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The future value of an individual dairy cow depends greatly on its projected milk yield.
In developed countries with developed dairy industry infrastructures, facilities exist to
record individual cow production and reproduction outcomes consistently and accurately.
Accurate prediction of the future value of a dairy cow requires further detailed knowledge
of the costs associated with feed, management practices, production systems, and
disease. Here, we present a method to predict the future value of the milk production
of a dairy cow based on herd recording data only. The method consists of several
steps to evaluate lifetime milk production and individual cow somatic cell counts and
to finally predict the average production for each day that the cow is alive. Herd recording
data from 610 Danish Holstein herds were used to train and test a model predicting
milk production (including factors associated with milk yield, somatic cell count, and the
survival of individual cows). All estimated parameters were either herd- or cow-specific.
The model prediction deviated, on average, less than 0.5 kg from the future average
milk production of dairy cows in multiple herds after adjusting for the effect of somatic
cell count. We conclude that estimates of future average production can be used on a
day-to-day basis to rank cows for culling, or can be implemented in simulation models
of within-herd disease spread to make operational decisions, such as culling versus
treatment. An advantage of the approach presented in this paper is that it requires no
specific knowledge of disease status or any other information beyond herd recorded milk
yields, somatic cell counts, and reproductive status.

Keywords: production parameters, modeling, simulation, prediction, lactation curve

1. INTRODUCTION

Herd managers cull cows to maintain optimal milk production and maintain herd profitability. For
this reason, it is essential for herd managers to continually assess their cows to make timely and
appropriate culling decisions.

Herd simulation models used to determine optimal disease-control strategies may benefit by
including cow- and herd-specific information, as individual cows will differ in production perfor-
mance and susceptibility to diseases, and hence their future milk production potential. To make
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appropriate disease control decisions, it is important to be able to
accurately predict a cow’s future production. This can be achieved
by including prediction algorithms within simulation models.

There exist several methods for estimating the future value
and hence the optimal time to cull a dairy cow. Many are based
on retention pay-off (RPO) values estimated using marginal net
returns (MNR) or expanded to dynamic programming (1–4).
RPO methods are appropriate for determining optimal culling
times when complete information on incomes and expenses are
included and the herd manager follows the recommendations of
the model. This includes disease information and sundry costs.
However, information about the health status of individual cows
is often scarce, even in countrieswhere individual cow-level health
data are collected routinely, as in Denmark. Furthermore, herd
managers are not solely motivated by economic incentives but
also by habitual and social incentives (5), which may limit the
enactment of optimal financial recommendations.

A disadvantage of dynamic programming is the dimensionality
problem, in which the number of possible states of a cow grows
exponentially with the number of state variables (i.e., production
potential, parity, dry off week, and pregnancy) (4). Therefore, a
concrete prediction of the future potential of a cow based on its
characteristics (such as production and survivability)may provide
a useful alternative for cow- and herd-specific decisions, and
hence better meet the requirements and expectations of herd
managers.

Here, we present a robust method for estimating the future
average production (FAP) from any given point in the lifetime of
an individual dairy cow. Using this approach, FAP is estimated
every time new herd recording data becomes available allowing
cows to be ranked according to their expected future profitability.
In this way, individual cow culling decisions can be both timely
and evidence based.

2. MATERIALS AND METHODS

Data on milk production, somatic cell counts, and demographic
data were obtained from the Danish Cattle database (hosted by
SEGES P/S, Aarhus N, Denmark) from which 610 herds with
Holstein dairy cowswere randomly selected among approximately
3,000 Danish herds participating in milk recording. Cows in each
of the selected herds were herd tested either 6 or 11 times per
year. Herd testing involved the measurement of milk yield (in
kilograms), milk fat (percent) and milk protein (percent), and
somatic cell count (expressed as the number of somatic cells per
milliliter of milk). Most (91%) of the selected herds had herd
testing carried out on 11 occasions throughout the year.

Determining FAP consists of several steps to determine: the
average milk production, somatic cell count, survival, and corre-
lation structures between these measures at the herd level. Here,
we present how the future values of milk yield and somatic cell
count were predicted, and how these values were combined with
the predicted lifetime, in order to give the expected future average
production (FAP).

