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Revealing Multiple Geological Scenarios 
Through Unsupervised Clustering of Posterior 
Realizations from Reflection Seismic Inversion 
 

Mats Lundh Gulbrandsen1, Knud Skou Cordua1, Thomas Mejer Hansen1, 
Klaus Mosegaard1 

Abstract   In this study, we analyze 26000 posterior realizations obtained through 
Monte Carlo sampling from the posterior distribution of a reflection seismic 
inverse problem and show that the posterior realizations cluster around 
multimodal peaks. This problem is based on a seismic trace recorded in the 
southern part of Jutland, Denmark. Prior information is based on observations of 
lithology sequences of the geology in the area, and the multimodal modes in the 
posterior realizations will hence represent different geological scenarios. In order 
to uncover the multimodal nature of the posterior distribution, grouping of 
posterior realizations is done using an unsupervised clustering technique, namely 
the K-means clustering algorithms. In order to quantify the choice on the number 
of clusters in the realizations, the gap-statistic-method is used. The clustering 
method is applied on both categorical model parameters representing lithological 
units, and on the continuous parameters representing the acoustic impedance. 
These techniques allow quantifying the probability of the different possible 
geological scenarios that are consistent with the seismic and geological 
observations. Results demonstrate that the cluster characteristics are significantly 
dependent on the types of parameters considered. If the goal of the inversion is to 
identify different geological scenarios using a parameterization based on 
lithological units is more informative than a parameterization based on acoustic 
impedance. 

Introduction 

A widely used approach for inversion of reflection seismic data is based on a 
linear forward model, and Gaussian assumptions about the prior distribution of the 
elastic parameters and the noise model, e.g. (Buland & Omre, 2003), (Jullum & 
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Kolbjørnsen, 2016), (Hampson, Russell, & Bankhead, 2005). The solution to such 
inverse problems is Gaussian distributed, which is simply a single-modal 
distribution. 

In reality, the Gaussian prior assumption and the linear forward model may not 
adequately describe the information available. In order to handle this, these 
problems can instead be formulated probabilistically, which leads to a solution 
described by a typically unknown and non-Gaussian posterior distribution, e.g. 
(Larsen, Ulvmoen, Omre, & Buland, 2006), (Ulvemoen & Omre, 2010), (Zunino, 
Mosegaard, Lange, Melnikova, & Hansen, 2014), and (Bosch, Rodrigues, 
Navarro, & Díaz, 2007). In this way, the solution to the inverse problem can be 
characterized by a sample from the posterior distribution, which will represent a 
set of realizations (i.e. possible solutions) that are all consistent with observed data 
and prior information, e.g. (Mosegaard & Tarantola, 1995). The posterior 
distribution of such non-Gaussian inverse problems may be highly multi-modal: 
i.e. realizations from the posterior probability distribution may be located at 
isolated clusters in the high dimensional space spanning all possible earth models. 
If such clusters exist, each cluster will correspond to a group of realizations with 
similar appearance, and each cluster may represent one geological scenario. For 
example, one cluster may represent a commercial viable reservoir while another 
cluster may represent a non-commercial viable reservoir. Using a probabilistic 
approach to inverse problems theory, the relative probability of each locale 
scenario can easily be quantified. This may be hugely beneficial in characterizing 
reservoir models of all kinds. It should be noted that this study does not intend to 
analyze the different geological scenarios, but demonstrates a technique to reveal 
their nature, which would be helpful in this respect.    

In the following we will analyze the result of a probabilistic formulated 
inversion of a normal incidence seismic data set from the southern part of Jutland, 
Denmark. Initially we will demonstrate that the posterior sample contains many 
quite different realizations. Then we use a clustering algorithm to locate 
multimodal clusters (i.e. similar posterior realizations). This analysis will be done 
both with respect to the realizations representing lithological units, and with 
respect to the realization’s corresponding acoustic impedance parameterization. 
Finally the analysis obtained from the two different ways of parameterizing data 
will be compared.   

