of the forcing in radians=time unit. We now provide

more computational details for each of the examples.

Van der Pol oscillator:
The Van der Pol Oscillator consists of two species S1, S2 and four reactions, which are given by
k Reaction lkðx; tÞ
1 B/S1 jx2 j
2 S2/B

��Bx21 �� x2
3 B/S2 juðtÞ+dx2 j
4 S2/B jx1 j
where B= 10, d = 2 and xi is the concentration of species Si for i = 1;2. Here uðtÞ is the periodic forcing of the form (5) with u0 = 0. The

natural frequency of the system is u0x2p30:1065. The concentration x1 of species S1 is considered to be the output of the system.

For this reaction network, the drift vector mðx; tÞ and the diffusion matrix sðx; tÞ are given by

mðx; tÞ=
�
uðtÞ+ �

d � Bx21
�
x2 � x1

x2
�

and

sðx; tÞ=
� ffiffiffiffiffiffiffiffiffijx2 j
p

0 0 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��Bx21x2 ��q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijuðtÞ+d,x2 j

p ffiffiffiffiffiffiffiffiffijx1 j
p �

respectively. We set the volume to be U= 5,103 and simulate the stochastic dynamics by solving the SDE (1) with initial state

X0 = ð1;1Þ. This SDE is solved until time tf = 10000 using the Euler-Maruyama scheme with step-size dt = 0:1.

Circadian Clock Model
The circadian clockmodel (Leloup andGoldbeter, 2003) is a large reaction network consisting of 16 species and 52 reactions.We use

the stochastic formulation given in (To et al., 2007) and simulate the stochastic dynamics of the species copy-numbers using Gilles-

pie’s SSA (Gillespie, 1977). The forcing signal of the form (5) (with u0 = 1) enters as a multiplicative modulation of the PERmRNA tran-

scription rate. The output we track in this example is the molar concentration of PER mRNA. This concentration is obtained by

dividing the copy-number of the PER mRNA by the scaling factor U= 600 which corresponds to a volume of V = 1:7e�15 liters as

discussed in the supplementary material of (To et al., 2007). Without the periodic forcing, the natural frequency of this output is

u0 = 2p=23:8607 radians=hrs.

Spiky NF-kB Model
The Spiky NF-kBmodel we consider is based on the deterministic model by Krishna et al. (Krishna et al., 2006) and it consists of three

species Nn, Im, I and five reactions, given by
Cell Systems 3, 521–531.e1–e13, December 21, 2016 e2



k Reaction lðt; xÞ
1 B/Nn A 1�x1

ε+ x3

2 Nn/B B x1x3
d+ x1

3 B/Im x21

4 Im/I x2

5 I/B C0uðtÞ ð1�x1Þx3
ε+ x3
where x = ðx1; x2; x3Þ is the vector of concentrations of species in the following order Nn; Im; I. The values of various parameters are

A= 0:007;B= 954:5;C0 = 0:035; ε= 2,10�5 and d= 0:029.

For this reaction network, the drift vector mðx; tÞ is

mðx; tÞ=

0
BBBBBB@

A
ð1� x1Þ
ε+ x3

� B
ðx1x3Þ
d+ x1

x21 � x2

x2 � uðtÞx3ð1� x1Þ
ε+ x3

1
CCCCCCA
;

where uðtÞ is the forcing function of the form (5) with u0 = 1. The 335 diffusion matrix sðx; tÞ is given by

sðx; tÞ=

0
BBBBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A
ð1� x1Þ
ε+ x3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B
ðx1x3Þ
d+ x1

r
0 0 0

0 0
ffiffiffiffiffi
x21

q
� ffiffiffiffiffi

x2
p

0

0 0 0 +
ffiffiffiffiffi
x2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðtÞx3ð1� x1Þ

ε+ x3

r

1
CCCCCCCA
:

In the stochastic setting we set the volume to be U=NA,10�11x6:02,1012 where NA is the Avogadro constant. We simulate the

stochastic dynamics by solving the SDE (1) with initial state X0 = ð0;0; 0Þ. This SDE is solved until time tf = 1000 using the Euler-Mar-

uyama scheme with step-size dt = 10�4. Note that the negative states are set to zero after each integration step, to ensure that the

states of the system are non-negative. The output we track is the concentration of species Nn. Without the periodic forcing, the

natural frequency of this output is u0 x2p=2:1 radians=hrs.

Entrainment of van der Pol Oscillators
We consider the Van der Pol model given in (Mitarai et al., 2013) with a forcing mechanism of the form (5) with u0 = 0. In Figure S1A we

plot three single-cell trajectories in the presence of intrinsic noise and the population-level trajectory obtained by averaging 1000

single-cell trajectories. In Figure S1B we plot the trajectory in the deterministic (noise-free) case. One can observe that the stochastic

single-cell trajectories have an oscillatory behavior similar to the deterministic trajectory. However, the intrinsic noise induces phase-

diffusion which makes single-cell signals less coherent. These effects are averaged out at the population-level and well-behaved

dynamics emerges, which is better entrained to the input signal.

Let f0 ðff Þ denote the phase for the natural (forcing) component in the output signal. We argued in the main paper that population-

level coherence arises because at large times, the distribution of f0=2p (f0 modulo 2p) is almost uniform while the distribution of

ff=2p is concentrated around a certain value. We confirm that this is indeed true by plotting the histograms for f0=2p and ff=2p

in Figure S1C.

In Figure S1D and S1E, we compare the Arnol’d Tongues for the single-cell and population-level cases with the deterministic case.

In comparison to the deterministic case, the total area of the entrainment region shrinks by less than 1% for the single-cell case, but it

expands by more than 40% for the population-level case. This supports our main finding in the paper that intrinsic noise enables a

more robust entrainment response at the population-level even though it may harm the entrainment response at the single-cell level.

To see whether the percentages we compute for the shrinkage or expansion of the Arnol’d Tongues are robust with respect to

perturbations in the model parameters we performed a sensitivity check for these percentages. We perturbed the model parameters

B and d by ±10% of their original values (B= 10 and d = 2), one at a time, and computed these percentages in each case. The results

are reported in Table S1 and they show that the effect we describe is quite robust with respect to the model parameters.

In Figure S1 we also provide the color-code used in the paper for differentiating various regions in the Arnol’d Tongues based on

whether the different types of signals (single-cell, population-level or deterministic) entrain or not.