2.1. Milk Yield
The value of milk depends on the amount of milk produced
per day as well as protein and fat content. Daily milk yield was

quantified as the number of kilograms of energy-corrected milk
[ECM (6)], defined as:

ECM = milk (0.122 fat + 0.077 protein + 0.249) (1)

wheremilk is milk in kilograms, protein is protein in percent, and
fat is fat in percent, the unit of ECM is kilograms.

We required one parameter to describe the milk yield of every
cow andpreferably a parameter thatwas stablewithin andbetween
lactations. To achieve this, individual cow lactation yields were
fitted as value relative to the herd average 305-day milk yield
lactation curve based onRef. (7), but extended so that it accounted
for day of conception. Curves were fitted for the first, second, and
subsequent lactation periods per herd, as a function of days inmilk
(DIM):

fECMijk (DIM)

= αM
ij aMjk DIMbMjk exp

(
−

(
cMjk + IPdMjk (DIM − DIMP)

)
DIM

)
(2)

where each cow, i, is defined by a milk yield level αM
ij that is

proportional to the average cow in lactation j in herd k. The
parameters aMjk , bMjk , cMjk , and dMjk describe the average cow lactation
curve per lactation per herd. The superscriptM denotes parame-
ters describing milk production, and is included to differentiate
with parameters later introduced with the superscript C which
relate to individual cow somatic cell count. IP is the identity
operator which is 1 if the cow is pregnant and 0 otherwise. DIMP is
the day of pregnancy in units of DIM. This extension that includes
the pregnancy date is important when evaluating lactations that
are longer than 305 days. This was implemented by first fitting the
herd parameters, that returns the averagemilk yield of a cow in the
given herd, then fitting αM parameters for the individual cows.

Given the large variability in milk recordings for the individual
cow, we decided that at least six data points per lactation per cow
were required to fit individual levels of milk yield (αs). Of the first
lactation cows, 90% had at least six samples taken per lactation.
This parametrization reduced the description of the individual
cow to a single intuitively understandable parameter (αM), which
is the relative production level compared to the average cow in the
same herd.

2.2. Somatic Cell Count
The somatic cell count (SCC) is an indicator of infection status
in the dairy cattle, and Danish milk companies penalize the price
paid for milk according to the level of SCC. We shall later include
the level of SCC of the individual cow in the FAP. We use the total
test day SCC (tSCC) given by tSCC= SCC·milk to model SCC.
This method of modeling the somatic cell count as total somatic
cells significantly reduced the variance of the residuals compared
to modeling as somatic cells per milliliter (8). A one-parameter
per cow model of the somatic cell count inspired by the Wilmink
curve (9) was fitted as:

f tSCCijk (DIM) = exp
(
exp

(
αC
ij

(
aCjk + bCjk DIM

+exp
(
−exp

(
cCjk

)
DIM

)
dCjk

)
− e

))
(3)
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whereαC
ij is the tSCC level of each cow i, relative to the average cow

in lactation j in herd k, and similar to the milk yield the average
cow is described by the herd-level parameters aCjk, bCjk, cCjk, and dCjk.
The price of milk in Denmark is adjusted using the number of
somatic cells per milliliter, therefore, we reverted back to SCC per
milliliter whenever calculating the value of a cow.

2.3. Correlation Structures between
Lactations
To be able to predict future production levels of individual cows,
correlation structures of levels ofmilk yield and tSCC,αM, andαC,
between lactations were determined by fitting a linear regression
model. That is, the correlation, ξMjlk, forαM between lactations j and
l in herd k, was determined as the regression coefficients as fitted
by lm() using R (10). This means that if the correlation is 0.5, a
cow, i, observed to produce 10% more than the average cow in
lactation 1 will be predicted to produce 5%more than the average
cow in lactation 2, (αM

ij − 1) = ξMjlk(α
M
il − 1).

2.4. Survival
To determine the likely future yield of a cow, we need to deter-
mine the probability of further lactation periods from any given
lactation period in any given herd. The probability of further
lactations is framed as survival to subsequent lactations which
was determined by observing the fraction of cows producing milk
in a subsequent lactation as a function of their milk level, αM,
and pregnancy status. An individual cow’s survival probability
was parameterized as a logistic function to make it more smooth
and robust especially in the case of few data points where, e.g.,
spline fitting might give non-monotone results particularly in the
situation where a farm have few cows with large DIM:

Sjky(DIM!P) = A − A(
1 + (2ν − 1)e−B(DIM!P−M)

)1/ν
(4)

where Sjky takes a sigmoid form and the terms Ajky, Bjky, ν jky, and
Mjky are shape parameters (the subscripts jky are not included in
equation (4) for ease of reading). The parameter DIM!P is the
number of days in milk for non-pregnant cows. S represents the
probability of a cow surviving aminimumof one further lactation,
given that she is not pregnant at DIM!P. The subscripts indicate
that a parameter is determined for all herds k, lactation periods,
j, and is categorized by milk yield, y. The number of lactation
periods fitted depends on the data available for each herd. The
milk yield is divided into groups based on the relative yield αM.

