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Abstract. The key concern of CSCW research is that of understanding computing 
technologies in the social context of their use, that is, as integral features of our practic-
es and our lives, and to think of their design and implementation under that perspective. 
However, the question of the nature of that which is actually integrated in our practices 
is often discussed in confusing ways, if at all. The article aims to try to clarify the issue 
and in doing so revisits and reconsiders the notion of ‘computational artifact’. 

Introduction  
The key concern of CSCW research (and arguably of HCI too) is that of understand-
ing computing technologies in the social context of their use, that is, as integral 
features of our practices and our lives, and to think of their design and implementa-
tion under that perspective. As Lucy Suchman expressed it in a programmatic article 
from 1993-94:  

‘Our efforts to develop a work-oriented design practice are based in the recognition that 
systems development is not the creation of discrete, intrinsically meaningful objects, but the 
cultural production of new forms of material practice. Our agenda […] is to bring develop-
ing objects out into the environments of their intended use, such that their appropriability 
into those environments becomes a central criterion of adequacy for their design. An impli-
cation of this agenda is that in place of the vision of a single technology that subsumes all 
others […], we assume the continued existence of hybrid systems composed of heterogene-
ous devices.’ [39, p. 34]. (Cf. also [36, p. 99]). 
In fact, there has, over many years, been a wide range of attempts to conceptual-

ize, in Suchman’s words, the ‘appropriability’ of such ‘objects’ into ‘the 
environments of their intended use’ so as to facilitate their ‘artful integration’. Note-
worthy examples of such attempts are notions such as ‘artifacts in use’ [1], 
‘appropriation’ of interactive artifacts [6; 49], ‘coordination mechanisms’ [27], ‘or-
dering systems’ [28], ‘socially embedded technologies’ [12], ‘artifact ecologies’ [2], 
and ‘practice-oriented’ or ‘practice-based’ computing [18; 29; 30]. However, it seems 
fair to say that the large variety of proposed conceptions, and the obvious fact that 
nothing even remotely akin to consensus has emerged, indicates that the whole issue 
is still wide open. 

Now, a strong contender in the competition to conceptualize the ‘artful integra-
tion’ of computing is the broad tradition that attempts to conceive of computing from 
an ‘infrastructure’ perspective [cf., e.g. 9; 13; 14-17; 21; 24; 34; 35]. But again the 
conceptions are hugely variegated if not contradictory. On one hand, Rob Kling and 
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others introduced and have used the term ‘infrastructure’ to denote ‘all the resources 
and practices required to help people adequately carry out their work’ [15; 17]. On the 
other hand, Ole Hanseth and others use the term ‘information infrastructures’ to de-
note large-scale ‘computer networks with associated services’ [13, p. 409], not in the 
sense of ‘some kind of purified technology, but rather in a perspective where the 
technology cannot be separated from social and other non-technological elements, i.e. 
as an actor-network’ [14, p. 349]. And finally, Leigh Star and Karen Ruhleder have 
argued that the concept of ‘infrastructure’ should not simply be understood as a no-
tion of large-scale technical structures but as a ‘fundamentally relational concept’: ’It 
becomes infrastructure in relation to organized practices’, that is, in as much as ‘it’ 
from the point of view of a particular ‘organized practice’ ‘sinks into the background’ 
and thus is treated as infrastructure [35]. In line with this rather boundless notion of 
‘infrastructure’, ‘information infrastructures’, according to Star and Bowker, ‘provide 
the tools — words, categories, information processing procedures — with which we 
can generate and manipulate knowledge’ [34]. While the notion of ‘infrastructure’, 
like the range of other notions mentioned above, does serve to frame and focus on the 
issue of understanding computing technologies in the social context of their use, the 
disparities in its use are a source of immense confusion: In a given study, what is ‘the 
infrastructure’? A complex of interconnected technical artifacts or the social context 
in which it functions or even organizational arrangements that make it work? When 
talking about an ‘information infrastructure’, what is the ‘technology’ that ‘cannot be 
separated from social and other non-technological elements’? Is the ‘information in-
frastructure’ the underlying system of networked computers with associated software 
and protocols, or is it the applications or services running on that platform, or is it the 
network and services in use? Is it the artifact or the practice?  

Moreover, what are the ‘heterogeneous devices’ that form the ‘hybrid systems’ of 
our work settings? Applications of computer technologies are surely used, often art-
fully, in conjunction with a host of other kinds of artifact, from pen and paper to 
tables and chairs, but does it make sense to create an abstract category of ‘heteroge-
neous devices’ and conceive of the motley of artifacts and materials of our lives as 
instances of such an all-encompassing category? While it certainly makes sense to 
point to the heterogeneity of our settings, distinctions are surely required.1 In short, in 
order to overcome our bewilderment, not to mention to be able to compare findings 
from our studies, we need to be able to talk systematically about the entities that are 
to be ‘appropriated’ or ‘infrastructured’ or ‘artfully integrated’ into the manifold ma-
terial settings of our practices. 

