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Abstract

Rapid yet accurate pKa prediction for drug-like molecules is a key challenge in com-

putational chemistry. This study uses PM6-DH+/COSMO, PM6/COSMO, PM7/COSMO,

PM3/COSMO, AM1/COSMO, PM3/SMD, AM1/SMD, and DFTB3/SMD to predict

the pKa values of 53 amine groups in 48 drug-like compounds. The approach uses an

isodesmic reaction where the pKa value is computed relative to a chemically related

reference compound for which the pKa value has been measured experimentally or

estimated using a standard empirical approach. The AM1- and PM3-based methods

perform best with RMSE values of 1.4 - 1.6 pH units that have uncertainties of ±0.2-0.3

pH units, which make them statistically equivalent. However, for all but PM3/SMD

and AM1/SMD the RMSEs are dominated by a single outlier, cefadroxil, caused by

proton transfer in the zwitterionic protonation state. If this outlier is removed, the

RMSE values for PM3/COSMO and AM1/COSMO drop to 1.0 ± 0.2 and 1.1 ± 0.3,

while PM3/SMD and AM1/SMD remain at 1.5 ± 0.3 and 1.6 ± 0.3/0.4 pH units,

making the COSMO-based predictions statistically better than the SMD-based pre-

dictions. So for pKa calculations where a zwitterionic state is not involved or proton

transfer in a zwitterionic state is not observed then PM3/COSMO or AM1/COSMO is

the best pKa prediction method, otherwise PM3/SMD or AM1/SMD should be used.

Thus, fast and relatively accurate pKa prediction for 100-1000s of drug-like amines is

feasible with the current setup and relatively modest computational resources.

Introduction

One of the central practical challenges to be met when performing calculations on many

organic molecules in aqueous solution is selecting the correct protonation state at a given

pH. There are several empirical pKa predictors such as ACD pKa DB (ACDLabs, Toronto,

Canada), ChemAxon (ChemAxon, Budapest, Hungary), and Epik (Schrödinger, New York,

USA) that rely on large databases of experimental pKa values that are adjusted using empir-

ical substituent-specific rules. As with any empirical approach the accuracy of these methods
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correlate with the similarity of the target molecule to molecules in the database. For ex-

ample, Settimo et al. 1 have recently shown that the empirical methods can fail for some

amines, which represent a large fraction of drugs currently on the market or in development.

This problem could make these methods di�cult to apply to computational exploration of

chemical space2–4 where molecules with completely novel chemical substructures are likely

to be encountered.

One possible solution to this problem is electronic structure (QM)-based pKa prediction

methods (see Ho 5 for a review) which in principle requires no empirical input. In prac-

tice, when applied to larger molecules6–8, some degree of empiricism is usually introduced

to increase the accuracy of the predictions but these parameters tend to be much more

transferable because of the underlying QM-model. However, these QM-based methods are

computationally quite demanding and cannot be routinely applied to the very large sets of

molecules typically encountered in high throughput screening.

Semiempirical QM methods such as PM69 and DFTB310 are orders of magnitude faster

than QM methods but retain a flexible and, in principle, more transferable QM description

of the molecules. One of us recently co-authored a proof-of-concept study11 demonstrating

that semiemprical QM methods can be used together with isodesmic reactions to predict pKa

values of small model systems with accuracies similar to QM methods for many functional

groups. However, amines proved the most di�cult due to the diverse chemical environment

of the ionizable nitrogen atoms. We hypothesized that the solution to this problem is a

more diverse set of reference molecules and in this study we demonstrate the validity of this

hypothesis for a set of 53 amine groups in 48 drug-like compounds. In addition we test more

semiempirical methods than in the previous study.
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Computational Methodology

The pKa values are computed by

pK
a

= pKref

a

+
�G�

RT ln(10)
(1)

where �G� denotes the change in standard free energy for the isodesmic reaction

BH+ + B
ref

*) B + B
ref

H+ (2)

where the standard free energy of molecule X is computed as the sum of the semiempirical

heat of formation, or the electronic energy in case of DFTB3, and the solvation free energy

G�(X) = �H�
f

(X) +�G�
solv

(X) (3)

All energy terms are computed using solution phase geometries unless noted otherwise.

�H�
f

(X) is computed using either PM6-DH+12, PM613, PM714, PM315, AM116, or DFTB310

(where the electronic energy is used instead of the heat of formation), while �G�
solv

(X) is

computed using either the SMD17 or COSMO18 solvation method. The SMD calculations are

performed with the GAMESS program19, the latter using the semiempirical PCM interface

developed by Steinmann et al. 20 and the DFTB/PCM interface developed by Nishimoto 21

and using version 3ob-3-1 of the 3OB parameter set10,22–24, while the COSMO calculations

are performed using MOPAC2016. A maximum of 200 optimization cycles are used for so-

lution phase optimizations and a gradient convergence criterion (OPTTOL) of 5⇥ 10�4 au

and delocalized internal coordinates25 are used for GAMESS-based optimization.