The final estimate of survival Sjk used in the model was based
only on cows with a milk level, αM, above 1, meaning cows
producing average or above average compared to the herd level.
Cows with a milk level below 1 were observed to have a reduced
probability of surviving to further lactation periods, but this may
be due to selection bias by the herdmanager or indication of other
problems such as disease. By comparison cowswith amilking level
above 1 were observed to have a stable survival independent of
further increase in milk level.

2.5. Future Yield
Appropriate predictions of the futuremilk yield of a dairy cow can
bemade by considering past and present production performance.

Given that themilk yield and somatic cell count levels of a cow (αM

andαC) change over time, we need to identify the optimal balance
between past and present. So each recorded measurement of milk
or SCC was evaluated against the average cow in that lactation
in the same herd giving an αM or αC value, which is represented
in the following by x. We, then, used exponential smoothing to
continually update the prediction of x̃ over time:

x̃t = λxt + (1 − λ)x̃t−1 (5)

whereλ is the smoothing factor, xt is our observed quantity at time
t, and x̃t is the smoothed average at time t. The x̃ is both our best
estimate of the presentmilk or SCC level of the cow and, therefore,
also our best prediction of the future.

The level of smoothing as described by the parameter λ was
estimated by taking the average over all futuremeasurements x̄t>tn
for all timepoints during the training period, tn, and finding the
value of λ that minimized the squared difference between x̃tn and
x̄t>tn (see Figure 1).

As an initial value, x̃0, we may use information about the yield
of the dam. Where this information is not available, we use the
value 1 to reflect that our best estimate is that the animal will be
the same as the average animal in the herd.

2.6. Production Value of Milk
The previous sections describe the parameters required to predict
the value of the future milk production of a dairy cow. Now we
begin the process of combining this information into a single
estimate of FAP.

First, we need to combine the ECM and the SCC to estimate
the influence of the SCC on the profitability of the cow. There are
several pricing corrections with regards to the SCC in Denmark.
Here, we implement the version from the largest Danishmilk pro-
cessor, Arla Foods. Herd managers receive a corrected milk price
based on the bulk milk somatic cell count. Prices for milk vary
over time, and therefore, the correction schemes are determined
in percentage. For this reason, we can consider a 10% reduction in
the milk price as being equivalent to a 10% reduction in the milk
yield.

The simplest implementation of price correction would be to
take the SCCpermeasurement anddirectly apply the correction to
the ECM produced by the individual cow. However, this method
may overestimate the economic consequences, as an animal with
a relatively high SCC would affect the price paid to the herd
manager less in a large herd than in a small herd, because the SCC
is diluted in the bulk tank.

Our proposed method emulates the removal of a single cow
from the herd and determines the effect this will have on the bulk
tank milk SCC. If removing a cow that produces more cells than
are present in the bulk tank, this will change the bulk tank SCC
by an amount proportional to the milk this cow produces. So the
difference in SCC in the bulk, ∆cSCCB when removing cow c is
given by:

∆cSCCB =
∑i̸=c

i SCCi milki∑i ̸=c
i milki

−
∑

i SCCi milki∑
i milki

(6)
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FIGURE 1 | An example of how smoothed average (red line) converges better to the future average (green line) compared to the mean of previous
observations (blue line). Data points fitted are the relative milk yield (rECM) of an example cow compared to the herd average. Dashed lines indicate lactation
periods. The example cow produces similar to the average cow in lactation one (rECM values around 1), above average in lactation 2, and then increasingly below
average in subsequent lactations.

where we sum over all i cows milking on the same day in the same
herd. Thismethod provides an estimate of the contribution of cow
c to the bulk tank somatic cell count.