Now, that is not as trivial a question as one might imagine. And this is probably 
one of the sources of our embarrassment. A simple question should illustrate our 
problem: What is it that is an application of the technical knowledge in computing? A 
‘computer’, ‘a program’, a ‘system’? Do users actually ‘interact’ with a ‘computer’, 
and, if so, in which sense of ‘interaction’? With the computer ‘as a whole’, perhaps, 
but what would that mean? With the ‘application program’ and only now and then 
with ‘programs’ that are part of the operating system? With all these ‘programs’ as a 
whole or also with the ‘programs’ in conjunction with the CPU? With the ‘program’ 

                                                
1 Similarly, what are the artifacts that make up ‘artifact ecologies? Are they devices, or apps, or 
services, or network protocols, or all of the above [2, p. 457]? 
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as conceived by the developers, with the ‘program’ as compiled and installed, or with 
the ‘program’ as instantiated as live circuits of running code? Or do users rather ‘in-
teract’ with the objects of their work, whether digitally represented or not? Consider 
for example an ordinary digital calendar. It provides representations of categories 
such as ‘year’, ‘month’, ‘week’, ‘day’, ‘hour’, ‘day type’, ‘event’, and ‘event type’) as 
well as a set of operational primitives (e.g., ‘create event’, ‘set alarm’). It may also 
subscribe to data from services such as weather forecasts, national holidays, etc., just 
as it will exchange information such as event invitations, contacts, maps, etc. with 
other application programs. So far, it is straightforward to conceive of it as an applica-
tion program with its specific data structure (in the form of one or several 
interconnected files). But when working with multiple devices (laptop, smartphone, 
tablet), what is displayed as one’s calendar may be distributed data structures that are 
continually and automatically synchronized via some cloud service. It is now no 
longer simply an identifiable application program with its files. One will nevertheless 
routinely use ‘it’ as a unitary calendar by virtue of the dependable and uniform repli-
cation of events in their relation to the generic data structure (a set of files, 
reciprocally synchronized). Now, a ‘shared’ calendar (shared by members of a project 
or a department) is not merely a stable set of files replicated across multiple devices. 
It is rather a composite of multiple individual calendars, partly intersecting, continual-
ly changing. And still, while distributed over myriad devices, it is routinely used as a 
unitary calendar. One is confident that what one sees in one’s calendar app is the 
‘shared’ calendar. How do we systematically conceive of this?  

These issues are more than technical: they are conceptual. This paper is an attempt 
to address these issues. We do not aim to develop a conceptual framework; we merely 
attempt to clarify the issue. In doing so, we are in the fortunate situation that the issue 
of what it is we ‘interact’ with when working with digital devices has been addressed 
before, 30 years ago in fact, under the label ‘computational artifact’ (or ‘interactive 
artifact’). This seems a good place to begin, not because what was achieved then 
solves our problems, which it does not quite do, but because the issue was raised and 
addressed squarely. 

A logico-grammatical preamble 
 
First, however, in order to steer clear of the metaphysics of computing, let us begin by 
making the conceptual observation that a bathtub is only a bathtub to a form of life for 
which taking a bath is an established practice. To an ant it is just a barren surface. 
Similarly, a technical artifact (a tool, a machine) is only a technical artifact by being a 
complement of a practice in which it is appropriated and routinely used. Or as Samuel 
Butler (1835-1902) wrote in his notebooks:  

‘The very essence of a tool is the being an instrument for the achievement of a purpose. 
[…] Therefore the word “tool”, implies also the existence of a living, intelligent being ca-
pable of desiring the end for which the tool is used, for this is involved in the idea of a 
desired end.’ [4, p. 19].2 

                                                
2 We are indebted to Bannon and Bødker for bringing Butler’s astute remarks to our attention 
[1]. 
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An artifact such as a calculating machine may be able to perform ‘automatically’, 
i.e., proceed causally (for a period of time and under certain operational conditions) 
and without human intervention, but it does not make sense to say that it ‘calculates’ 
in and of itself. In the words of Ludwig Wittgenstein, in critical remarks aimed at 
Alan Turing: 

‘Does a calculating machine calculate? Imagine that a calculating machine had come into 
existence by accident; now someone accidentally presses its knobs (or an animal walks 
over it) and it calculates the product 25 × 20.  

I want to say: it is essential to mathematics that its signs are also employed in mufti.  
It is the use outside mathematics, and so the meaning of the signs, that makes the sign-

game into mathematics.’ [47, V §2]. 
The point is that to calculate is a normatively constituted activity; it is an activity 

governed by rules of what amounts to correct procedure and correct result: it is a 
practice. Wittgenstein again:  

‘Turing’s “Machines”. These machines are humans who calculate.’ [48, §1096].  
That is, it is we who, by manual control of tools and instruments or by the use of 

more or less automatic machines, do the work. Sure, the use of automatic machinery 
as part of our practices may have implications for these practices (educational, organ-
izational, etc.), but they are nevertheless just that: technical complements of our 
practices. It only makes sense to talk about this mechanical (or causal) regularity 
from the point of view and in the context of the normative regularity of our practices 
in which these artifacts are integral technical complements [29, Chapter 13; 30; 32; 
46]. In other words, it is we who engage in normatively constituted practices, by using 
rulers, compasses, and by using machines, computational artifacts included.  

This should be clear enough. It is we who, in using computational (or interactive) 
artifacts, do the work. In that respect they are like any other kind of technical artifact: 
complements of our practices. This is not an issue here. The issue is rather that this 
class of artifact, computational artifacts, has some very special characteristics that are 
smothered when we, without further distinction, conflate them with other kinds of 
artifact or infrastructure.  