Effects of Extrinsic Noise
Throughout the paper we only consider intrinsic noise, that arises due to the random nature of intracellular interactions, andwe do not

consider extrinsic noise which captures the variability in the environments of different cells. The reason for this exclusion is because
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the phenomenon we describe and analyze is solely due to intrinsic noise. Indeed, there is nothing deep or profound about the role of

extrinsic noise in entrainment, and adding it would simply obfuscate the truly subtle interactions of intrinsic noise with dynamics,

which is the focus of our paper. To support our point, we next argue that extrinsic noise cannot destroy the intrinsic noise-induced

entrainment at the population-level reported here.

Extrinsic noise may be modeled by endowing each cell with its own private parameters q drawn from a certain probability distri-

butionQ that describes the extrinsic variability of the population. Suppose that when both intrinsic and extrinsic noise are present, the

dynamics of a single-cell is given by xqðtÞ. Note that in this case, the population-averaged dynamics can be written as

xðtÞ= EðxqðtÞÞ= EQðEðxqðtÞ j qÞÞ; (6)

where EQ is the expectation over the distribution of the random variable q, and Eð, j qÞ is the conditional expectation given a realization
of q. Formula (6) states that the average or expectation ðEÞ over thewhole population can be broken down into two parts - the first part

Eð, j qÞ is the expectation over the intrinsic noise for a given realization of the cell’s parameters q, while the second part EQ is the

expectation over the extrinsic noise represented by the probability distribution Q of q.

Our results disregard extrinsic noise and show that for any fixed value q, the population-averaged dynamics yqðtÞ= EðxqðtÞjqÞ has
more robust entrainment response than the single-cell dynamics xqðtÞ due to the intrinsic noise. This automatically implies that when

extrinsic noise is also considered, the population-averaged dynamics xðtÞ given by (6) will also have more robust entrainment

response than the single-cell dynamics xqðtÞ. This is because if yqðtÞ oscillates with input frequency uf then xðtÞ will also oscillate

with input frequency uf . To see this note that for Tp = 2p=uf and any tR0, if we have yqðt +TpÞ= yqðtÞ, then we will also have

xðt +TpÞ= EQðyqðt + TpÞÞ= EQðyqðtÞÞ= xðtÞ:
The above discussion suggests that extrinsic noise adds another layer of averaging ðEQÞ which does not harm entrainment at the

population-level. In fact, extrinsic noise may even improve entrainment at the population-level, as it is indeed possible for several

unentrained signals to produce an entrained signal on average, just like the effect described in this paper. Even though extrinsic noise

may accentuate our reported noise induced entrainment (in some cases), we did not consider it in this paper because it maymask the

effect of intrinsic noise which is the real cause of entrainment of the population-average. Moreover enhancing entrainment by adding

extrinsic noise, would neither be fair nor biologically interesting, as it will depend crucially on a careful selection of parameter distri-

bution, which is hard to achieve by ‘‘real’’ systems.

Finally we would like to mention that unlike the population-level, it is hard to judge whether extrinsic noise hinders or helps entrain-

ment at the single-cell (or individual) level. Extrinsic noise can improve or hinder entrainment of single-cells simply by randomly se-

lecting parameters that support or inhibit entrainment at any given forcing frequency and amplitude. These effects are rather trivial in

nature and inconsequential for the phenomenon we report here.

Effects of Randomizing the Initial States
In this paper we assume that all the cells have the same initial state, and so cell-to-cell heterogeneities only arise due to random fluc-

tuations or intrinsic noise in the intracellular dynamics. This assumptionwill almost never be satisfied by biological cells and hence it is

natural to ask if the effect we describe will persist if these initial states are randomly distributed. More importantly one may wonder if

such a random distribution of initial states is alone sufficient to create the effect we describe, without the need of dynamical intrinsic

noise. If this happens then it will raise concerns that perhaps randomization of cellular states is responsible for the enhancement of

entrainment region at the population-level, and the dynamical nature of noise is not important for this effect, contrary to the claim of

this paper. We can check this by comparing the entrainment response of a population of cells with randomized initial states, with

(stochastic) or without (deterministic) intrinsic noise in the intracellular dynamics. We find that randomizing the initial states has an

insignificant influence on the entrainment regions in both these cases (stochastic and deterministic). Therefore the phenomenon

we report is also relatively unaffected by this randomization of initial states, reinforcing our claim that the dynamical nature of noise

is really important for this phenomenon.

We show this computationally for the Spiky NF-k B model described before. Earlier we had set the initial states of the cells to be

x0 = ð0;0;0Þ. We compare this case of constant initial conditions to the situation where the initial state of each cell is randomly and

independently chosen from the uniform distribution over the unit cube ½0;1�3. Since each cell has its own initial condition, the pop-

ulation-level signal will differ from the single-cell signal even in the deterministic case. We compare the Arnol’d Tongues in these two

scenarios (constant and randomly distributed initial states) for the population-level signal with deterministic intracellular dynamics in

Figure S2A. The same comparison is made for the stochastic dynamics in Figure S2B. Note that irrespective of the nature of dy-

namics, randomizing the initial states does not change the Arnol’d Tongues significantly. Consequently the Arnol’d Tongue for the

population-level entrainment response are still much wider in the stochastic case in comparison to the deterministic case, even

when we randomize the initial states (see Figure S2D). The enhancement effect is quite similar to the constant initial-states scenario

presented in the main paper and also displayed in Figure S2C for convenience. We can quantify this enhancement effect by

computing the percentage of expansion of the Arnol’d Tongue area in the stochastic case in comparison to the deterministic

case. These percentages are 54% and 59% for the constant initial-states and the random initial-states situations respectively, again

indicating that the overall enhancement effects are quite similar. However it is noteworthy that this effect is slightly more when the

initial states are randomized. These numerical experiments with the NF-k B model clearly show that static noise, in the form of ran-

domized initial states, is not responsible for the phenomenon we report and dynamical noise is necessary to see the proposed effect.

In the case of weak forcing, this insight can also be obtained from the mathematical analysis we present later for a simple example.
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The paragraph after Equation (35) discusseswhy randomness in the dynamics plays a unique role in causing population-level entrain-

ment and also explains why this role cannot be performed by randomness in the initial states.