Changes in the bulk tank milk from a specific cow are typically
small andwill not have economic consequences providing the typ-
ical structure, which is stepwise, changes in intervals of SCC (i.e.,
a bulk milk somatic cell count below 200,000 cells per milliliter
gives a 2% increase in milk price, whereas a bulk milk somatic
cell count between 400,000 and 500,000 cells per milliliter gives
a 4% reduction in the milk price). Therefore, we interpolate and
extrapolate the values in the pricing scheme so that all changes
have an impact (see Figure 2).

The production value of milk (PVMc) from an individual cow,
c, can now be calculated as:

PVMc = ECMc+
(
f C(SCCB) − f C(SCCB + ∆cSCCB)

)∑
i

ECMi

(7)
where ECMc is the energy-corrected milk production of the indi-
vidual cow, f C is the interpolated price correction function in
Figure 2, and

∑
i ECMi is the sum of lactating cows on a given

day, equivalent to the total milk in the bulk tank. All further
calculations will be measured in PVM, which has the unit of
kilogram milk per day.

2.7. Future Average Production—FAP
The future average production is comprised of two parts: the value
of milk from the reminder of the current lactation and the value
of milk from future lactations.

2.7.1. Value of Milk from the Remainder of the
Current Lactation
The value of milk from the remainder of the current lactation can
be predicted for two categories of cows: those that are pregnant

FIGURE 2 | Pricing interpolation. How changes in the bulk milk SCC
changes the value of milk. The black line is the pricing structure used by the
largest Danish distributor. The red line is our interpolation.

and those that are non-pregnant. The methods for calculating
their values are similar, yet the end points of the lactation are
determined in distinct ways. If a positive pregnancy test has been
recorded, then the previous insemination attempt is regarded as
the day of pregnancy, DIMP. For these cows, the last day of the
lactation, DIML, is set to:

DIML = DIMP + 282 − 56 (8)
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If the cow has not yet tested pregnant, the length of the lactation
period will be set to:

DIML = max(DIM + 282 − 56; 61 + 282 − 56) (9)
In equations (8) and (9), 282 days equals the average gestation

period forHolstein cows, the dry period is 56 days, and the average
time before achieving pregnancy is 61 days.

After calculating DIML for each cow, the estimate for the milk
and SCC levels (the α̃s) are calculated using equation (5). For
a first lactation dairy cow with no prior test records, the α̃s are
given by the correlation with the α̃s of the dam. Using these
values and equations (2) and (3), the milk and SCC production of
the remainder of the current lactation is calculated. These values
are used to calculate PVM values using an equation similar to
equation (7), but using the fitted values from the training data.

fPVMijk (t, α̃M, α̃C) = fECMijk (t, α̃M) +
(
f C(SCCB) − f C

(
SCCB

+∆cSCCB(f tSCCijk (t, α̃C))
)) ∑

i
ECMi (10)

We note that while we use the predicted values of the individual
cow for milk and SCC, we assume that the total amount of milk
and the bulk SCC from the herd remains constant, as it would
otherwise be necessary to also predict these future values, which
would be complicated. The predicted future production of the
current lactation, FPC, of a cow is therefore:

FPC =
DIML∑
t=DIM

fPVMijk (t, α̃M, α̃C) (11)

For simplicity, we have removed the subscripts ijk, but FPC is
dependent on the cow, the lactation, and the herd. The predicted
future average production for the remaining current lactation is
then:

FAPC =
FPC

DIML − DIM + 56
=

FPC

TRC
(12)

where TRC equals the total time remaining in the current parity.
We add the 56 days because the average production over time
should also include the dry period.

2.7.2. Value of Milk from Future Lactations
The value of future lactations is calculated in a similar way to
that of the current lactation. However, here we use a standardized
lactation length and the predicted value of themilk and SCC levels
from equation (5) that were pre-calculated for the FAPC. We then
use the fitted correlations of the milk and SCC levels between
lactations, ξ. We can predict the PVM given the predicted ECM
and SCC in a similar way to equation (10).

FPjlF =
DIML∑
t=3

fPVMijk (t, ξMjl α̃M, ξCjl α̃
C) (13)

In equation (13) DIML = 61+ 282− 56= 287, which is a sim-
plification of equation (9), but this average lactating period could
also be inferred from data for the individual herd. We keep only
the subscripts jl as we must specify the lactation period being
considered, from lactation j, to future lactation period, l.

FAPjlF =
FPjlF

282 + 61
=

FPjlF

TS
(14)

where TS is the standard time in a parity.