This study considers 53 amine groups in 48 drug-like molecules with experimentally mea-

sured amine pKa values taken from Table 3 of the study by Eckert and Klamt 6 . Some of

the smaller molecules in that table, such as 2-methylbenzylamine, were removed since they
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would di↵er very little from the corresponding reference molecules. The reference molecules

are chosen to match the chemical environment of the nitrogen within a two-bond radius

as much as practically possible and including the ring-size if the nitrogen is situated in a

ring. For example, the tertiary amine group in thenyldiamine (Figure 1) has two methyl

groups and a longer aliphatic chain so the reference molecule is dimethylethylamine, rather

than triethylamine used in our previous study. This choice is motivated by our previous

observation11 that, for example, the predicted value of dimethylamine has a relatively large

error when computed using a diethylamine reference. Similarly, the reference compound for

the aromatic nitrogen group in thenyldiamine is 2-aminopyridine, rather than pyridine, to

reflect the fact that the nitrogen is bonded to an aromatic carbon which is bonded to another

aromatic carbon and another nitrogen. In a few cases somewhat larger reference compounds

are chosen if they reflect common structural motifs such as the guanine group in acyclovir or

the �OOC-CH(R)-NH+

3

zwitterionic motif in phenylalanine and tryptophan. This approach

resulted in 26 di↵erent reference molecules (Table S1) that reflect typical functional groups

found in drug-like molecules. Most of the reference pKa values are computed using the ACE

JChem pKa predictor26 while the rest are experimental values. The only molecule where it

proved di�cult to apply this general approach to identifying a suitable reference molecule is

the imine nitrogen in clozapine (Figure 1) where the nitrogen is bonded to a phenyl group

on one side an a tertiary sp2 carbon that in turn is hydrogen bonded to a nitrogen and a

phenyl group. The reference compound that would result from applying the rules outlined

above (N-phenylbenzamidine, Figure 1) was considered ”too specific” for clozapine. Instead

we searched the already chosen set of 26 reference molecules the molecule with the largest

sub-structure match, which turn out to N-phenylethanimidamide, that was originally chosen

as a reference for phenacaine.

Many of the molecules contain more than one ionizable group. Only the pKa values

of the amine indicated in Eckert and Klamt’s Table 3 are computed and the protonation
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states are prepared according to standard pKa values. For example, for phenylalanine the

carboxyl group is deprotonated because the ”standard” pKa values of a carboxyl group (e.g.

in acetic acid) is lower than the standard pKa values of a primary amine (e.g. ethylamine).

Notice that the cyanoguanidine group in cimetidine has a pKa value of about 027,28 and is

therefore deprotonated when the imidazole group titrates. Eckert and Klamt characterised

the histamine pKa value of 9.7 as an amidine pKa and the thenyldiamine pKa as a pyridine

pKa. This is corrected to a primary amine29 and tertiary amine, respectively. For thenyl-

diamine pKa values of 3.7 and 8.9 have been measured potentiometrically30 and cannot be

assigned to a particular nitrogen experimentally. But based on standard pKa values it it is

likely that the higher pKa value corresponds to the amino group. For example, the ACE

JChem pKa predictor predicts values of 5.6 and 8.8 for the pyridine and amine groups, re-

spectively. This hypothesis is further corroborated by the fact that introducing an additional

N atom to the pyridine ring in neohetramine (Figure 1) only significantly a↵ects the lower

pKa value30. The experimental pKa values of morphine and niacin are changed to 8.231

and 4.232, respectively, while the remaining experimental pKa values are taken from Eckert

and Klamt 6 . When several tautomers are possible all are considered. The protonation and

tautomer states considered can be found in supplementary materials. RDKit33 is used to

generate 20 starting geometries for each protonation state and the lowest free energy struc-

ture for each protonation state is used for the pKa calculations.