Effects of Altering the Noise-Levels
Wementioned in themain paper that the phenomenonwe describe is similar to thewell-known phenomenon of stochastic resonance

(Gammaitoni et al., 1998; McDonnell and Abbott, 2009), where also dynamical noise interacts with system’s nonlinearities to create

coherent oscillations at the forcing frequency. However there is amechanistic difference between these two phenomenawhichman-

ifests in the role of noise in creating oscillatory coherence. In stochastic resonance, noise reinforces the weak oscillatory mode of

‘‘hopping’’ between two stable states, and hence this phenomenon depends critically on the level of noise in the system. On the other

hand, the phenomenon we report relies on noise having contrasting effects on the phase-distribution of the natural and the input

oscillatory modes (see the Mathematical Explanation section). As these effects are robust to noise-levels, the same is true for the

reported noise-induced entrainment phenomenon, quite unlike the phenomenon of stochastic resonance.

We demonstrate this using simulations of the Spiky NF-k B model. In earlier simulations we had set the cell-volume to be

U=NA310�11, where NA is the Avogadro’s constant. Since we simulate the dynamics using Langevin SDE (1), the noise-level in

the dynamics is proportional to 1=
ffiffiffiffi
U

p
. Hence we can alter the noise-levels by varying the cell-volume U and observe the effect on

the population-level Arnol’d Tongues in the stochastic setting. We compare these Arnol’d Tongues with the deterministic Arnol’d

Tongues for six different volume parameters in Figure S3, and we find that these six cases are very similar to each other. We can

quantify the population-level entrainment enhancement effect by computing the percentage of expansion of the Arnol’d Tongue

area in the stochastic case in comparison to the deterministic case. These percentages, reported in Table S2 for the six different

volume parameters, again show that the effect is quite similar for the six cases. From these numerical experiments we can conclude

that the phenomenon we describe is quite robust to the noise-levels in the dynamics. However note that the amplitude of the pop-

ulation-level oscillatory signal and the cut-off times needed to reach steady-state may depend on the noise-level, as indicated by the

analysis in the Mathematical Explanation section for a simple example.

Mathematical Explanation
In this section we mathematically explain the noise-induced entrainment phenomenon using a simple example. We model the dy-

namics of a single cell (or a single oscillator) kept under constant environmental conditions, by a two-dimensional self-sustained

oscillator whose stable limit cycle is a perfect circle centered at the origin. We add noise or randomness into the dynamics and

discuss its effects on the oscillations at both the single-cell and the population level. We then introduce periodic forcing, with a

weak strength, to the single-cell dynamics and again analyze the oscillatory activity at both the single-cell and the population level

results show that the weak forcing is able to entrain the dynamics at the population level but not at the single-cell level. Moreover this

behavior only holds in the presence of noise and hence the corresponding deterministic system will not get entrained by the weak

input. These observations demonstrate the main findings of the paper.

Self-Sustained Oscillators
Suppose that the dynamics of a single cell with constant environmental conditions and without any noise is given by the following

two-dimensional system

d

dt

�
x
y

	
=AðrÞ

�
x
y

	
; (7)

where r2 = x2 + y2 and

AðrÞ=
�
LðrÞ �UðrÞ
UðrÞ LðrÞ

	
:

Such systems are called Omega-Lambda systems (Keener and Sneyd, 2005) and they are special because if we change to polar

coordinates, x = r cos q, y = r sin q, then the ODEs are given by

dr

dt
= rLðrÞ and

dq

dt
=UðrÞ: (8)

Assume that r� > 0 is such thatLðr�Þ= 0. Then this system has a limit cycle which is a perfect circle in ℝ2 with radius r� and center at

the origin. Let f 0ðrÞ denote the derivative of function fðrÞ with respect to r. If we have

L0ðr�Þ< 0: (9)

then the limit cycle (circle of radius r�) is stable. Hence this system is an example of a self-sustained stable oscillator whose natural

frequency is u0 =Uðr�Þ.
We now introduce noise into the dynamics. We assume that the function UðrÞ is noisy, and we substitute this function in (7) by

UðrÞ+ sxðtÞ;
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where s is the noise-intensity and xðtÞ is the white-noise process. Now the dynamics is described by

d

dt

�
x
y

	
=AðrÞ

�
x
y

	
+ sNðtÞ

�
x
y

	
; (10)

where NðtÞ is the 232 noise matrix given by

NðtÞ=
�
0 �xðtÞ
xðtÞ 0

	
:

We now discuss the effect of noise on the radius of the limit cycle. We apply Ito’s formula (Øksendal, 2003) on

rðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxðtÞÞ2 + ðyðtÞÞ2

q
to get

dr

dt
= r

�
LðrÞ+ s2

2

�
: (11)

Note that even though xðtÞ and yðtÞ are noisy signals, rðtÞ is deterministic. From now on we assume that there exists a r� such that

Lðr�Þ= � s2

2
(12)

and (9) holds at this r�. This ensures that the circle with radius r� centered at the origin is a stable limit cycle for the noisy system (10).

Note that Equation (11) shows that we have noise into the dynamics in such a way that it only affects the motion in the direction which

is tangential to the limit cycle (q component) and it does not affect the motion in the direction which is normal to the limit cycle

(r component). In general noise may be present in both the components but the noise in the r component may not play a significant

role due to the stability of the limit cycle.

Let ðx0ðtÞ; y0ðtÞÞ be a solution of the system (10). We now examine the dynamics of ðx0ðtÞ; y0ðtÞÞ= ðEðx0ðtÞÞ; Eðy0ðtÞÞÞ, where E de-

notes the expectation operator. Taking expectation in (10) we get

d

dt

�
x0ðtÞ
y0ðtÞ

	
=
d

dt

�
Eðx0ðtÞÞ
Eðy0ðtÞÞ

	
=Aðr�Þ

�
x0ðtÞ
y0ðtÞ

	
; (13)

where we have used the fact that rðtÞzr� for large values of t. Recall that u0 =Uðr�Þ is the natural frequency of the oscillator. Note that
the 232 matrix

Aðr�Þ=

2
664
�s2

2
�u0

u0 �s2

2

3
775; (14)

has eigenvalues

�s2

2
± iu0

where i =
ffiffiffiffiffiffiffi�1

p
. Since the real part of both these eigenvalues is negative, the solution of the linear system (13) is such that both ðx0ðtÞ

and y0ðtÞÞ undergo damped oscillations (with frequency u0) that eventually converge to 0 as t/N (see Figure S4C). In other words

we have

ðx0ðtÞ; y0ðtÞÞ/ð0; 0Þ as t/N: (15)

This behavior is quite unlike the noise-free system (7) where the solutions are consistently oscillating with frequency u0.