The notion of ‘computational artifact’ in Suchman 
The notion of ‘computational artifact’ was originally introduced by Lucy Suchman3 in 
1985 in a PhD-dissertation based on empirical studies at Xerox PARC and published 

                                                
3 The term ‘computational artifact’ is of course also used in methodological discourse in the 
completely different sense of contamination of data caused by the computational procedure. 
‘Artifact’ in this derived sense generally means ‘something observed in a scientific investiga-
tion or experiment that is not naturally present but occurs as a result of the preparative or 
investigative procedure’. To make matters even more confusing, the exact same term is also 
being used in recent literature on the foundations of computer science [e.g., 45], without any 
reference to Suchman’s work whatsoever and in a very different sense, namely ‘the entities that 
computer scientists construct, the artifacts of computer science’ (ibid., §1). And computer sci-
ence is defined as what? The science of computational artifacts? 



  5 

as a technical report by Xerox PARC [37, pp. [iii], 1-12].4 The notion of ‘computa-
tional artifact’ occupies an important place in the foundations of HCI, CSCW, and 
related fields of computing technology research, not because it is widely used, far 
from it, but because it figured prominently in the incontestably most influential at-
tempt to formulate a conceptual foundation for this kind of research, namely, Lucy 
Suchman’s Plans and Situated Actions: The Problem of Human-Machine Communi-
cation. She introduced and used it in her pathbreaking attempt to give a principled 
and clear articulation of what was to be addressed and explored in the research pro-
gram of ‘human-machine communication’ or ‘interaction’: it was suggested as the 
term for that with which humans were supposedly ‘interacting’ or ‘communicating’. 
By virtue of that role, and although the notion quickly all but dropped from circula-
tion in HCI and neighboring fields, it was a cornerstone concept of her argument.   

To understand Suchman’s notion of ‘computational artifact’ it is important to keep 
in mind the context in which it was hatched. From 1979 to 1984, she was employed as 
a research intern at Xerox Palo Alto Research Center (PARC) in California, and upon 
having received her PhD degree in Social/Cultural Anthropology in 1984 she became 
a member of PARC’s research staff, ultimately to be appointed Principal Scientist.5 
The point of this piece of biographical information is that she was working as a re-
searcher at Xerox PARC when and where the ultimate conceptual development of the 
‘interactive computing’ paradigm took place.  

The ‘interactive computing’ paradigm was initially conceived in the early years of 
the Cold War in the course of the development of the Whirlwind computer (the key 
computer system for a new US air defense system, SAGE, which became operational 
in 1958 [23]). It received important further developments in the following years, with 
the early development of Computer-Aided Design at MIT [25; 42] and with the NLS 
(‘oN-Line System’) created in the 1960s at Douglas Engelbart’s Augmentation Re-
search Center at SRI International [11]. But the step that was decisive for establishing 
the paradigm was taken at Xerox PARC in the development in 1972-73 of an experi-
mental computer ‘workstation’ with a ‘graphical user interface’, dubbed Xerox Alto 
[19; 43]. Based on the Alto concept, a more viable interactive computer named Xerox 
Star was developed (at PARC as well as the Xerox lab in El Segundo, California); it 
was introduced in 1981 [33]. That is, Suchman started working at PARC while the 
development of the Star was ongoing and finished her PhD dissertation at PARC only 
months after the ultimate exemplar of the interactive computing paradigm, the Apple 
Macintosh, was released up the road in Cupertino. Her dissertation was produced in 
the very epicenter — temporally, spatially, institutionally, culturally, and socially — 
of a technological upheaval of the first order.  

The notion of ‘computational artifact’ was developed in order to be able to subject 
the ‘interactive computing’ paradigm that was then taking shape to critical examina-
tion.  

                                                
4 The dissertation was later published in a revised edition [38]. The two editions differ some-
what, most importantly in that the concluding chapter is greatly elaborated in the 1987 version. 
In this version the book has become a classic in CSCW and HCI. Suchman later republished 
the 1987 text with a lengthy introduction and under another title [41]. — The different editions 
of the book have together received almost 10.000 citations. 
5 http://www.lancaster.ac.uk/fass/sociology/profiles/lucy-suchman 
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Suchman was explicit about the context in which she developed the notion of 
‘computational artifact’ and described it as follows:  

‘we now have a new technology which has brought with it the idea that rather than just us-
ing machines, we interact with them. In particular, the notion of “human-machine 
interaction” pervades technical and popular discussion of computers, their design and use. 
Amidst ongoing debate over specific problems in the design and use of interactive ma-
chines, however, no question is raised regarding the bases for the idea of human-machine 
interaction itself.’ [37, p. 3; cf. 38, p. 1]. 
She did not cite examples of what she was referring to but did not need to either: 

she was referring to an idea that had become pervasive. The pioneers of the emerging 
technological paradigm had used different words to express this idea: ‘human-
computer team work’ or ‘conversation’ [25], ‘man-computer symbiosis’ [20], ‘human 
intellect’ ‘augmentation system’ [10], ‘man-machine communication system’ [42], 
etc. The terminological variations notwithstanding, the core idea remained the same, 
namely that of a symmetrical relationship between human and machine.  