The Epik34,35 calculations where performed with version 2016-4 of the Epik program

using coordinates generated from SMILES strings using LigPrep version 2016-4. Default

settings were applied except that the initial ionization state was not changed. Solvent was

selected as water and the pH range as 7.0 ± 2.0. The ChemAxon calculations are performed

using the command line tool cxcalc version 15.12.14.0. The ACD predictions are taken from

the ChEMBL20 database with except the pKa value of nikethamide, which is taken from

ChEMBL19. Versions 20-22 lists a pKa value of 10.1 for nikethamide, which is considerably
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higher than the experimental value of 3.5. Version 19 lists a pKa value of 4.01, which is

in better agreement with experiment so this value was used. The ChEMBL pKa data is

computed using ACDlabs software v12.01

Results and Discussion

PM3- and AM1-based methods

Table 1 lists the predicted pKa values, Figure 2 shows a plot of the errors, and Table 2 lists

the root-mean-square-error (RMSE) and maximum absolute error for each method. The

AM1- and PM3-based methods perform best with RMSE values of 1.4 - 1.6 pH units that

have uncertainties in the 0.2-0.3 pH unit range, which make them statistically equivalent36–38

(see SI for more information). The null model pK
a

⇡ pKref

a

has an RMSE of 1.8 ± 0.3/0.4.

However, because of the high correlation between the null model and the PM3 and AM1

methods (e.g. r = 0.78 vs PM3/COSMO) the composite errors are relatively small (e.g. 0.2

pH units vs PM3/COSMO) making the lower RMSE observed for AM1 and PM3 statisti-

cally significant. The rest of the methods (PM6-DH+, PM6, PM7, and DFTB3) perform

worse than AM1 and PM3 and are discussed further below.

The negative outlier seen for the COSMO-based methods (Figure 2) is cefadoxil (Figure

1) and is due to proton transfer in the zwitterionic protonation state. For the three other

zwitterions among the molecules, niacin, phenylalanine, and tryptophan, no proton transfer

is observed and the error in the predicted pKa values are relatively small. Proton transfer

in zwitterions is also a common problem for DFT/continuum calculations, for example for

glycine39–41, and is due to deficiencies in the continuum solvent method, not the electronic

structure method. The good performance observed for PM3/SMD is thus due to fortuitous

cancellation of error. Cefadroxil is also the negative outlier for DFTB3/SMD although the

proton does not transfer.
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Table 1: Experimental, reference (cf. Eq 1), and predicted pKa values. ”COS”
stands for COSMO. ”+” and ”-” refers to the charge of the conjugate base.

Molecule Exp Ref PM6-DH+ PM6 PM7 PM3 AM1 PM3 AM1 DFTB3
pKa COS COS COS COS COS SMD SMD SMD