2.7.3. FAP
Individual cow FAP estimates used for decision-making are calcu-
lated by weighing the future production with the different prob-
abilities of surviving from the present lactation [equation (4)] to
possible future lactations:

FAP = (1 − Sjk) FAPC + Sjk
n∑

l=j+1

γjlk
FPC +

∑l
m=j+1 FPjmF

TRC + (l − j) TS

(15)
where γ jlk is the fraction of cows surviving from lactation period
j to lactation period l in herd k.

Explanations of each of the acronyms used in these calculations
and typical values of parameters are provided in Table 1. In
Table 2 we present a step-by-step description of the process of
calculating FAP.

2.8. Validation of the Methodology
A subset of the herd recording data was taken to include onlymilk
records for cows born after January 1, 1990. Themodelwas trained
on data before January 1, 2010, and FAP estimates were produced
for the test period January 1, 2010 to January 1, 2013. Herds were
excluded if they did not have an average of at least 50 lactating cows
per milk recording date during the training period. This reduced
the number of test herds to 388 herds.

Summary statistics of the included herds are provided in
Table 3. We compared the FAP estimates calculated using the
method described in this paper with a non-parametric approach
which involved taking the mean of all future PVM for each cow.
The future PVM was weighted with (281+ 61− 56)/(281+ 61)
to account for cows being dried off. The mean of future PVM
measurements was compared to FAP, the last measured PVM, the
mean of the last three PVM, and the lifetime mean of PVM for
each cow.

TABLE 1 | Symbols and typical values.

Index i Individual cow NA
Index j Lactation NA
Index l Future lactation NA
Index k Herd NA
αij
M ECM level relative to average cow N(1, 0.4)

αij
C tSCC relative to average cow N(1, 0.4)

a, b, c, d Parameters describing fitted curves –
Sjky Survival probability 0–1
A, ν, M Parameters describing fitted curves –
λ Smoothing parameter 0.2
SCCB Somatic cell count in the bulk tank (×1,000/mL) 100–500
∆cSCCB Change in SCCB when removing one cow Equation (6)
PVM Production value milk Equation (7)
FPC Future production of current lac. Equation (11)
TRC Time remaining of current lac. Equation (11)
FAPC Future average production of current lac. Equation (12)
FPjlF Future production of lac. l Equation (13)
FAPjlF Future average production of lac. l Equation (14)
TS Time of standard length lactation 321
ξjl Correlation between lactations 0.3
γ ijk Fraction of survival 0–1

Description of some of the symbols used and their typical values.
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Statistical comparisons were performed, unless otherwise
stated, using the Wilcoxon rank sum test with continuity
correction. All statistical analyses were carried out using R
version 3.1.1 (10).

TABLE 2 | Steps in FAP.

Step Description Equations Expressions

1 For each herd and lactation, fit
parametric functions of ECM and SCC

(1)–(4) ECM, tSCC

2 Express ECM and tSCC levels relative
to average cow on the herd

(3) and (4) αM, αC

3 For each herd and lactation, fit survival
and correlations

(5) and (6) S, γ, ξ, λ

4 Determine most likely current level of
ECM and tSCC by exponential
smoothing

(6) λ

5 Predict future values of ECM and tSCC
using the current level+ correlation

(3)–(6) λ, αM, αC

6 Assign probabilities of surviving to
different lactations given repro status

(5) S

7 Combine ECM and SCC to PVM for
the different expected life courses

(7) and (8) PVM

8 Calculate expected FP of PVM for
each life course

(9)–(12) and (14) FP

9 Average FP with expected lifetimes,
and weight with survival probabilities
to get FAP

(13), (15) and (16) FAP

Description of the steps needed to calculate the future average production value for every
time data are updated.

TABLE 3 | Summary statistics of herds used to inform the FAP model.

Median Range (2.5–97.5%) Unit

Lactating cows per recording date 93 58–182 no.
Lactating cows total 854 470–2,081 no.
Prop. cows in lac. period 1 0.40 0.32–0.48 –
Prop. cows in lac. period 2 0.28 0.25–0.31 –
Prop. cows in lac. period 3 0.17 0.14–0.18 –
Prop. cows in lac. period≥4 0.15 0.09–0.25 –
Avr. ECM lac. period 1 25.7 21.6–29.9 kg
Avr. ECM lac. period 2 29.1 24.0–34.7 kg
Avr. ECM lac. period 3 30.3 24.9–36.0 kg
Avr. ECM lac. period≥4 30.0 24.7–36.2 kg

All measures are calculated per herd and then summarized in this table.
Prop., proportion; lac., lactation; Avr., average; ECM, energy-corrected milk.