The inverse problem 

Figure 1 shows 26000 realizations resulting from sampling of the posterior 
distribution for a probabilistically formulated inversion of a reflection seismic data 
set from of the Zechstein unit in the southern part of Jutland, Denmark (Cordua, 
Gulbrandsen, Hansen, & Mosegaard, submitted). This distribution is based on a 
prior distribution that is statistically consistent with geological scenes observed in 
borehole logs. Hence, the posterior realizations are all consistent with both the 
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observed geological scenes and the observed seismic data (within the expected 
data uncertainty). A presentation of the inversion method used to obtain the 
posterior realizations is outside the scope of this paper. However, it can be 
assumed that the method in fact samples the true posterior distribution. Later we 
actually show that the method in fact revisits the same modes of the posterior 
distributions several times during the sampling period.  

In Figure 1 it can be seen that this highly underdetermined seismic inverse 
problem has several possible solutions of different nature. Figure 1 further 
suggests some clusters of similar posterior realizations. In this study, we try to 
quantify this apparent clustering to get a better understanding of how the 
realizations actually are distributed. This is done using the unsupervised clustering 
method called K-means. In addition to provide a better visual representation of the 
results, the clustering algorithm allow quantifying the probability of the possible 
geological scenarios.  

 
Figure 1 The figure shows 26000 1D lithology profiles resulting from an inversion of 
reflection seismic data. The colors blue, turquoise, green, yellow and orange represents the 
lithology units Halite, Limestone, Lamination, 50/50 Anhydrite and limestone, and 
Anhydrite respectively.  

Figure 1 represents one way of displaying the posterior realizations. Each color 
represents a lithological unit. Another way could be to parameterize these units 
with their elastic property, acoustic impedance (AI). Table 1 shows the relation 
between the lithological units and their corresponding AI-values, as used in the 
inversion algorithm (Cordua, Gulbrandsen, Hansen, & Mosegaard, submitted).  
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Table 1: The different lithological units and the corresponding AI-values as used 
in (Cordua, Gulbrandsen, Hansen, & Mosegaard, submitted) 

Lithological units (color Figure 1) AI-values [kg/m2 s] 
Halite (blue) 1.0*107 

Dolomitic Limestone (turquoise) 1.2*107 

Lamination (green) 1.4*107 
50/50Limestone/Anhydrite (yellow) 1.6*107 
Anhydrite (orange) 1.8*107 

 

Locating cluster specific geological scenarios 

The task is now to group all the individual posterior realizations into different 
clusters. A general description of a cluster is difficult, and no unique definition 
exists. However, it can be valuable to think of clusters as groups of which all 
members are closer together with the other members from the same group than 
members from other groups, even though this not always has to be a mathematical 
fact. There are several ways of defining these mutual distances and several 
different clustering algorithms exist. There is no correct algorithm, since the 
different methods represents different ways of analyzing the data, and the different 
methods should be decided based on the problem. In this study, the K-means 
clustering algorithm will be used to group the posterior realizations both with 
respect to the lithological units, and with respect to the acoustic impedance values. 

K-means Clustering  

Assuming the number of clusters, K, is given, the aim is to group the D-
dimensional data x={x1, x2, ... xN} into the K clusters. The clusters are represented 
by the D-dimensional vectors μk, where k =1... K, and each vector μk is a 
prototype vector for the kth cluster (Bishop, 2006). More specifically, the 
prototype vectors represent the centers of each cluster, and hence the K-means 
clustering model is a centroid model. The objective goal of the method is to 
minimize the sum of the square distances between all points and their closest 
prototype vector. Mathematically this can be described as minimizing the 
objective function J (Bishop, 2006): 

 𝐽 = 𝑟!"| 𝒙𝒏 − 𝝁𝒌 |!!
!!!