Acebutolol 9.5 10.6 8.2 6.8 10.4 9.4 9.2 6.8 8.8 10.5
Acyclovir 2.2 2.6 0.1 0.3 0.3 1.5 1.0 0.9 1.2 0.9
Alphaprodine 8.7 10.1 6.5 6.5 9.0 8.5 8.6 7.9 8.0 6.2
Alprenolol 9.6 10.6 6.8 6.8 9.1 8.1 8.8 7.4 7.9 8.6
Atenolol 9.6 10.6 8.4 7.2 9.9 9.0 9.4 7.8 8.2 8.1
Benzocaine 2.5 4.6 0.2 0.3 1.3 2.6 1.8 2.6 1.8 0.8
Betahistine 10.0 10.5 9.3 8.7 10.2 8.6 9.5 8.6 8.9 10.6
Betahistine+ 3.9 5.8 2.9 3.8 3.1 4.9 3.3 4.5 2.8 -0.2
Cefadroxil- 7.0 9.5 -2.8 1.2 1.0 0.1 1.6 7.6 4.6 -3.0
Chloroquine 10.6 10.2 9.6 9.1 11.4 9.9 9.9 8.6 9.2 8.3
Cimetidine0 6.8 6.8 6.1 6.1 4.1 5.1 5.5 4.2 5.2 5.3
Clomipramine 9.4 10.2 11.2 10.0 13.6 9.7 9.2 9.4 8.5 8.4
Clotrimazole 5.8 6.6 5.1 5.0 7.3 4.7 5.2 4.0 4.0 4.3
Clozapine 7.5 10.0 5.9 5.7 7.2 8.2 7.8 7.1 7.1 6.2
Clozapine+ 3.9 10.3 5.4 5.6 6.8 2.7 2.5 1.4 1.2 6.6
Codeine 8.1 10.1 6.0 5.7 8.0 7.6 6.2 6.1 4.7 5.4
Desipramine 10.3 10.5 10.8 10.9 11.9 9.9 9.5 9.8 8.9 9.4
Guanethidine 11.4 12.8 14.3 12.4 13.2 13.2 14.0 12.3 12.9 16.2
Histamine 9.7 10.6 9.5 9.5 9.7 8.9 9.9 9.0 9.4 12.9
Hydroquinine 9.1 10.5 7.0 6.4 10.0 8.9 8.9 6.9 8.4 9.7
Hydroquinine+ 4.1 4.5 2.7 2.1 3.8 1.8 2.2 3.1 1.7 3.1
Imipramine 9.6 10.2 9.9 8.9 12.0 9.6 9.3 9.3 8.4 8.6
Labetalol 7.3 10.6 7.0 6.4 9.4 7.5 9.9 7.2 8.4 8.0
Lidocaine 7.9 10.2 3.7 4.2 5.7 5.4 5.7 5.3 5.3 5.9
Maprotiline 10.3 10.5 10.2 10.4 11.7 10.9 10.2 10.5 9.6 10.4
Mechlorethamine 6.4 10.0 4.5 4.2 4.4 5.4 5.8 5.4 6.5 1.3
Metaproterenol 9.9 10.6 9.1 7.6 8.9 8.7 9.7 7.9 8.3 9.2
Metoprolol 9.6 10.6 6.8 6.7 9.8 8.7 9.4 7.3 8.6 9.4
Miconazole 6.4 6.6 5.5 6.0 5.0 5.2 5.4 4.6 5.2 5.1
Morphine 8.2 10.1 5.7 5.5 7.5 7.6 5.6 6.0 4.3 4.9
Nafronyl 9.1 10.2 8.8 6.6 13.3 7.3 7.7 6.9 7.7 8.1
Nefopam 8.5 10.0 6.8 6.8 8.8 7.4 7.8 6.6 7.0 7.9
Niacine- 4.8 5.2 3.9 3.9 6.1 5.4 5.3 4.8 4.1 5.1
Nicotine 8.1 10.3 7.2 7.3 8.1 8.4 8.5 8.3 8.0 7.3
Nicotine+ 3.2 5.2 1.7 1.8 2.4 1.6 1.7 1.4 1.3 -0.7
Nikethamide 3.5 5.2 2.0 2.4 3.6 2.5 2.6 2.0 1.8 2.1
Papaverine 6.4 6.0 3.9 4.4 4.7 4.9 5.0 3.5 4.0 7.3
p-Cl-amphetamine 9.9 10.4 9.0 9.0 10.0 9.2 8.7 8.8 8.2 8.9
Phenacaine 9.3 10.3 10.3 10.1 10.8 8.6 7.7 8.1 6.9 12.2
Phenylalanine- 8.9 9.5 9.7 9.3 10.1 9.4 9.2 8.4 8.1 9.3
Piroxicam 5.3 6.5 5.7 0.5 7.1 6.3 7.7 4.9 6.2 2.3
Prazosin 7.0 7.0 4.6 4.9 6.1 5.0 5.7 4.8 3.6 7.7
Procaine 9.1 10.2 8.6 6.7 10.9 8.6 8.3 8.5 9.1 9.2
Procaine+ 2.0 4.6 -1.0 -0.7 -0.2 2.0 1.4 1.3 0.2 -1.9
Propanolol 9.6 10.6 5.2 6.8 8.8 8.3 8.4 7.5 7.7 8.5
Quinine 8.5 10.5 6.9 6.5 9.6 8.4 8.5 6.5 8.0 8.2
Sotalol 9.3 10.6 7.4 8.1 8.3 9.3 8.0 7.9 7.5 9.1
Sparteine 12.0 10.3 14.4 13.5 15.9 11.7 12.3 10.8 12.1 9.5
Tetracaine 8.5 10.2 9.3 7.8 10.7 9.6 9.0 9.1 9.3 8.7
Thenyldiamine 8.9 10.2 11.5 9.3 13.1 9.4 8.7 9.1 8.5 8.6
Trazodone 6.8 10.2 4.7 3.7 8.1 6.4 6.7 6.2 4.9 6.4
Trimipramine 9.4 10.2 11.9 10.2 13.7 10.2 10.2 9.4 10.1 8.1
Tryptophan- 9.1 9.5 9.6 9.2 11.3 9.5 9.8 8.9 8.4 10.6
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Table 2: Root-mean-square-error (RMSE), statistical uncertainty (95% confi-
dence limits in the RMSE, see SI for more information), and the maximum
absolute error (Max AE) of the pKa (a) the pKa values in Table 1, (b) with
cefradoxil removed, (c) with an empirical o↵set, and (d) using geometries opti-
mized in the gas phase and zwittterions removed (Table S2). ”COS” stands for
COSMO.