3. RESULTS

Line plots showing our estimates of FAP as a function of days
in milk for an average cow of parities 1, 2, and 3 in a randomly
selected herd are shown in Figure 3. In Figure 4 (left), FAP as
a function of days in milk is shown for a parity 1 cow with
herd average yield, α̃M, herd average yield less 10%, and herd
average yield plus 10%. Similarly, in Figure 4 (right) FAP as
a function of days in milk is shown for a parity 1 cow with
herd average total somatic cell count level, α̃C, herd average total
somatic cell count level less 10%, and herd total somatic cell
count level plus 10%. First parity cows typically have a lower
yield than higher parities; therefore, the FAP is lower in the
beginning of the lactation. Later in each lactation, non-pregnant
first parity cows have a higher survival probability, and therefore a
higher FAP.

The overall predictive value of FAPwas estimated by comparing
the predicted FAP of each dairy cow for each test day in the test
dataset, compared to the known future value as described in the
section 2.8. The results were averaged within herds, as shown in
Figure 5.

In the majority of herds, FAP predicted future PVM within
±2 kg milk per day of the observed values. The SDs of the predic-
tions were also estimated for each herd (Figure 5), which shows
that the variance of FAP is small.

FIGURE 3 | Examples of FAP values of an average dairy cow in
different parities on a randomly selected herd. Solid lines are pregnant
cows, dotted lines are non-pregnant. Colors describe FAP in different parities
of cows (black: first parity, red: second parity, blue: third parity).

FIGURE 4 | Examples of FAP values for a first parity cow with varying milk (left) and SCC (right) levels (α̃M and α̃C). Solid lines are pregnant cows, dotted
lines are non-pregnant. An increased milk production leads to a higher value of FAP (left), while increase in SCC leads to a decrease in FAP value (right). Colors
represent change in α̃M and α̃C compared to the average cow (black: no change, red: increased by 10%, blue: decreased by 10%).
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FIGURE 5 | The average difference (left) and SD (right) between FAP and the observed future (weighted) values of production value milk (PVM) at herd
level. The PVM is in units of kilogram milk with a percentage correction given by the level of somatic cells in the bulk milk (see Figure 2). Number of farms in the
comparison n= 388.

When comparing the prediction of FAP with the latest value
of PVM, the FAP predictions were significantly better than future
PVMs compared to the latest PVM (P= 0.013). The FAP was on
average 50% closer to the future values compared to the latest
PVM and more than 70% closer to the future values compared
to the average of the latest three and lifetime mean (significantly
different with P< 10−4). The SDs of the difference between FAP
and mean of future PVM were also significantly smaller than
that for the difference between the latest PVM and the mean of
latest three PVM (P< 10−8). The difference between FAP and the
lifetime mean showed similar SD.

4. DISCUSSION

Even though replacement models have been available since the
1960s (11) and the theory behind optimal replacement using
RPOs was fully formed in the 1980s (1, 2), few herd managers
use these models. One reason for this lack of uptake may be that
optimized culling using RPO models require herd managers to
exercise rational behavior. However, the behavior of individual
herd managers is known not to be always rational, but is instead
frequently governed by a range of other factors including prior
beliefs, values, attitudes, knowledge, and social norms (12). The
FAP model is data driven and adaptive so that a change in herd
manager behavior is reflected in the FAP values. Changing culling
strategy will change the survival curve, changing feed will likely
change lactation curves, both of these changes would affect the
FAP value. Furthermore, we propose that the FAP is amore readily
understood metric for herd managers (since it is expressed in
monetary units) compared with RPOs, which are presented to
herd managers using metrics that are conceptually more difficult
to understand.

The FAP is designed as a tool to support herd managers in
making culling decisions on the basis of production data only. We
have shown that FAP can accurately predict the future production
of milk and SCC combined into a single value, based on herd test
information only.

Most herdmanagers will attempt to inseminate first parity cows
for a longer time than cows in later lactations. This behavior
leads to first parity cows having a higher survival in the high
DIM when open compared with later parity cows. This results in

a higher FAP value for first parity cows, as shown in Figure 3.
The number of additional times a herd manager will insemi-
nate first parity cows compared with cows in later parities can
be herd-specific, and therefore, the survival curves vary among
herds.