!
!!! , (1) 
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where rnk is a set of binary indicator variables, rnk ∈{0, 1}, each associated with 
one data point xn, and stating which cluster each point is assigned to. In order to 
find the values for rnk and μk that minimizes equation (1) an iterative procedure is 
performed. Every iteration consists of two steps. The first step optimizes on the 
indicator variables and the next step on the cluster-centers. Prior to the simulation, 
K prototype vectors are randomly chosen among the D-dimensional points x (note 
that there are several other ways to choose the starting points as well). In the first 
step of the iterations, each point is assigned a cluster based on the prototype 
vector, i.e. cluster center, they are closest to. This is in fact optimizing J with 
respect to rnk, since each data point is independent and taking the smallest distance 
between xn and μk will therefore minimize J. For the realizations of continuous 
variables, i.e. acoustic impedance the Euclidian distance is used and for 
categorical variables, i.e. the lithological units, the Hamming distance2 is used.  
The next step is to optimize on μk and since J is a quadratic function of μk the 
optimal μk is found by setting the derivative of the objective function with respect 
to μk to zero:  

 2 𝑟!" 𝒙𝒏 − 𝛍𝒌!
!!! = 0 (2) 

Solving equation (2) with respect to μk gives:  

 𝛍𝒌 =
𝒓𝒏𝒌 𝒙𝒏𝒏
𝒓𝒏𝒌

 (3) 

From equation (3) it is seen that μk represents the mean of all points within each 
cluster. The second step of each iteration is hence to compute the mean of all 
points assigned to each cluster, and define that new mean as the optimized cluster 
prototype. This procedure is repeated until the values converge. It should be noted, 
that depending on the data set, two different simulations (i.e. two different starting 
positions) might not converge to the same local minimum. You can never be sure 
if you reach the global minimum of the objective function, so it might be a good 
idea to run the simulations more then once.  

Gap-Statistic 

The K-means algorithm requires a predefined number of clusters. However, not 
knowing the complete nature of the dataset, this choice can be tricky. One way of 
approaching this issue could simply be to try different values, and visually 
examine the results. Another way could be to use a statistical approach to get an 
idea of which number of clusters that best represents the sample. In this study an 

                                                             
2 The hamming distance is the number of position (coordinates/elements) that differs 

between two vectors of same length. 
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analysis of the gap-statistic (Tibshirani, Walter, & Hastie, 2001) is done. The idea 
of the gap-statistic is to find the number of clusters which standardize the 
comparison of log (Wk) with a distribution of no obvious clustering, when Wk is 
defined as the within cluster dissimilarity: 

 𝑊! =
!
!!!

!
!!! 𝐷! , (4) 

where Nr is the number of points within a clusters and Dr is the distance between 
all points within cluster r. In this analysis the Euclidean distance is used for Dr 

when the AI-data is analyzed, and the Hamming distance is used for the 
lithological units. The distribution with no obvious clustering is computed by 
taking the average of 20 simulations of uniformly distributed data within the range 
of the sample. Computing the within cluster dissimilarity of the uniformly 
distributed data, Uk, the Gap statistic is defined as:  

 𝐺 = log 𝑈! − log 𝑊! . (5) 

The optimal number of clusters is then the smallest number of k, which fulfill the 

criteria 𝐺 𝑘 ≥ 𝐺 𝑘 + 1 − 𝑠 !!! , where s{k+1} is std(log (𝑈!)) 1 + ( !
!"
)  and 

‘std’ denotes the standard deviation. Figure 2 shows the logarithm of the within 
cluster dissimilarity for both the sample (blue), and for the simulated data (red). 
This simulation is done with respect to the lithological units. As expected the blue 
curve decreases with an increasing number of clusters, while the red curve is more 
or less flat. In Figure 3 the Gap-curve is plotted. Based on this plot, it is seen that 
the optimal choice of clusters for this simulation is 15 (this is the first k where 
G(k+1) – 1std is less than G(k)). 