Suchman’s point of departure was that she found the very notion of ‘interaction’ 
between computing devices and humans problematic, i.e., in need of clarification. 
Thus, in examining the relationship between human and machine any preconceived 
notion of the specific nature of that relationship (such as ‘interaction’, ‘communica-
tion’, etc.) would anticipate what was to be investigated. In other words, she could not 
use a term like ‘interactive artifact’ in a critical investigation of the nature of that ‘in-
teraction’. The term ‘computational artifact’ was accordingly presented as a key term 
in formulating the research problem:  

‘The point of departure for this research is […] the apparent challenge that computational 
artifacts pose to the longstanding distinction between the physical and the social; in the 
special sense of those things that one designs, builds, and uses, on the one hand, versus 
those things with which one communicates, on the other. While this distinction has been 
relatively non-problematic to date, now for the first time the term interaction — in a sense 
previously reserved for describing a uniquely interpersonal activity — seems appropriately 
to characterize what goes on between people and certain machines as well.’ [37, p. 7; cf. 
38, p. 6]. 6  
In short, Suchman introduced the notion of ‘computational artifact’ in the context 

of her effort to offer a critical corrective  to ‘the emergence of disciplines dedicated to 
making [computational] artifacts “intelligent”’ and especially ‘a practical effort’ to 
subject the ‘interaction between people and machines’ to engineering [37, p. 9; cf. 38, 
p. 7].  

Central to her concern with the notion of some symmetrical ‘interaction’ was the 
then much debated idea that computational artifacts might be able to ‘explain them-
selves’ and even give advice. She summarized the target idea as follows:  
                                                
6 Suchman’s research problem was articulated in the same terms in 1999 in an article written in 
collaboration with Jeanette Blomberg, Julian Orr, and Randy Trigg: ‘A central aim of Such-
man’s project was to suggest that the challenge of interactive interface design is actually a more 
subtle and interesting one than it was assumed to be by her colleagues in the field of human-
computer interaction in the 1980s. Basically, their assumption was that computational artifacts 
just are interactive, in roughly the same that way persons are, albeit with some obvious limita-
tions […]. However ambitious, the problem in this view was a fairly straightforward task of 
encoding more and more of the cognitive abilities attributed to humans into machines in order 
to overcome the latter’s existing limitations.’ [40, p. 393. — Emphasis added]. 
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‘Researchers interested in machine intelligence attempt to make [formal representations of 
plans] the basis for artifacts intended to embody intelligent behavior, including the ability 
to interact with their human users. The idea that computational artifacts might interact with 
their users is supported by their reactive, linguistic, and internally opaque properties. Those 
properties suggest the possibility that computers might explain themselves: thereby provid-
ing a solution to the problem of conveying the designer's purposes to the user, and a means 
of establishing the intelligence of the artifact itself.’ [37, p.[iii]].  
To address this ‘problem of human-machine communication’ she conducted and 

reported on ‘a case study of people using a machine [a photo copier] designed on the 
planning model, and intended to be intelligent and interactive’ (ibid.). From this she 
concluded that the ‘access of user and machine to the situation of action’ is ‘asymmet-
rical’ in that ‘the ordinary collaborative resources of human interaction are 
unavailable’ to the machine [37, p. 124]. This insight was elaborated in the extended 
concluding chapter in the 1987 version of the text:  

‘Today’s machines […] rely on a fixed array of sensory inputs, mapped to a predetermined 
set of internal states and responses. The result is an asymmetry that substantially limits the 
scope of interaction between people and machines.’ [38, p. 181]. ‘I have argued that there is 
a profound and persisting asymmetry in interaction between people and machines, due to a 
disparity in their relative access to the moment-by-moment contingencies that constitute the 
conditions of situated interaction. Because of the asymmetry of user and machine, interface 
design is less a project of simulating human communication than of engineering alterna-
tives to interaction’s situated properties.’ [38, p. 185].  
That is, the argument offered is that computational artifacts, in spite of ‘their reac-

tive, linguistic, and internally opaque properties’, are cut off from ordinary human 
interaction because the latter is ‘situated’, i.e., ‘essentially ad hoc’.7  

Suchman’s conception of ‘computational artifact’ has obvious merits. 
First, by opting for the adjectival form ‘computational’ of ‘computer’ she shifted 

the emphasis from thing to behavior, from object to functionality. She thereby did not 
have to resort to common but notoriously confusing terms such as ‘the computer’, 
‘the technology’, ‘the system’, ‘software’, ‘the program’, etc. For the problem with 
‘interactive computing’ is the same irrespective of whether the device in question has 
the form of a permanent ‘hardware’ circuit, a temporary circuit in the shape of ‘firm-
ware’, an ephemeral circuit in the shape of running ‘software’, or all of the above in 
conjunction, or whether the particular circuit is part of a CPU, the operating system, 
or some application program running under the control of the operating system, or 
whether the circuit resides as ‘embedded code’ in a photocopier or is a transient cir-
cuit distributed over multiple devices connected by some network.  

Second, by using the term ‘artifact’ she was implicitly drawing on a century of an-
thropological work. For anthropology as well as archeology, ‘artifact’ is the standard 
term for objects designed, manufactured, and used by human cultures. It suggests that 
what we have here is comparable to stone axes, earthen pottery, and rattan baskets. 
The term ‘artifact’ was used in a similar deflationary way shortly after, by Pelle Ehn 
(‘computer artifacts’ [8]) and by Donald Norman and Edwin Hutchins (‘cognitive 
artifacts’ [22]).  