Ref PM6-DH+ PM6 PM7 PM3 AM1 PM3 AM1 DFTB3
pKa COS COS COS COS COS SMD SMD SMD

RMSEa 1.8 2.3 2.1 2.0 1.4 1.3 1.5 1.6 2.4
95% conf 1.4-2.1 1.8-2.7 1.6-2.4 1.6-2.4 1.1-1.6 1.1-1.6 1.2-1.8 1.3-1.9 1.9-2.8
Max AE 6.5 9.8 5.8 5.9 6.9 5.4 2.9 3.9 9.9

RMSEb 1.8 1.8 1.9 1.8 1.0 1.1 1.5 1.6 2.0
95% conf 1.4-2.1 1.4-2.2 1.5-2.3 1.4-2.2 0.8-1.2 0.9-1.3 1.2-1.8 1.2-1.9 1.6-2.3
Max AE 6.5 4.4 4.8 4.3 2.5 2.6 2.9 3.9 5.1

RMSEc 1.8 1.6 1.4 1.8 0.9 1.1 1.0 1.1 1.9
95% conf 1.4-2.1 1.3-1.9 1.1-1.7 1.4-2.1 0.7-1.1 0.8-1.2 0.8-1.2 0.9-1.3 1.5-2.2
Max AE 6.5 3.8 3.4 3.7 2.3 3.0 2.1 2.8 5.6

RMSEd 1.8 2.6 2.4 2.1 1.4 1.3 1.9 1.9 3.0
95% conf 1.4-2.1 2.0-3.0 1.8-2.8 1.6-2.5 1.1-1.7 1.0-1.5 1.5-2.2 1.5-2.2 2.4-3.6
Max AE 6.5 7.8 4.6 5.2 3.5 2.5 4.3 3.8 11.1
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If the cefadroxil outlier is removed, the RMSE values for PM3/COSMO and AM1/COSMO

drop to 1.0 ± 0.2 and 1.1 ± 0.2, while PM3/SMD and AM1/SMD remain at 1.5 ± 0.3 and

1.6 ± 0.3/0.4 pH units. Thus, without this outlier the COSMO-based predictions outperform

the SMD-based predictions, as well as the null model. For pKa calculations where a zwit-

terionic state is not involved or proton transfer in a zwitterionic state is not observed then

PM3/COSMO or AM1/COSMO is the best pKa prediction method, otherwise PM3/SMD

or AM1/SMD should be used. The main reason for performing solution-phase geometry op-

timisations was the possible presence of zwitterions, so if a zwitterionic state is not involved

then the geometry optimisations could potentially be done in the gas phase. Table 2 shows

that PM3/COSMO and AM1/COSMO continue to perform best with RMSEs of 1.4 ± 0.3

and 1.3 ± 0.2/0.3 pH units, respectively (the pKa values can be found in Table S2). The

largest di↵erence in RMSEs is observed for PM3/COSMO(soln) and PM3/COSMO(gas)

(0.4 pH units) and is larger than the composite error of 0.1 pH units for these two error. So

using gas phase geometries for non-zwitterionic molecules leads to a statistically significant

decrease in the accuracy of the pKa predictions.

Figure 2 shows that all semiempirical methods except PM7 tend to underestimate the

pKa values. The mean signed errors for PM3/COSMO and AM1/COSMO are -0.4 and

-0.5 pH units while they are -1.1 for both PM3/SMD and AM1/SMD (computed without

cefadoxil). If these mean errors are included as an empirical correction to the pKa values

then the accuracy of the COSMO- and SMD-based methods become statistically identical

with RMSE values of between 0.9 and 1.1 pH units (Table 2). However, it remains to be

seen whether these corrections are transferable to other sets of amines.
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PM6-DH+-, PM6- and PM7-based methods

In addition to their chemical importance pKa values are also useful benchmarking tools that

can help in identifying problems with theoretical methods. Here we compare the results for

PM6-DH+/COSMO, PM6/COSMO- and PM7/COSMO-based methods to PM3/COSMO

to gain some insight in to why these methods lead to less accurate pKa predictions with

RMSE values of 1.9 compared to 1.0 (ignoring cefadroxil).

Compared to PM3, PM6-DH+ has two outliers: propranolol and lidocaine (Figure 2). For

propanolol PM6-DH+ predicts a pKa value of 5.2, which is significantly lower than the exper-

imental value of 9.6 and that predicted by PM3 (8.3). Comparison of the lowest free energy

structures for the protonated state shown in Figure 3a-b shows that the PM6-DH+ struc-

ture is significantly more compact than the PM3 structure with the isopropylaminoethanol

chain stacked on the face with the naphthalene group. This will lead to desolvation of the

amine group and will lower the predicted pKa. This structure is also the lowest free energy

structure for PM6 where the predicted pKa value is 6.8. So the compactness is not solely due

to the dispersion interactions included in PM6-DH+, as one might expect, but these forces

do contribute to the very low pKa value. It is important to emphasize that this does not

necessarily imply that the dispersion interactions are overestimated by the DH+ corrected,

but rather that they possibly are too large compared to the solute/solvent interactions in

the COSMO solvation model when using PM6-DH+ to describe the solute. This general

point also applies to the rest of the analyses presented below.