This method is based on simulations, and the optimal number of clusters may 
therefore vary a little for different simulations. It should also be mentioned that the 
method is totally general and independent on any clustering method, so this 
analysis can be done with different clustering techniques.   
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Figure 2 The figure shows the logarithmic within cluster dissimilarity of the observations 
(blue), and the simulated distribution (red) as functions of the number of clusters 

 
Figure 3 The figure shows the gap-statistics with its corresponding 1std-error-bars as a 
function of number of clusters. 
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Results 

Figure 2 and Figure 3 show the results from an analysis of the gap statistic of the 
posterior realizations in Figure 1 with respect to the lithological units. The gap-
statistic simulations are however ambiguous, and the information from one 
simulation is hence not enough to base our choice of the optimal number of 
clusters. Figure 4 shows the histograms of 10 simulations of the gap-statistic using 
the K-means algorithm on both data sets. It is seen that the “optimal number of 
clusters” (Kopt) varies between 6 and 20. It should be noted that the upper 
boundary of the simulation was set to 20 clusters, hence a result of Kopt =20 
indicates that no optimal number of cluster was found within the test range (i.e., 
the optimal number of cluster may exist outside of this range). (Tibshirani, Walter, 
& Hastie, 2001) states however that it can be important to examine the whole gap-
curve, and not only the optimal choice. Figure 5 shows an example of a gap-curve 
representing a simulation where no optimal cluster numbers were found within the 
test range. It can however be seen that the criteria for concluding on an optimal 
number of clusters almost are met, both at k=10 and k=16. 
 

 

Figure 4: The figure shows the histograms of optimal number of clusters from 10 runs of 
the gap-statistic method using the K-means clustering algorithm on the AI-data (left plot) 
and the lithological unit data (right plot) respectively with respect to the optimum choice of 
K (x-axis). 

All the gap-curves for the 10 simulations for both data sets have been analyzed. 
This analysis combined with a visual examination of the clusters has resulted in 
the choice of running the K-means clustering algorithm with respect of grouping 
15 clusters for both parameterizations. These results are presented in Figure 6 and 
Figure 7. The left panels of the two figures show which realizations from Figure 1 
that is grouped in each cluster, and the right panels shows all these realizations put 
together to see the overall structure of each cluster. Note that the size of each plot 
in the right panel of the two figures not represent the actual size of the clusters. 
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The relative sizes are printed above each plot, and represent the percentage of 
models belonging to those specific clusters. 

 
 

 
Figure 5: The gap curve from one simulation of the gap-statistic analysis using the K-
means algorithm with respect to the AI-data.  

Analyzing the plots in the left panels of Figure 6 and Figure 7, we can see that the 
realizations constituting the different clusters more or less are evenly distributed 
throughout the set of all realizations. Even though the inversion algorithm itself is 
outside the scope of this study, it can be mentioned as a curio that the distributions 
of models (seen in Figure 6 and Figure 7) from the same clusters indicate that the 
sampling algorithm actually visits the same modes of the posterior distributions 
several times during the sampling period. This is an underlying assumption of 
sampling the posterior distribution using the Metropolis algorithm. However, 
Figure 6 and Figure 7 demonstrate that this actually is the case. 
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Figure 6 The figure shows the 15 clusters resulting from the K-means clustering of the 
lithology profiles in Figure 1. The left panel shows which models amongst the realizations 
that belong to each cluster and the right panel shows these models put together. The 
“Probability of occurrence” represents the number of models in each cluster relative to the 
whole sample. The lithology units are represented with the same colors as in Figure 1. 
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Figure 7: The figure shows the 15 clusters resulting from the K-means clustering of the AI 
realizations converted from the realizations shown in Figure 1, using the relation in Table 
1. The left panel shows which models amongst the realizations that belong to each cluster 
and the right panel shows these models put together. The “Probability of occurrence” 
represents the number of models in each cluster relative to the whole sample. The lithology 
units are represented with the same colors as in Figure 1. 