                                                
7 The proposition that situated action is ‘essentially ad hoc’ is deeply problematic (it leads to 
infinite regress) but that is not the issue here (for a critical discussion`, cf. [29, Chapter 12]). 
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In sum, the notion of ‘computational artifacts’ was introduced in order to address, 
in a principled way, the new phenomenon of humans working with machines that are 
highly reactive and malleable. It was introduced in the context of an attempt to dispel 
the mythology this new form of machinery had occasioned: the notion that we now 
are dealing with material objects imbued with human characteristics (‘intelligence’, 
‘language’, etc.). 

Suchman on the nature of ‘computational artifacts’ 
According to Suchman’s pioneering analysis, computational artifacts are character-
ized by having ‘reactive, linguistic, and internally opaque properties’ [37, p. [iii] and 
Chapter 2; 38, Chapter 2]. Let us briefly summarize what was meant by this proposi-
tion. 

The ‘reactivity’ of computational artifacts: The characterization of computational 
artifacts as reactive seems obvious: Electronic computers are several magnitudes fast-
er than any traditional machines and can react virtually instantaneously. However, as 
argued by Suchman, not all computing devices can be said to be reactive. As she em-
phatically points out, the reactivity of computational artifacts is predicated on ‘the 
availability of interrupt facilities whereby the user can override and modify the opera-
tions in progress’ [37, p. 10; 38, pp. 10 f.]. By contrast, computer devices used in 
batch processing modes (for the calculation of payrolls, tax returns, or master produc-
tion schedules, or for the compilation of source code) are not reactive at all. They run 
their course. In stressing reactivity, that is, Suchman explicitly excluded the large 
body of computer programs used in mass data-processing from the category ‘compu-
tational artifact’. The reason is obvious. It was the conceptual issues of the very 
concept of ‘interactive computing’ that were the target.  

The ‘linguistic properties’ of computational artifacts: In elaborating what she 
meant by ‘linguistic properties’, Suchman stated that  

‘the means for controlling computing machines and the behavior that results are increasing-
ly linguistic, rather than mechanistic. That is to say, machine operation becomes less a 
matter of pushing buttons or pulling levers with some physical result, and more a matter of 
specifying operations and assessing their effects through the use of a common language. 
With or without machine intelligence, this fact has contributed to the tendency of designers, 
in describing what goes on between people and machines, to employ terms borrowed from 
the description of human interaction — dialogue, conversation, and so forth: terms that car-
ry a largely unarticulated collection of intuitions about properties common to human 
communication and the use of computer-based machines.’ [37, p. 10 f.; cf. 38, p. 11]. 
It is a source of confusion that Suchman in the quoted passage distinguished ‘lin-

guistic’ from ‘mechanistic’ means of control. Entering a ‘command’ (‘copy’, say) by 
typing it or by choosing a menu item or a button-like field on the display (whether or 
not labeled ‘Copy’) is not a linguistic act any more than pushing a tangible button on 
a dish washer or pulling a lever. They are simply different ways of activating a mech-
anism; in the case of computing machinery connecting an electric circuit, ‘with some 
physical result’.  

This indicates some deep-seated ambiguity, which is unsurprising given the his-
torical context and the fact that this was a pioneering and hence also tentative effort. 
The ‘tendency’, to which Suchman referred, of designers ‘to employ terms borrowed 
from the description of human interaction’ that ‘carry a largely unarticulated collec-
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tion of intuitions about properties common to human communication and the use of 
computer-based machines’ was simply not easily overcome. 

Anyway, one can certainly say that computational artifacts have ‘linguistic’ (or, 
rather, semiotic) properties in the very limited sense that we can be use them to ma-
nipulate signs, where term ‘manipulation’ is shorthand for various transformative 
operations on the physical carriers of signs: Boolean operations and well as composite 
operations such as parsing, adding, subtracting, sorting, rearranging, moving, copy-
ing, comparing, etc. such (physical carriers of) signs and collections of signs.  

The ability to manipulate (physical carriers of) signs is anyway not at all specific 
to or defining of computational artifacts. A mechanical typesetter, a traffic light, a 
time piece, or an electromechanical desktop calculator can also — in their own very 
limited way — be used to manipulate signs.  

The ‘internal opacity’ of computational artifacts: Suchman’s third defining char-
acteristic, the computational artifact’s being ‘internally opaque’, is prima facie  
mystifying. The entire argument is mystifying in that it, with references to Daniel 
Dennett [5] and Sherry Turkle [44], presumes that in order to understand a phenome-
non, we have to reduce its behavior to internal mechanisms. But we do not need to 
understand the internal mechanism of an artifact in order to make rational use of it; 
nor do we in fact normally do that. One doesn’t need, say, to understand the specifics 
of the lattice structure of steel alloys causing the operational properties of one’s dam-
ascene kitchen knife: its hardness, its tensile strength, its elasticity. What one needs to 
understand is its ‘functionality’. And in the case of machinery, what one needs to 
know is the dependable regularity of its behavior. That’s all. The computational arti-
fact is just a machine: a complex of elemental mechanisms carefully configured and 
built to perform with a high degree of predictability and dependability. And in incor-
porating it into our practice, we incorporate it as such: as a complex of causal 
mechanisms behaving in a highly regular manner which is useful in that practice. As 
long as the exhibited mechanical regularity can be integrated with the normative regu-
larity of our practices, the internal mechanics is not of interest, except for very 
specific purposes, such as, for instance, maintenance, where we of course do take 
internal mechanisms into account. 