For lidocaine PM6-DH+ predicts a pKa value of 3.7 pH units, which is significantly

lower than the experimental value of 7.9 and that predicted by PM3 (5.4). Comparison

of the lowest free energy structures for the protonated state shown in Figure 3c-d shows

that the NH-O hydrogen bond-like interaction observed in the PM3 structure is absent in

the PM6-DH+ structure, which is consistent with a lower pKa value. The hydrogen bond,
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which is also present in the lowest free energy PM6 structure, is replaced by non-polar in-

teractions between methyl groups which presumably are stronger in PM6-DH+ due to the

dispersion forces.

Compared to PM3, PM6 has one outliers (Figure 2), piroxicam, where PM6 predicts a

pKa value of 0.5, which is significantly lower than the experimental value of 5.3 and that

predicted by PM3 (6.3). Comparison of the lowest free energy structures for the protonated

state shown in Figure 4 shows that the pyridine NH hydrogen bond to the amide O observed

in the PM3 structure is replaced by a presumably unfavorable NH-HN interaction with the

amide group, which indeed should lower the pKa considerably. Both PM3 and PM6 geom-

etry optimisations are performed with exactly the same set of starting structures and it is

not immediately clear why this arrangement leads to lowest free energy, but it is presumably

due to an increase in the solvation energy.

Compared to PM3, PM7 has three outliers (Figure 2): spartein, trimipramine, and

thenyldiamine. For propanolol PM7 predicts a pKa value of 15.9, which is significantly

higher than the experimental value of 12.0 and that predicted by PM3 (11.7). Comparison

of the lowest free energy structures for the protonated state shown in Figure 5a-b shows

virtually no di↵erence in structure. The same is found for the low free energy structures of

the conjugate base and both protonation states of the reference molecule. The most likely

explanation for the overestimation is therefore that the NH-N hydrogen bond strength is

overestimated compared to PM3. This theory is further corroborated for trimiparine where

PM7 predicts a pKa value of 13.7 pH units, which is significantly higher than the experi-

mental value of 9.4 and that predicted by PM3 (10.2). Comparison of the lowest free energy

structures for the protonated state shown in Figure 5c-d shows a NH-N hydrogen bond for

the PM7 structure, which is absent in the PM3 structure. This structural di↵erence is con-

sistent with both the higher pKa and an overestimation of NH-N hydrogen bond strength by
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PM7. Finally, for thenyldiamine PM7 predicts a pKa value of 13.1 pH units, which again is

significantly higher than the experimental value of 8.9 and that predicted by PM3 (9.4). The

main di↵erence in structure between the free energy minima (Figure 5e-f) is an apparently

stronger interaction between the thiophene ring and the amine in the PM7 structure, which,

if anything, should desolvate the amine group and lower the pKa value. The most likely

explanation for the overestimation is thus an overestimation of the NH-N hydrogen bond as

in the the other two cases.

DFTB3/SMD

Compared to PM3/COSMO, DFTB3/SMD has five outliers (Figure 2) and here we focus

on the two with the largest errors: guanethidine and mechlorethamine. For guanethidine

DFTB3 predicts a pKa value of 16.2 pH units, which is significantly higher than the experi-

mental value of 11.4 and that predicted by PM3 (13.2). Comparison of the lowest free energy

structures for the protonated state shown in Figure 6a-b shows that they are quite similar

with a NH-N hydrogen bond, but with the 7-membered ring in a slightly di↵erent confor-

mation. The hydrogen bond length in the DFTB3 structure is 2.33 Å, which is significantly

shorter than the 2.56 Åin the PM3 structure. A stronger hydrogen bond is consistent with

a higher pKa, but the errors for DFTB3 are not unusually larger for, for example, sparteine,

trimipramine, and thenyldiamine. One possibility is that it is only guanine NH hydrogen

bond strengths that are overestimated but this can not be verified with the current set of

molecules.

For mechlorethamine DFTB3 predicts a pKa value of 1.3 pH units, which is significantly

lower than the experimental value of 6.4 and that predicted by PM3 (5.4). Comparison of

the lowest free energy structures for the protonated state shown in Figure 6c-d shows over-

all similar structures. In both cases the amine hydrogen is surrounded by the two chlorine

atoms, which lowers the pKa value due to desolvation. However, closer inspection of the

13



structures reveal that for the DFTB3 structure the chlorine atoms are significantly closer

together and one of the chlorine atoms is significantly closer to the amine hydrogen. These

structural di↵erences are consistent with greater desolvation in the DFTB3 structure and,

hence, a lower pKa value.