Discussion  

Other Clustering algorithms 

As stated earlier there is no such thing as a correct clustering algorithm. The 
different algorithms and methods can be thought of as looking at your data with 
different classes. In this specific study a few different agglomerative hierarchical 
clustering techniques also have been tried out. Hierarchical clustering does not, 
unlike the K-means clustering, need a predefined number of clusters. Instead the 
hierarchical clustering techniques can be divided into two main groups, namely 
the agglomerative and divisive group (Everitt, Landau, & Leese, 2001). The 
agglomerative techniques all consists of a series of fusion of the N individual data 
points into groups, where the divisive techniques starts out with all points 
belonging to the same cluster, and successively separates all points into finer and  
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Figure 8 shows the percentage of models overlapping between the 15 clusters of the AI 
realizations (y-axis) and the 15 clusters representing the lithological units (x-axis).  

 
Figure 9: The upper plot shows the models representing cluster 9 in the AI-domain. The 
middle and lower plot shows cluster number 9 and 14 from the LU-domain.   

finer groups. The merging or splitting of clusters is done with respect to different 
similarity/dissimilarity or distance measures between different clusters. All the 
different ways of measuring distances give rise to the different clustering methods. 
For the dataset in this study only techniques representing the agglomerative group 
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have been tested, namely the single linkage, complete linkage, average linkage, 
and centroid linkage. None of the results perform as well as the K-means method 
for this study, which is a statement purely based on visual inspection of the 
clusters. None of these results will be presented here since the comparison of the 
different methods is outside the scope of this paper. Distribution models such as 
e.g. the Expectation Maximization (assuming data can be described as a Gaussian 
mixture model) are not considered in this study since they are unsuited for 
clustering categorical variables.   

Comparison of clustering results  

The importance of being able to cluster the data in the lithological unit (LU) 
domain is illustrated in Figure 8. The figure displays the percentage overlap 
between realizations belonging to the different clusters arising from applying the 
K-means clustering algorithm on the AI-data (vertical axis) and the lithological 
units (horizontal axis), respectively. As an example, it is seen from Figure 8 that 
cluster 15 in the AI-domain is pretty well represented in the lithological unit LU-
domain. 80.9% of all realizations in cluster 6 from the AI-domain are grouped 
together in one cluster, namely number 9, in the LU-domain. The rest of the 
realizations are mainly distributed between cluster 14 and 15, with 6,8% and 9,1% 
respectively. If we, however, look at cluster 9 in the AI-domain, we can see that 
the models belonging to this cluster is split between two different clusters in the 
LU-domain, namely cluster number 9 and 14 with 48,5% and 47,8% respectively. 
These clusters are plotted in Figure 9. From the deeper part of the realizations 
displayed in Figure 9 it is clear that the clustering algorithm distinguish between 
the blue (halite) and the turquoise (Limestone) when applied to the LU-domain, 
but cluster realizations with both these sections together in the AI-domain. This is 
because these models are much closer together in the continuous parameter space, 
than in the discrete parameter space, where the distance is the same between all 
the categorical variables. It should be noted that the clustering simulations for the 
two data sets have the same starting points, i.e. the simulations starts in the same 
random realizations. This is important to emphasize, since it suggests that the 
differences illustrated in Figure 8 are actual differences of the two domains and 
not differences due to two different local minima of the objective function (eq. 
(1)). 

Conclusion  

We have shown that K-means clustering can be used to get a better understanding 
of how the multimodal landscape representing the solution space of a 1D 
reflection seismic inversion is distributed. By clustering the posterior realizations 
we get a much clearer picture of the potential geological scenarios and the 
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probabilistic distribution between them. The combination of probabilistic inverse 
problems and cluster analysis thus allow us to perform scenario-based inversion of 
reflection seismic data. 

It is however important to emphasize that the posterior probability distributions 
changes for the different parameterizations, which in turn can result in very 
different multimodal landscapes. Clustering the same realizations with different 
parameterization will hence result in different clusters, and it is important to know 
what is analyzed. In this study we show that one cluster in the AI-domain actually 
is represented in two different geological scenarios, and it is hence important to 
analyze the domain representing the parameterization of interest.   
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