Anyway, the point Suchman was trying to make by ascribing ‘opacity’ to compu-
tational artifacts was probably that we, in using a computational artifact, routinely 
treat it as a functional unity while disregarding its being an assembly of myriad com-
puting devices:  

‘The overall behavior of the computer is not describable […] with reference to any of the 
simple local events that it comprises […]. To refer to the behavior of the machine, then, one 
must speak of “its” functionality. And once reified as an entity, the inclination to ascribe 
actions to the entity rather than to the parts is irresistible’ [38, p. 15 f.]. 
Not only ‘irresistible’, we would like to add, but quite unproblematic. A computa-

tional artifact is indeed ‘opaque’, but the opacity is the result of deliberate design: 
mechanisms that are irrelevant to users are carefully hidden from view. That is, what 
Suchman (with Turkle) calls ‘opacity’ is what may just as well be called ‘transparen-
cy’. Something is hidden for others things to be visible. In this case, the mechanism is 
hidden (opaque) to make visible what is relevant for the work. That is, their ‘internal 
opacity’ is what makes computational artifacts transparent in users’ terms. What us-
ers need to ‘see’ are objects and operations pertinent to the practice in which the 



  10 

computational artifact is incorporated, that is, they need to be able to take for granted 
that the artifact behaves appropriately from the point of view of that practice. 

In sum, then, on Suchman’s conception, computational artifacts are designed to 
react in step with the activities in which they are used, to be incorporated in sophisti-
cated semiotic practices, and to exhibit functional unity irrespective of its shifting 
internal constitution.  

The notion of ‘computational artifact’ was introduced in order to address the na-
ture of the ‘interaction’ in the then emerging ‘interactive computing’ technology and 
to do so in a way that did not subscribe, implicitly, to the then prevailing presumption 
of some kind of ‘symmetry’ between human and machine. By doing so, it oriented 
HCI and CSCW research towards the practices in which the artifacts are incorporated. 
This makes it an indispensable concept for technological research oriented towards 
developing applications for our work practice. The notion of ‘computational artifact’ 
has considerable merit.  

Computational artifacts: A reconstruction 
Let us first briefly reconstruct the conception of ‘computational artifact’, that is, try to 
clarify its rational core while avoiding the ambiguities and logical mistakes that were 
probably unavoidable birthmarks. 

Just as we do not live in the blueprint of a house but in the building specified in 
the blueprint, when we talk about ‘computational artifacts’ (e.g., a ‘shared calendar’) 
we are not talking about ‘computer programs’, or the various stages of program speci-
fication as expressed in diagrams and code; we are rather talking about programs as 
running code (in conjunction with one or more CPUs and assorted other computing 
components), that is, we are talking about programs as live electronic circuitry, be it 
permanent or ephemeral. It is that with which we interact when using computing de-
vices.  

A key feature of computational artifacts is their capacity to react to and thus be in-
tegral part of unfolding events. Several architectural features are required to afford 
this. 

(1) For the reactions of the device to be experienced as immediate and the device 
to be experienced as ‘interacting’, reactivity presumes a response-time that is less 
than (what in the context of a given practice is considered) state-changes in the envi-
ronment, i.e., they must be able to execute in ‘real time’. This is elementary.  

(2) In the stored-program architecture originally devised by Alan Turing and John 
von Neumann, programs in the compiled form of binary code are treated as data and, 
when launched, reside in the computer’s storage as — invisible and transient but no 
less physical — electronic circuits that can be activated virtually instantaneously. The 
advantage of this architecture was originally that the program only has to be launched 
once and that the computing device does not have to spend time to access external 
input devices to obtain the next command.  

(3) The reactivity of computational artifacts is not afforded by the stored-program 
architecture in itself but presumes the very specific mode of operation classically re-
ferred to as ‘manual intervention’ [26] or, in Suchman’s words, ‘the availability of 
interrupt facilities whereby the user can override and modify the operations in pro-
gress’ [37, p. 10; 38, p. 11]. Under this paradigm, the computing device does not 
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simply run through a prespecified set of ‘commands’ in a prespecified sequence; ra-
ther, a program launched into working storage and activated awaits the occurrence of 
certain external events to execute a ‘command’ (in source code expressed as, for ex-
ample, ‘on mouse-up, do X’).  