Another way to understand the result (15) is by examining the angular component qðtÞ of the signal ðx0ðtÞ; y0ðtÞÞ. Define

qðtÞ= arctan

�
y0ðtÞ
x0ðtÞ

�
:

Then using Ito’s formula we get

dq

dt
=UðrÞ+ sxðtÞ: (16)

For large values of t, we have rðtÞzr� and solving this SDE yields

qðtÞ � u0t =f0ðtÞ= q0 + sBðtÞ; (17)
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where q0 = qð0Þ is the initial phase and BðtÞ is the standard Brownian motion (Øksendal, 2003). Note that sBðtÞ represents the

noise-induced phase-diffusion term that has been extensively studied in many papers (Pikovsky et al., 2000). Properties of the

Brownian motion BðtÞ imply that f0ðtÞ has the Normal distribution with mean q0 and variance s2t. As t gets large, the variance

grows without bounds which implies that the distribution of f0ðtÞ=2p (f0ðtÞ modulo 2p) is almost uniform over the interval

½0; 2p�. In Figure S4A we show five trajectories of f0 and in Figure S4B we illustrate the uniformity of the distribution of

f0ðtÞ=2p for large values of t.

The above analysis shows that for large t, the single-cell dynamics ðx0ðtÞ; y0ðtÞÞ is approximately given by

�
x0ðtÞ
y0ðtÞ

	
= r�

�
cosðu0t +f0ðtÞÞ
sinðu0t +f0ðtÞÞ

	
= r�

�
cosðu0t + q0 + sBðtÞÞ
sinðu0t + q0 + sBðtÞÞ

	
: (18)

This representation allows us to easily see that (15) is a direct consequence of the phase-diffusion phenomenon. As explained before,

this phenomena causes the distribution of f0ðtÞ=2p to be almost uniform over the interval ½0;2p�, and since Sine and Cosine are pe-

riodic functions with period 2p, we have

x0ðtÞ= Eðx0ðtÞÞz 1

2p

Z 2p

0

r� cosðu0t + uÞdu= 0
and y0ðtÞ= Eðy0ðtÞÞz 1

2p

Z 2p

0

r�sinðu0t + uÞdu= 0 (19)

for large values of t, which again proves (15). Such a behavior is consistent with the existing theoretical results on noisy oscillators

(Gupta et al., 2014), as well as certain computational and experimental studies on uncoupled circadian clocks with noisy dynamics

(Bagheri et al., 2008; To et al., 2007; Ohta et al., 2005; Welsh et al., 1995; Aton et al., 2005).

Self-Sustained Oscillators under Weak Periodic Forcing
We now add weak periodic forcing to the noisy single-cell dynamics (10). This forcing has frequency uf and strength ε, where ε is a

small positive number. The dynamics of the forced system is given by

d

dt

�
x
y

	
=AðrÞ

�
x
y

	
+ sNðtÞ

�
x
y

	
+ ε

�
cosðuf tÞ
sinðuf tÞ

	
: (20)

Let ðxε; yεÞ be a solution of (20). We now use perturbation theory to obtain an approximation of ðxε; yεÞwhich is accurate up to order

ε. In other words, we assume that ðxε; yεÞ has the form�
x
ε

y
ε

	
=

�
x0
y0

	
+ ε

�
x1
y1

	
+O

�
ε
2
�
: (21)

Letting ε/0 above we see that ðx0; y0Þ must be a solution of (10). Substituting the form (21) in (20) we get

d

dt

�
x0
y0

	
+ ε

d

dt

�
x1
y1

	
=Aðr

ε
Þ
�
x0
y0

	
+ εAðr

ε
Þ
�
x1
y1

	
+ sNðtÞ

�
x0
y0

	
+ εsNðtÞ

�
x1
y1

	
+ ε

�
cosðuf tÞ
sinðuf tÞ

	
+O

�
ε
2
�
; (22)

where rεðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
ε
ðtÞ+ y2

ε
ðtÞp

. Since r0ðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20ðtÞ+ y20ðtÞ

q
, using (21) we can write

r
ε
ðtÞ= r0ðtÞ+ ε

x0ðtÞx1ðtÞ+ y0ðtÞy1ðtÞ
r0ðtÞ +O

�
ε
2
�
: (23)

Substituting this expression in (22) and using the fact that ðx0; y0Þ is the solution to (10), one can see that ðx1; y1Þ solves

d

dt

�
x1
y1

	
=Aðr0Þ

�
x1
y1

	
+ sNðtÞ

�
x1
y1

	
+

�
cosðuf tÞ
sinðuf tÞ

	
+Mðx0; y0Þ

�
x1
y1

	
;

where Mðx0; y0Þ is the 232 matrix given by

Mðx0; y0Þ= 1

r0

�
L0ðr0Þx20 � U0ðr0Þx0y0 L0ðr0Þx0y0 � U0ðr0Þy20
L0ðr0Þx0y0 +U0ðr0Þx20 U0ðr0Þx0y0 +L0ðr0Þy20

	
:
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Note that for large values of t, we have r0ðtÞzr�, u0 =Uðr�Þ and Lðr�Þ=�s2=2. For simplicity, we assume U0ðr�Þ= 0 from now on.

Hence the long-term dynamics of ðx1; y1Þ simplifies to:

d

dt

�
x1
y1

	
=

2
664
�s2

2
�u0

u0 �s2

2

3
775
�
x1
y1

	
+ sNðtÞ

�
x1
y1

	
+

�
cosðuf tÞ
sinðuf tÞ

	
+

L0ðr�Þ
r�

�
x20 x0y0
x0y0 y20

	�
x1
y1

	
: (24)

For any ðx0; y0Þ of the form (18), let Pðx0 ;y0Þ : ℝ
2/ℝ2 be the projection map given by

Pðx0 ;y0Þðx; yÞ=
�
xx0 + yy0
x20 + y20

�
ðx0; y0Þ= hðx; yÞ; ðx0; y0Þi

hðx0; y0Þ; ðx0; y0Þi ðx0; y0Þ=
hðx; yÞ; ðx0; y0Þi

ðr�Þ2 ðx0; y0Þ;

where h,; ,i denotes the standard inner product on ℝ2. Note that Pðx0 ;y0Þðx; yÞ gives the component of the vector ðx; yÞ in the direction