With regard to DFTB3 it is also noteworthy that two molecules fragment in the DFTB3

gas phase geometry optimisations: in the case of the niacin zwitterion CO
2

is eliminated

while for the protonated form of sotalol CH
3

SO
2

is eliminated. Barrier-less CO
2

has been

previously observed for DFTB3 for model systems of L-aspartate ↵-decarboxylase42 and is

presumably due to the 16.8 kcal/mol error in the atomisation energy of CO
2

for DFTB310.

Prediction of dominant protonation state

One of the main uses of pKa values is the prediction of the correct protonation state at

physiological pH (7.4), i.e. determining whether the predicted pKa value is above or below

7.4. Here (ignoring cefadroxil) PM3/COSMO performs best by getting it right 94% of the

time, compared to 90%, 79%, and 92% for AM1/COSMO, PM3/SMD, and the null model.

Thus, only PM3/COSMO outperforms the null model. PM3/COSMO fails in three cases,

labetalol, lidocaine, and nafronyl, where PM3/COSMO predicts pKa values of 7.5, 5.4, and

7.3, respectively and the corresponding experimental values are 7.3, 7.9, and 9.1 pH units.

The null model fails in four cases, clozapine (amide nitrogen), labetalol, mechlorethamine,

and trazodone, where the null model predicts pKa values of 10.3, 10.6, 10.0, and 10.2 and

the corresponding experimental values are 3.9, 7.3, 6.4, and 6.8 pH units, respectively. Thus,

both methods fail for only one ionizable site where the experimentally measured pKa value

is significantly di↵erent from physiological pH.
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Table 3: Root-mean-square-error (RMSE), statistical uncertainty (95% confi-
dence limits) in the RMSE, and the maximum absolute error (Max AE) of the
pKa for the pKa values listed in Table S3

PM3 PM3 DFT Chem Epik ACD
COS COS* Axon

RMSE 1.0 0.9 0.7 0.7 0.7 0.6
95% conf 0.8-1.2 0.7-1.1 0.5-0.8 0.6-0.9 0.6-0.8 0.5-0.7
Max AE 2.5 2.3 1.9 2.8 3.6 2.0

Comparison to other pKa prediction methods

Figure 7 and Table 3 compares the two best semiempirical methods PM3/COSMO and

PM3/COSMO*, where the pKa values are shifted to make the average error zero, to the

DFT results of Eckert and Klamt 6 and three popular empirical pKa prediction methods. In

all cases cefadroxil has been removed. The RMSE values of the DFT and empirical meth-

ods are 0.6-0.7, 0.2-0.3 pH units lower than the best semiempirical method PM3/COSMO*.

Thus, the accuracy of DFT results are statistically equivalent to the empirical methods,

while the semiempirical methods are statistically worse. The good performance of the em-

pirical methods for this set of molecules is not surprising. The set represents well known

and prototypical drug molecules whose pKa values have been known for a long time and

many of the molecules are likely included in the parameterization of the empirical methods.

For example, many of the molecules are taken from the set collected by Klici et al. 7 , which

is also included in the training set used to develop Epik.34 It is therefore gratifying to see

that the DFT results by Eckert and Klamt 6 , which only contains two adjustable parameters

determined using the di↵erent set of data, are just as accurate albeit at a much higher com-

putational cost. The computational cost of the DFT method is ca 1000 times larger than

that of the semiempirical methods, while the computational cost of the empirical methods

is essentially zero compared to the semiempirical methods.

As mentioned in the introduction, one potential use of the QM-based pKa prediction

methods is for cases where the empirical methods fail. Figure 7 shows that, for example,

15



ChemAxon has two outliers while Epik has one outlier where the error is larger than for

the QM-based predictions. The Epik outlier is observed for sparteine, which is also the

one of the outliers observed for ChemAxon, as well as one of the largest errors observed

for ACD. The absolute errors for these methods range from 1.9 to 3.6, while the errors

for PM3/COSMO(*) and DFT are between 0.2 and 0.4 pKa units. Similarly, the other

ChemAxon outlier is observed for labetalol, which is also gives rise to the second and third

largest error for Epik and ACD, respectively. The absolute errors for these methods range

from 1.6 to 2.5, while the errors for PM3/COSMO(*) and DFT are between 0.0 and 0.7 pKa

units. These cases suggest that QM-based pKa prediction methods can be of practical use

despite their comparatively high computational cost.