(4) By virtue of their reactivity, as well as high-capacity gigahertz storage media, 
computational artifacts are used to manipulate signs (letters, numerals, geometric el-
ements, patterns of imagery and sound) in step with external events. They are used as 
complements of semiotically constituted practices (calculating, computing, drafting, 
planning, writing, searching, etc.). It is this that occasions some to ascribe normative 
behavior (‘rule-following’) to automatic machinery, others to latch on to a mechanical 
model of the mind to account for rational conduct, and others again to cover-up their 
embarrassment by conceiving of ‘interactive computing’ (or ‘human-machine sys-
tems’) as a symmetrical relationship. The source of the befuddlement lies in the 
confusion of the ‘grammatical’ or conceptual distinction between normative and me-
chanical regularity. We should not allow ourselves to be misled by the apparent 
ability of computing devices to react usefully to written or spoken instructions or pro-
vide results in similar modalities.8 We should remember that computing machines do 
not use signs any more than Tibetan prayer mills engage in praying. What makes 
computational artifacts different from classical-mechanical and electromechanical 
machinery in regard to their ability to manipulate (physical bearers of) signs is strictly 
their speed of operation together with the fact that they can manipulate vast amounts 
of data in real-time, because of related features such as high-speed inexpensive ran-
dom-access storage technologies (RAM, flash storage, harddisks).  

(5) A computational artifact is constituted by a structured set of ‘object classes’ 
and ‘objects’ (i.e., data structures with associated elementary operations). According-
ly, a computational artifact is inherently bound to a practice from which the 
categories represented by these objects and classes are derived and to which they are 
indigenous. It is within such practices, and only there, that the objects of the computa-
tional artifact have meaning. 

An electronic calendar, for example, is bound to our institutionalized practices of 
time measurement for purposes of planning and organizing events such as harvesting, 
meetings, deadlines, travels, and is constituted by object classes such as ‘time’, 
‘event’, and so forth, as well as the associated operations. The functional unity of the 
digital calendar is a manifestation of the dependable reproduction of this structure, 
irrespective of the distribution of objects and operations, and the circuitry in which 
they are realized, across computer entities and devices. Only the objects are made 
visible, the internal mechanics are not (they are transparent or opaque). 

A CAD system similarly offers a family of elemental object classes (such as, in 
architecture, ‘wall,’ ‘door’, ‘window’, etc.) and complex object classes (such as ‘floor 
plan’, ‘elevation’, ‘cross section’, ‘building’), and requisite operations on these types 
                                                
8 It is of course common for computer scientists and engineers to refer to the highly regular 
patterns of behavior of computational artifacts, that are the hallmark of their art, as ‘rules’ or 
‘procedures’ (just as they speak of ‘programming languages’, etc.). This is an unavoidable fea-
ture of the natural attitude of these professions. Within the bounds of the practices of devising 
and building computational devices, it is as harmless as when we in ordinary language use ex-
pressions like ‘sunrise’ and ‘sunset’. Damage only arises when this innocently convenient 
language is incorporated into systematic conceptualizations. 
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(such as ‘locate’, ‘copy’, ‘move’, ‘group’, etc.). Modern CAD systems furthermore 
offer the advanced functionality of abstraction called ‘overlay drafting’ in which the 
representation of a composition is divided conceptually into layers such that objects 
and object complexes can be separated according to, for example, the material in-
volved (brick, concrete), the type of object (walls, doors, plumbing), or author, while 
the geometric projection is rigorously maintained across layers (cf. [7, §2; 28; 31].). 
This enables architects and engineers to work with discrete digital representations of 
different aspects of the overall composition in a manner such that the parts created or 
amended by each of them are immediately available to any other, in various combina-
tions, by direct projection between or superimposition of their respective layers. That 
is, they interact by making state changes to a set of (digital) representations while at 
the same time ensuring overall consistency of their distributed activities by means of 
the functionality of an associated assembly of computational artifacts carefully de-
signed to perform the projection calculus in real time. 

Thus, although a computational artifact incorporates the behavior of multitude, 
physically distinct, elemental entities, perhaps distributed over a multiple devices, it 
exhibits functional unity over these myriad events without necessarily involving users 
in its intricate ‘internal affairs’, and it does so by virtue of its being bound to a prac-
tice. The functional unity exhibited by computational artifacts-in-use is the 
manifestation of just that — a design feat of the highest magnitude. 

(6) When a program, under the stored-program paradigm, is compiled and stored 
in RAM and thus exists as live circuitry, the device can not only react but may — in 
response to (determinate) environmental conditions, especially to actions users might 
take — change behavior (within the determinate but vast, in practice perhaps incalcu-
lable, solution space constituted by the totality of possible combinations). It may also 
modify its own ‘code’ or regular behavior (or that of another running program) and do 
so in ‘real time’.9 Accordingly, the reactivity of computational artifacts obtained un-
der the interactive computing paradigm is afforded by far more than simple 
operational speed; computational artifacts may change behavior quasi-dynamically as 
environmental conditions change. Reactivity thus also implies behavioral flexibility 
and variability.  

(7) In an operating environment facilitated by the stored-program architecture, 
‘programs’ no longer necessarily exist and act in splendid isolation. When active, a 
program may ‘call’ another program, even a program residing on a remote device, to 
execute a given ‘command’ (e.g., perform a specific process and return a data string) 
before it proceeds, or it may simply, under certain (determinate) conditions, hand over 
‘control’ to another program (which operating systems do all the time). This is of 
course elementary. The point, however, is that in this environment, running programs 
may be made to combine and recombine to form large but often ephemeral machine 
systems. Multiple computational artifacts can be combined and recombined in real 
time, just as they can form more or less stable machine systems through remote re-
source calls or linking. Just think of a trivial browser operation involving preference 
files, java applets, browser extensions, queries to remote database system facilitated 
by CGIs, etc., and the invocation of other applications to handle special file types 
(such as PDF) — not to mention the OS level machinery making all this possible.  