ðx0; y0Þ. One can view the linear transformation Pðx0 ;y0Þ as the 232 matrix

Pðx0 ;y0Þ=
1

ðr�Þ2
�
x20 x0y0
x0y0 y20

	
;

in the sense that for any ðx; yÞ ˛ ℝ2 we have that

Pðx0 ;y0Þðx; yÞ=Pðx0 ;y0Þ

�
x
y

	
:

Hence Equation (24) simplifies to

d

dt

�
x1
y1

	
=

2
664
�s2

2
�u0

u0 �s2

2

3
775
�
x1
y1

	
+ sNðtÞ

�
x1
y1

	
+

�
cosðuf tÞ
sinðuf tÞ

	
+L0ðr�Þr�Pðx0 ;y0Þ

�
x1
y1

	
: (25)

Let

aðtÞ= x0ðtÞx1ðtÞ+ y0ðtÞy1ðtÞ
ðr�Þ2 =

hðx1ðtÞ; y1ðtÞÞ; ðx0ðtÞ; y0ðtÞÞi
ðr�Þ2 ; (26)

and note that

Pðx0ðtÞ;y0ðtÞÞ

�
x1ðtÞ
y1ðtÞ

	
=aðtÞ

�
x0ðtÞ
y0ðtÞ

	
: (27)

Using Ito’s formula we obtain the equation for aðtÞ as

da

dt
=
x0ðtÞcosðuf tÞ+ y0ðtÞsinðuf tÞ

ðr�Þ2 +L0ðr�Þr�aðtÞ: (28)

Note that L0ðr�Þ< 0 (9) and its absolute value jL0ðr�Þ j can be seen as the stability strength of the oscillator. Using (18) and solving

the equation for aðtÞ yields

aðtÞ=að0Þe�jL0 ðr�Þ j r�t +
1

r�

Z t

0

e�ðjL0 ðr�Þ j r�Þðt�sÞcosððu0 � ufÞs+ q0 + sBðsÞÞds:

Note that aðtÞ is a finite total variation process (Øksendal, 2003), and since the Cosine function is bounded between �1 and 1, the

absolute value of aðtÞ can be bounded above by

jaðtÞ j% 1

jL0ðr�Þ j ðr�Þ2: (29)

Define ðxf ðtÞ; yf ðtÞÞ as
�
xf ðtÞ
yf ðtÞ

	
=

�
x1ðtÞ
y1ðtÞ

	
� aðtÞ

�
x0ðtÞ
y0ðtÞ

	
=
�
I� Pðx0ðtÞ;y0ðtÞÞ

�� x1ðtÞ
y1ðtÞ

	
; (30)
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where I is the 232 identity matrix. Observe that ðxf ðtÞ; yf ðtÞÞ gives the component of ðx1ðtÞ; y1ðtÞÞ that is tangential to the limit cycle at

ðx0ðtÞ; y0ðtÞÞ. Using (10) and (25), we can derive the equation for ðxf ðtÞ; yf ðtÞÞ as below:

d

dt

�
xf
yf

	
=
d

dt

�
x1
y1

	
� aðtÞ d

dt

�
x0
y0

	
�
�
x0
y0

	
da

dt
=

2
664
�s2

2
�u0

u0 �s2

2

3
775
�
xf
yf

	
+ sNðtÞ

�
xf
yf

	
+

�
cosðuf tÞ
sinðuf tÞ

	
+L0ðr�Þr�Pðx0 ;y0Þ

�
x1
y1

	
�
�
x0
y0

	
da

dt
:

However (27) and (28) imply that

L0ðr�Þr�Pðx0 ;y0Þ

�
x1
y1

	
�
�
x0
y0

	
da

dt
=L0ðr�Þr�aðtÞ

�
x0
y0

	
�L0ðr�Þr�aðtÞ

�
x0
y0

	
� Pðx0 ;y0Þ

�
cosðuf tÞ
sinðuf tÞ

	
= � Pðx0 ;y0Þ

�
cosðuf tÞ
sinðuf tÞ

	
:

Hence the equation for ðxf ðtÞ; yf ðtÞÞ simplifies to

d

dt

�
xf
yf

	
=

2
664
�s2

2
�u0

u0 �s2

2

3
775
�
xf
yf

	
+ sNðtÞ

�
xf
yf

	
+
�
I� Pðx0 ;y0Þ

�� cosðuf tÞ
sinðuf tÞ

	
: (31)

The drift and diffusion components of this SDE are growing at most linearly in ðxf ; yf Þ, and the forcing term is bounded. Therefore

using the classical existence and uniqueness result for SDEs (see for e.g., Theorem 5.2.1 in (Øksendal, 2003)) we can see that its

solution is well-defined in any finite time interval ½0;T �. Moreover on such a time interval we have

E

2
4Z T

0

�
x2f ðtÞ+ y2f ðtÞ

�
dt

3
5<N (32)

which shows that this solution is well-behaved and does not grow unboundedly.

Since ðx0ðtÞ; y0ðtÞÞ is given by (18), we can write the matrix Pðx0 ;y0Þ as

Pðx0 ;y0Þ=
1

ðr�Þ2
�
x20 x0y0
x0y0 y20

	
=

�
cos2ðu0t +f0ðtÞÞ sinðu0t +f0ðtÞÞcosðu0t +f0ðtÞÞ
sinðu0t +f0ðtÞÞcosðu0t +f0ðtÞÞ sin2ðu0t +f0ðtÞÞ

	
:

We now examine the dynamics of ðxf ðtÞ; yf ðtÞÞ= ðEðxf ðtÞÞ; Eðyf ðtÞÞÞ, where E denotes the expectation operator. Taking expectation

in (31) we get

d

dt

�
xfðtÞ
yf ðtÞ

	
=
d

dt

�
EðxfðtÞÞ
EðyfðtÞÞ

	
=

2
664
�s2

2
�u0

u0 �s2

2

3
775
�
xfðtÞ
yfðtÞ

	
+
�
I� E

�
Pðx0ðtÞ;y0ðtÞÞ

��� cosðuf tÞ
sinðuf tÞ

	
: (33)

Recall that for large t, the distribution of f0ðtÞ=2p is almost uniform over the interval ½0;2p�. Therefore the expectation of this matrix

can be computed as

E
�
Pðx0 ;y0Þ

�
=

1

2p

2
6664
Z 2p

0

cos2ðu0t + uÞdu
Z 2p

0

sinðu0t + uÞcosðu0t + uÞduZ 2p

0

sinðu0t + uÞcosðu0t + uÞdu
Z 2p

0

sin2ðu0t + uÞdu

3
7775=

2
664
1

2
0

0
1

2

3
775:

Substituting this expectation and solving the linear system (33) we get"
xfðtÞ
yfðtÞ

#
= e�s2

2
t

"
cosðu0tÞ �sinðu0tÞ
sinðu0tÞ cosðu0tÞ

#"
xfð0Þ
yf ð0Þ

#
+
1

2

Z t

0

e�s2

2
ðt � sÞ

"
cosðu0ðt � sÞÞ �sinðu0ðt � sÞÞ
sinðu0ðt � sÞÞ cosðu0ðt � sÞÞ

#"
cosðuf sÞ
sinðuf sÞ

#
ds

= e�s2

2
t

"
cosðu0tÞ �sinðu0tÞ
sinðu0tÞ cosðu0tÞ

#"
xfð0Þ
yfð0Þ

#
+
1

2

Z t

0

e�s2

2
ðt � sÞ

"
cosðu0ðt � sÞ+uf sÞ
sinðu0ðt � sÞ+uf sÞ

#
ds:

(34)

Let A0 and Af be constants given by

A0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxfð0ÞÞ2 + ðyfð0ÞÞ2

q
and Af =

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu0 � uf Þ2 +

�
s2

2

�2
s :
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Also define to be f0 and f�
f be angles whose Sine and Cosine values are as follows

cosðf0Þ=
xfð0Þ
A0

; sinðf0Þ=
yfð0Þ
A0

; cos
�
f�
f

�
=

s2

2

Af

; and sin
�
f�
f

�
=
u0 � uf

Af

:

Upon evaluating the integral in (34), the formula for ðxf ðtÞ; yf ðtÞÞ simplifies to

�
xfðtÞ
yfðtÞ

	
=A0e

�s2

2
t
�
cosðu0t +f0Þ
sinðu0t +f0Þ

	
+
Af

2

�
cos

�
uf t +f�

f

�
sin

�
uf t +f�

f

� 	
� Af

2
e�s2

2
t
�
cos

�
u0t +f�

f

�
sin

�
u0t +f�

f

� 	
: (35)

In the presence of dynamical noise ðs> 0Þ the long-term dynamics of ðxf ðtÞ; yf ðtÞÞ can be approximated by

�
xfðtÞ
yf ðtÞ

	
=
Af

2

�
cos

�
uf t +f�

f

�
sin

�
uf t +f�

f

� 	
; (36)

which shows that ðxf ðtÞ; yf ðtÞÞ oscillates with the forcing frequencyuf and has no component that oscillates with the natural frequency

u0. This agrees with the main finding of our paper which claims that noise in the dynamics facilitates entrainment of the population-

averaged signal. We now consider the case when there is no noise in the dynamics of individual cells ðs= 0Þ. In such a scenario

ðxf ðtÞ; yf ðtÞÞ and ðxf ðtÞ; yf ðtÞÞ coincide and they can be expressed as

�
xfðtÞ
yfðtÞ

	
=A0

�
cosðu0t +f0Þ
sinðu0t +f0Þ

	
+
Af

2

�
cos

�
uf t +f�

f

�
sin

�
uf t +f�

f

� 	
� Af

2

�
cos

�
u0t +f�

f

�
sin

�
u0t +f�

f

� 	
: (37)

This deterministic signal is clearly not entrained because it has a non-trivial component which oscillates with frequency u0.

One may wonder if we can recover entrainment at the population-level just by randomizing the initial phase f0 rather than intro-

ducing dynamical noise. To investigate this issue we keep s= 0, but let f0 be a ½0;2p�-valued random variable with probability

distribution F0. This random variable f0 assumes different values for different cells, allowing the population-level behavior to be

different from the behavior of a single-cell, even though the dynamics is deterministic. The population-level signal is now given

by ðxf ðtÞ; yf ðtÞÞ= ðEF0
ðxf ðtÞÞ;EF0

ðyf ðtÞÞÞ, where EF0
denotes the expectation w.r.t. probability distribution F0. From (37) it is immediate

that

�
xf ðtÞ
yfðtÞ

	
=

�
EF0

ðxfðtÞÞ
EF0

ðyfðtÞÞ
	
=A0

�
EF0

ðcosðu0t +f0ÞÞ
EF0

ðsinðu0t +f0ÞÞ
	
+
Af

2

�
cos

�
uf t +f�

f

�
sin

�
uf t +f�

f

� 	
� Af

2

�
cos

�
u0t +f�

f

�
sin

�
u0t +f�

f

� 	
:

The last term in this equation is non-trivial and it oscillates with frequency u0 indicating that this population-level signal ðxf ðtÞ; yf ðtÞÞ
will not be entrained for any choice of initial phase distributionF0. In particular, even whenF0 has uniform distribution over ½0;2p�, the
first term in this equation will disappear (recall (19)) but the last term still remains ensuring that ðxf ðtÞ; yf ðtÞÞ is not entrained. The same

issue does not arise in the stochastic case ðs> 0Þ because the long-term dynamics (36) is unaffected by the initial phase distribution.

This agrees with the observation we made earlier that in the stochastic case, randomizing the initial phases of cells does not signif-

icantly affect the population-level Arnol’d Tongue.

Another way to understand the above result is by studying the dynamics of the angular-variable qf ðtÞ corresponding to the system

(31). Define

qf ðtÞ= arctan

�
yfðtÞ
xfðtÞ

�
:

Then using Ito’s formula we get

dqf
dt

=u0 + sxðtÞ � 1

2rfðtÞ sinðqf ðtÞ � uf tÞ+ 1

2rfðtÞ sinðqfðtÞ+uf t � 2u0t � 2f0ðtÞÞ;

where

rfðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2f ðtÞ+ y2f ðtÞ

q
:

Letting

ffðtÞ= qfðtÞ � uf t; (38)

to be the phase variable we obtain

dff

dt
=u0 � uf + sxðtÞ � 1

2rfðtÞ sinðffðtÞÞ+
1

2rfðtÞ sinðffðtÞ � 2ðu0 � ufÞt � 2f0ðtÞÞ: (39)
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Note that ff ðtÞmeasures the difference between the angle qf ðtÞ of the system (31) and the angle of the forcing input uf t. Equations

similar to (39) are known to describe the dynamics of this phase for more general examples (Pikovsky et al., 2000, 2001). Assuming

that the frequency mismatch or detuning factor ju0 � uf j is small, the process ff behaves like a mean-reverting Ornstein-Uhlenbeck

process (Øksendal, 2003) given by

df

dt
= � ðf� f�Þ+ sxðtÞ; (40)

where f� is some constant. Properties of such a process imply as t tends to infinity, the random variable fðtÞ converges in distribution
to a Normal random variable withmean f� and a bounded variance. This suggests that for large values of t, the distribution of ff ðtÞ=2p
is concentrated over a small region in the interval ½0;2p�, which is very different from the constant-environment situation where the

distribution was uniform. Note that ðxf ðtÞ; yf ðtÞÞ can be expressed as�
xfðtÞ
yfðtÞ

	
= rf ðtÞ

�
cosðuf t +ff ðtÞÞ
sinðuf t +ffðtÞÞ

	
: (41)

From the concentrated nature of the distribution of ff ðtÞ=2p, one can verify that the expected signal ðxf ðtÞÞ; ðyf ðtÞÞ= ðEðxf ðtÞÞ;
Eðyf ðtÞÞÞ is oscillatory with frequency uf , as proved by (36). Observe that the expected signal does not vanish as t/N, as in the con-

stant-environment situation (19).

Combining (18), (21), (30) and (41) we see that for large t, the solution of the weakly forced noisy self-sustained oscillator (20) is of

the form: �
x
ε
ðtÞ

y
ε
ðtÞ

	
=

�
x0ðtÞ
y0ðtÞ

	
+ ε

�
x1ðtÞ
y1ðtÞ

	
+Oðε2Þ

= r�ð1+ εaðtÞÞ
�
cosðu0t +f0ðtÞÞ
sinðu0t +f0ðtÞÞ

	
+ εrfðtÞ

�
cosðuf t +ffðtÞÞ
sinðuf t +ffðtÞÞ

	
+O

�
ε
2
�
;

(42)

where aðtÞ is given by (26). Moreover the distribution of f0ðtÞ=2p (f0ðtÞmodulo 2p) is almost uniform over the interval ½0; 2p�while the

distribution of ff ðtÞ=2p is concentrated over a small region in the interval ½0;2p�. Representation (42) describes the single-cell dy-

namics in this weak periodic input case, as a superposition of two signals: a strong signal (18) with frequency u0 (natural frequency)

and a weak signal (41) with frequency uf (forcing frequency).

As mentioned in the main paper, using (42) we can easily explain our main findings. If we turn-off the noise, then f0ðtÞ and ff ðtÞ
become deterministic constants, and the resulting deterministic signal is oscillatory with a frequency which is very different from

the forcing frequency uf . In fact the majority of the signal power lies at the natural frequency u0, indicating that the dynamics is

not entrained by the weak periodic input. When noise enters the dynamics, f0ðtÞ and ff ðtÞ become random variables, causing

cell to cell heterogeneity. The single-cell trajectories exhibit oscillations, but they lack coherence due to noise. As in the deterministic

case, a single-cell signal also attributes most of its power at the natural frequency u0, thereby showing that the signal is again not

entrained by theweak periodic input. However the entrainment property emerges at the population-level whenwe consider the signal

ðxεðtÞ; yεðtÞÞ= ðEðxεðtÞÞ;EðyεðtÞÞÞ formed by taking the average of several single-cell signals. To see this effect observe that (15) and

(36) imply that for large values of t

x
ε
ðtÞ : = Eðx

ε
ðtÞÞzε

�
Af

2

�
cos

�
uf t +f�

f

�
+ ε

Z a

�a

Z 2p

0

a cosðu0t + zÞGða; zÞdzda+O
�
ε
2
�
;

and

y
ε
ðtÞ : = Eðy

ε
ðtÞÞzε

�
Af

2

�
sin

�
uf t +f�

f

�
+ ε

Z a

�a

Z 2p

0

a sinðu0t + zÞGða; zÞdzda+O
�
ε
2
�
;

where Gða; zÞ is the joint distribution function of ðr�aðtÞÞ and 40ðtÞ=2p. Note that r�aðtÞ is bounded above by

a=
1

jL0ðr�Þ j r�

due to (29). In average or expectation, the dominant term in (42) corresponding to the natural frequency u0 drops out because of

the uniformity of the distribution of f0ðtÞ=2p as before in (19). Hence only the terms of order ε remain in ðxεðtÞ; yεðtÞÞ, making it

possible for the majority of this signal’s power to lie at the forcing frequency uf . This is because this signal includes the signal

ðxf ðtÞ; yf ðtÞÞ= ðEðxf ðtÞÞ; Eðyf ðtÞÞÞ (see (36)) which oscillates with frequency uf . Therefore the population-level signal ðxεðtÞ; yεðtÞÞ can
become well-entrained to the weak periodic input even though the single-cell signals are not. Furthermore, we can also conclude

that this population-level entrainment is facilitated by the noise because if we remove the noise, then the resulting deterministic sys-

tem is not entrained by the weak periodic input, as explained above. We end this section by noting that when the stability strength

jL0ðr�Þ j of the oscillator is high, then az0 and ðxεðtÞ; yεðtÞÞ is almost perfectly entrained to the periodic input.
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QUANTIFICATION AND STATISTICAL ANALYSIS

In the stochastic setting, we pool together several single-cell trajectories and take their average (at each time-point) we obtain a tra-

jectory that corresponds to the population-level dynamics. All trajectories are analyzed after removing an initial time-period to ensure

that the transience has been eliminated. Using the Discrete Fourier Transform (DFT) we compute the Power Spectral Density (PSD) of

any trajectory to decide if the dynamics is entrained or not: to be entrained, the power corresponding to the frequency-mode uf (and

its harmonics) should be a significant percentage of the total signal power. Thereafter by scanning the frequency-amplitude space,

the Arnol’d Tongues can be plotted. Note that the DFT of a signal also allows us to evaluate the phase variables f0 and ff corre-

sponding to the natural component (frequency u0) and the forcing component (frequency uf ) of the signal. Using these phase real-

izations from several single-cell trajectories we can plot the histograms for the distributions of f0 and ff modulo 2p (see Figure 6).

More information on the determination of entrainment and the computation of Arnol’d Tongues is provided below.