Timings

A MOPAC-based geometry optimization requires no more than about 10-20 CPU seconds

on a single core CPU even for the largest molecules considered here (e.g. clozapine), whereas

corresponding GAMESS optimizations take about 60-90 seconds. Thus, using 20 di↵erent

starting geometries for each protonation state a pKa value can be predicted in a few CPU

minutes using a single 12-CPU node. In practice the wall-clock time is longer due to the

overhead involved in having all cores write output files to disk simultaneously. Similarly,

most queuing software has an some computational overhead which becomes noticeable when

a large number of sub-minute jobs are submitted simultaneously. These general problems

need to be addressed if semiempirical methods are to be used e�ciently in very large-scale

high throughput studies. Nevertheless, fast pKa predictions for 100-1000s of molecules is

feasible with the current setup and relatively modest computational resources.
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Summary and Outlook

This study uses PM6-DH+/COSMO, PM6/COSMO, PM7/COSMO, PM3/COSMO, AM1/COSMO,

PM3/SMD, AM1/SMD, and DFTB3/SMD to predict the pKa values of 53 amine groups

in 48 drug-like compounds. The approach uses isodesmic reactions where the pKa values

is computed relative to a chemically related reference compound for which the pKa value

has been measured experimentally or estimated using an standard empirical approach. Both

gas phase and solution phase geometry optimisations are tested. The AM1- and PM3-based

methods using solution phase geometries perform best with RMSE values of 1.4 - 1.6 pH

units that have uncertainties of 0.2-0.3 pH units, which make them statistically equivalent.

However, for all but PM3/SMD and AM1/SMD the RMSEs is dominated by a single outlier,

cefadoxil, caused by proton transfer in the zwitterionic protonation state. If this outlier is

removed, the RMSE values for PM3/COSMO and AM1/COSMO drop to 1.0 ± 0.2 and 1.1

± 0.3, while PM3/SMD and AM1/SMD remain at 1.5 ± 0.3 and 1.6 ± 0.3/0.4 pH units.

Thus, without this outlier the COSMO-based predictions outperform the SMD-based pre-

dictions, so for pKa calculations where a zwitterionic state is not involved or proton transfer

in a zwitterionic state is not observed then PM3/COSMO or AM1/COSMO is the best pKa

prediction method, otherwise PM3/SMD or AM1/SMD should be used. Thus, fast and rel-

atively accurate pKa predictions for 100-1000s of molecules is feasible with the current setup

and relatively modest computational resources.

For the current study the reference molecules were selected by hand to match the local

structure around the ionizable as much as possible for most molecules to maximize the can-

cellation of error and improve accuracy as much as possible. This approach will work well

when the pKa of a small number of molecules is needed or if the e↵ect of substituents on

the pKa of an ionizable group in a target molecule is to be investigated. However, for high

throughput pKa prediction for a very large and diverse set of molecules it will not always

be practically possible to identify closely related reference molecules and for such a case the
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overall accuracy is likely to be worse than reported here. How much worse remains to be

seen but recalculating the PM3/COSMO pKa values (without cefadroxil) using only nine

reference compounds (Table S4) results in an RMSE value of 1.2, i.e. only 0.2 pH units

higher than that computed using 26 reference values - an encouraging result. After this

paper was submitted, Bochevarov et al. 8 published a paper on DFT-based pKa prediction

where they defined linear regression parameters for roughly 100 di↵erent ionizable functional

groups and outlined a hierarchical model for choosing the most appropriate parameter set.

This interesting approach could serve as a basis for a defining a more generally applicable

set of reference molecules in future work. The current implementation also relies on manual

selection of the protonation state of other ionizable groups, which in cases like cimetidine

requires expert knowledge. In the general case this step needs to be automated by generating

all possible protonation isomers for a given protonation state and selecting the one with the

lowest free energy. Work on full automation of the process is ongoing.
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Figure 1: Some of the molecules referred to in the text
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Figure 2: Plot of the errors of the predicted pK
a

values (pK
a

� pKExp

a

). ”C” and ”S” stand
for COSMO and SMD, respectively.
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Figure 3: Lowest free energy conformations of (a-b) propanolol and (c-d) lidocaine at the
PM3/COSMO (a and c) and PM6-DH+/COSMO (b and d) level of theory. Hydrogen bonds
are indicated with dashed lines.
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Figure 4: Lowest free energy conformations of piroxicam at the (a) PM3/COSMO and (b)
PM6/COSMO level of theory. Hydrogen bonds are indicated with dashed lines.
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Figure 5: Lowest free energy conformations of (a-b) sparteine, (c-d) trimipramine, and (e-f)
thenyldiamine at the PM3/COSMO (a, c, and e) and PM7/COSMO (b, d, and f) level of
theory. Hydrogen bonds are indicated with dashed lines.
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Figure 6: Lowest free energy conformations of (a-b) guanethidine and (c-d) mechlorethamine
at the PM3/COSMO (a and c) and DFTB3/SMD (b and d) level of theory. Distances are
given in Å.

30



Figure 7: Plot of the errors of the predicted pK
a

values (pK
a

� pKExp

a

). ”C” stands for
COSMO and ”*” indicates that the pKa values have been shifted to make the average error
zero
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