                                                
9 This is what makes hacking possible. 
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Computational artifacts in practice 
The point of the concept of ‘computational artifact’ is to enable us to conceive of its 
dynamically accomplished functionality as integral to a work practice. 

As with any technical artifact, a hammer, a power loom, or a computational pay-
roll calculation, computational artifacts are complements of our work practices; 
beyond that, they would be merely evanescent electromagnetic pulses. A computa-
tional artifact is bound to the practice of which it is a technical complement by being 
used — routinely, competently, repeatedly — to process signs (in the form of object 
classes and objects) inherent to that practice. But computational artifacts are also 
complements of our practices in a different and stronger sense. As technical accom-
paniments of interactive computing, and even more so as collaborative computing 
applications, their overall behavior is determined in the course of the activities in 
which they are incorporated. Now, a computational artifact is of course a material 
artifact, an assembly of live electronic circuitry. It is carefully designed to behave in a 
highly regular way. When not in use, i.e., in the absence of ‘manual intervention’, 
while in the ‘wait loop’, it is like an idling car engine, and in this state its behavior is 
well defined: it does nothing but ‘wait’. However, in use its behavior is determined by 
the pattern of activity of which the interventions are part. For each intervening act, its 
behavior (its response to each ‘command’ or ‘mouse-up’ or ‘swipe’: the ‘subroutines’ 
activated, the data exchanged, the remote calls, etc.) is of course strictly mechanically 
determined. For each state in the process of its dynamic execution there is a finite set 
of possible moves, but once a move has been made (a key is pushed, a button tapped, 
a dial turned) the artifact undergoes an ‘automatic’ (highly regular causal) process. 
And so on. However, the overall pattern of behavior of the artifact-in-use is not one of 
mechanical regularity (in contrast to a computational payroll calculation); the overall 
behavior is a manifestation of the normative regularity of the practice in which it is 
used as a material artifact. When integrated into our practices, the causal regularities 
of the enacted computational artifacts — the shifting electronic circuitry — are inter-
woven into the patterns of the normatively regulated activities of these practices. It is 
this fine-grained interweaving of normatively regulated activities and mechanical 
regulation that is specific in computational artifacts.  

The conception of computational artifacts outlined here may also help clarify the 
notion of ‘infrastructure’: (a) There is first ‘infrastructure’ in the sense of a technical 
complement of a given cooperative work practice or family of practices: an assembly 
of computational artifacts constituted by object classes conceptually indigenous to 
that practice or family of practices. Obvious examples are the ‘information infrastruc-
tures’ provided by what in CSCW is often termed ‘coordination technologies’: large-
scale collaborative applications  such as CAD systems, electronic patient records, 
document management systems, workflow management systems (and of course also 
group calendar systems). These are assemblies of computational artifacts that exhibit 
functional unity in use by virtue of the complex of domain-specific object classes 
(workflows, classification schemes, etc.) they all embody. (b) Then there is ‘infra-
structure’ in the sense of (more or less stable) patterns of live circuitry, established 
dynamically, typically by cascades of automatic connections unleashed by manual 
intervention in the use of the practice-bound infrastructures, and facilitated by the 
‘information super-highway’ or ‘infrastructure’ of the multitude computer devices 
(servers, laptops, smartphones), network facilities (routers, fiber-optic cables, elec-
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tromagnetic fields), and the multitude network protocols and APIs by means of which 
the formation of the former are controlled and mediated. Infrastructures, in this se-
cond sense, are facilities that enable ‘infrastructures’ in the first sense to form; the 
infrastructure of the infrastructure, if you will. (c) And of course, there is also, to 
make the picture complete, ‘infrastructure’ in sense of the ‘work to make the network 
work’ [3]: the organized practices through which ‘infrastructures’ in the second sense 
are constructed and maintained. 

In sum: In the design of computational artifacts for the purpose of serving in a 
regulating capacity in coordinative practices (a group calendar, a workflow system, a 
document management system), we construct a repertoire of potential electronic cir-
cuitry that can be activated and combined in multiple but determinate ways and that 
then, in step with the unfolding actions of the cooperating actors, are used in the co-
ordination of interdependent activities. In other words, what is designed are 
mechanisms that function in a strictly causal manner but interactively: step by step, 
move by move. A major challenge in this, if not the challenge, is the following: (a) to 
identify, analytically, not only the governing schemes of the coordinative practice in 
question (categories, principles) but also the spectrum of variations, contingencies, 
routine troubles, etc. that practitioners have to deal with, as well as the sources of 
these variations, etc., the probabilities of their occurrence, and the ways in which they 
deal with these variations: contingency measures, improvisations, and workarounds; 
(b) to devise computational artifacts with a corresponding space of possible moves — 
including, of course, a repertoire of means of improvisation enabling workers to tem-
porarily circumvent or respecify the behavior of computational artifacts; and (c) to 
devise means for workers to express the categories and principles of their coordina-
tive practices in the behavior of computational artifacts, and so on. In short, the real 
challenge is that of developing machinery designed to be an integral part of our nor-
matively constituted but contingent cooperative work practices: the challenge of 
meeting the requirements of normatively constituted practices by means of mechani-
cal machinery while at the same time dealing with the contingencies of our work. 
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