Determination of Entrainment
Consider a system that is driven by a periodic forcing signal with frequency uf . The output of the system is said to be entrained (Pi-

kovsky et al., 2001) to the forcing signal with am : n ratio if the output is periodic with a frequency uout and uout=uf =m=n. For the Van

der Pol oscillator we only consider 1 : 1 entrainment and for the Spiky NF-k B model and the Circadian Clock we only consider 1 : 1

and 1 : 2 entrainment.

Spectral Power and Phase
For a specific forcing amplitude uA and forcing frequency uf let fj be the samples of the output of the system at time tj = j3dt for

j ˛ f0.N � 1g. We substract the time-average of the signal to get:

~f j = fj � 1

N

XN�1

m= 0

fm:

We compute the discrete fourier transformation (DFT) ~F of the sequence of samples ~f i as:

~Fk =
XN�1

j = 0

~f jnkj;

where nkj = expð�i 2pk j=NÞ and k = 0;1;.; ðN� 1Þ. The spectral power Pk of the output signal at frequency k=ðN3dtÞ and the cor-

responding phase fk are given by

Pk =
dt

N

�� ~Fk

�� 2 and fk = arg


~Fk

�
;

where jz j and argðzÞ denote the absolute value and argument of a complex number z.

Note that these Pk-s give us the Power Spectral Density (PSD) of the output signal. As we only use ratios of Pk-s later on, the

normalization of Pk-s is not important. We use the MATLAB function fft. This function applies the Cooley-Tukey algorithm (Cooley

and Tukey, 1965) which expects the number of samplesN to be a power of 2 and thus we truncate the samples of the output accord-

ingly. As the output is real-valued it follows that ~FN�k = ~F
�
k for k = 0;1;.; ðN=2Þ, and thus we only need to evaluate the ~Fk-s for

k = 0;1;.; ðN=2Þ.

Entrainment Score
The Fourier transformation of a periodic signal with a period T will be a sum of Dirac-delta distributions located at frequencies

u= j3ð2p=TÞ for j ˛ ℕ0, i.e., the power at the fundamental frequency 1=T and all the higher harmonics (the component at frequency

u= 0 corresponds to themean of the signal). We can use this fact to test the entrainment of a system, however, due to the finite obser-

vation time and transient-effects in the system dynamics, the spectral power of an entrained system will be spread around the cor-

responding components of the DFT. To accommodate for this numerical issue, we define a narrow frequency window of width

Dn= 0:013u0 and put this window around the fundamental and higher harmonics of the forcing frequency. We can then approximate

the spectral power corresponding to the forcing frequency by summing up the spectral power within these windows:

Pin =
XN

j = 1

X
k˛Aj

�� ~Fk

�� 2
Aj = fk : j,uf � Dn%j,nk%j,uf +Dng;
i.eAj represents theDFT componentswithin the frequencywindow around the jth harmonic andPin is the approximate spectral power

corresponding to the forcing frequency uf . We define the entrainment score as the ratio of the spectral power corresponding to the

forcing frequency and the total spectral power as
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S=
Pin

Ptotal
and Ptotal =

XN�1

k = 0

�� ~Fk

�� 2:
In the case of a deterministic system that is entrained to a periodic forcing signal, the entrainment score S will approach 1 as the

observation time N3dt approaches infinity. Because of this we choose an entrainment threshold Sent that is close to one and call a

system entrained if SRSent.

Entrainment for Stochastic Systems
We now discuss how the decision of whether the output of a stochastic system is entrained or not is made. For such systems the

notion of entrainment should be based on an ensemble of individual oscillators, i.e., a population of oscillators with identical dy-

namics but with different realizations of the noise.

To decide the entrainment of a population-level signal we compute the entrainment score based on the average DFT of several

single-cell realizations. Due to the linearity of the Fourier transformation this is equivalent to computing the DFT of the average of

single-cell signals. To decide entrainment at the single-cell level we compute the entrainment score for each realization of the system.

We then define the single-cell level entrainment score to be the average entrainment score of the 50% highest entrainment scores of

the individual realizations.

As in the deterministic case, we call the system entrained at the population-level or the single-cell level, if the corresponding

entrainment score is higher than the entrainment threshold Sent. Since the entrainment will never be perfect due to the stochasticity

in the system as well as numerical errors, we use an entrainment threshold of Sent = 0:75 in all our examples.

Computation of the Arnol’d Tongues
The computation of the Arnol’d Tongues involves a scan over two parameters, the forcing frequency and the forcing amplitude. For

each pair of these parameter valuesmany realizations have to be computed for a sufficiently large observation time. This is a very time

consuming procedure and to make this computation tractable we make the following assumption: given that u0A is the minimum

amplitude for which a system is entrained, i.e., the border of the Arnol’d Tongue, we assume that the system is also entrained for

all forcing amplitudes uA >u0A, i.e., there are no holes in the Arnol’d Tongues. Note that this assumption is not true in general, and

for the systems we consider, the entrainment ratio can change with increasing forcing amplitude. However, we carefully checked

that this assumption holds by explicitly testing a few forcing frequencies in each example.

To approximate the Arnol’d Tongue numerically, we choose a finite range of forcing frequencies fu0
f ;.;uM

f g, a maximum forcing

amplitude umax
A , and a desired accuracy level for the Arnol’d Tongue border εA. With the assumption mentioned above, we can resort

to a binary search on the forcing amplitude range ½0;umax
A � to find the minimum forcing amplitude u0A for which the system is entrained

for a specific forcing frequency and entrainment ratio. The binary search is performed until u0A is approximated within the desired

accuracy of εA.

The required SDEs were numerically solved using a custom, parallel implementation of the Euler-Maruyamamethod in Java (Kloe-

den and Platen, 1992). This solver is interfacedwithMATLABwhere we performed all the numerical analysis. Because of the stochas-

tic nature of the dynamics, many trajectories have to be simulated to obtain representative results for the system. On top of this, the

system has to be simulated for a considerable amount of time for it to reach stationarity. These issues make the computation of

Arnol’d Tongues very demanding, even with the simplifying assumption made above. Therefore we performed all computations in

parallel on the ETH Zurich High Performance Cluster Brutus. To illustrate the computational costs, the computation of the Arnol’d

Tongues for the Circadian Clock model took a total CPU time of about 700 days.

DATA AND SOFTWARE AVAILABILITY

The data used for generating Figure 1 was provided by Savas Tay (Institute of Molecular Engineering, University of Chicago) and it

also appears in (Kellogg and Tay, 2015). All the other data were computationally generated following the procedures mentioned

above. The computer code used for generating and analyzing the data may be requested from the authors.
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