The presented FAP calculation methodology can be improved
and extended. The bias shown in Figure 5 is primarily driven by
not knowing the exact values of factors that may vary between
herds, such as the length of the dry period, as well as the average
number of days from calving to conception. We expect that if
such information were available or inferred from data, our FAP
estimates may be improved. Thus, further information can be
added where it is specifically known. Other factors that may
be included in order to improve the model could be seasonal
variation both on the day of milking and the day of calving.
Factors related to diseases that influence themilk yieldmay also be
included. However, it would then be necessary for herd managers
to consistently check their stock for disease and to consistently
record the presence of disease.

The genetic value of a cow and its potential future calves could
also possibly be included in the FAP. There are several genetic
indexes in Scandinavia, an example of which is the Nordic Total
Merit index (13). Furthermore, there are many different genetic
indexes worldwide [e.g., Ref. (14)], and such information will
often enter into the decision process to cull an animal by the
herd manager. It is possible that genetic indexes with predictions
based on observed values (such as the FAP) are most valuable to
a herd manager, but this is dependent on individual management
practices.

If large amounts of data are available (e.g., daily measurements
of milk production), it may be desirable to track the production
using more sophisticated methods such as a Kalman filter, that
predicts optimally based on the resent measurement and the
observed noise in previousmeasurements (15). However, the herd
recording data used in this study (including milk production and
SCC) is collected for individual cows on an almost monthly basis
and is, therefore, relatively sparse. For this reason, we opted for the
method of exponential smoothing. This method is more robust,
less computationally demanding, does not require initialization,
and is also less sensitive to non-uniform variation of data over the
lactation period.
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The FAP is a framework to estimate future production and
is as such not dependent on the specific parametrization of the
lactation or SCC curves. Therefore, it is possible to use this frame-
work with any lactation or SCC curve desired, though the number
of parameters per herd and per cow should be considered when
choosing formulations of these curves.

Surprisingly, the latest PVM (which is the most recent observa-
tion of the cow) was the second best predictor of the future value
after FAP. The latest PVM was better at predicting the future than
the average of the last three measurements or the lifetime mean.
However, given that milk yield typically decreases toward the end
of a lactation, we suspect that the precision of the latest PVMmay
be most precise in the beginning and more uncertain toward the
end of a lactation.

Theoretically, the optimal model for culling is the RPO, which
requires full economic parameters (1, 4). However, there are large
differences between herds for both income given by production
values and expenses dependent on many parameters, including
herd type, feeding strategies, and milking systems. We also note
that many RPO methods include single diseases or production
only, most likely due to the dimensionality problem and hence
the high computational power demanded by thesemethods. How-
ever, not including all diseases such as mastitis, lameness, and
udder malfunction may overestimate the maximum average value
of a cow in the herd, leading to non-optimal culling decisions.
Diseases are implicitly implemented in FAP, given that the milk
production is continually updated via the exponential smoothing
algorithm. However, we would expect correlation structures and
survival to be different for diseased animals, and this information
could be explicitly implemented if such information were avail-
able. Therefore, further improvements may be made by investi-
gating how correlation structures for cows with diseases such as
mastitis or paratuberculosis differ from healthy cows. Once such
information is available, FAP can, in principle, include several
diseases, with only little additional computational power required.
This would make it possible to implement FAP within-herd-
specific models in order to predict the future potential of individ-
ual cows for operational decisions, such as treatment and culling,
while also taking into account the general strategic management
within the herd. This will allow cow- and herd-specific decisions

to be made, and is expected to simultaneously improve animal
health and herd economy following implementation.

Another way of utilizing FAP predictions would be to compare
marginal net production with the average healthy cow, not the
optimal cow. This would allow a herd manager to compare the
expected lifetime milk yield of given cow with that of a replace-
ment.

5. CONCLUSION

We have shown how to predict the average future value cor-
rected production FAP, which may be a useful option for making
informed culling decisions for dairy cows, given sparse production
and disease data and incomplete economic information. The FAP
can be used on a day-to-day basis to directly rank cows for culling,
or can be implemented in simulation models of disease spread
to make inferences on operational decisions, such as culling and
treatment, while examining the impact of management strategies
of the herd. This is expected to improve animal health and dairy
herd profitability.
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