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KIF13B establishes a CAV1-enriched microdomain
at the ciliary transition zone to promote Sonic
hedgehog signalling
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Andrea Serra-Marques2,w, Nicoline Fürstenberg1, Sophie Saunier3,4, Albane A. Bizet3,4, Iben R. Veland1,w,

Anna Akhmanova2, Søren T. Christensen1 & Lotte B. Pedersen1

Ciliary membrane composition is controlled by transition zone (TZ) proteins such as

RPGRIP1, RPGRIPL and NPHP4, which are vital for balanced coordination of diverse signalling

systems like the Sonic hedgehog (Shh) pathway. Activation of this pathway involves

Shh-induced ciliary accumulation of Smoothened (SMO), which is disrupted by

disease-causing mutations in TZ components. Here we identify kinesin-3 motor protein

KIF13B as a novel member of the RPGRIP1N-C2 domain-containing protein family and show

that KIF13B regulates TZ membrane composition and ciliary SMO accumulation. KIF13B is

upregulated during ciliogenesis and is recruited to the ciliary base by NPHP4, which binds to

two distinct sites in the KIF13B tail region, including an RPGRIP1N-C2 domain. KIF13B and

NPHP4 are both essential for establishment of a CAV1 membrane microdomain at the TZ,

which in turn is required for Shh-induced ciliary SMO accumulation. Thus KIF13B is a novel

regulator of ciliary TZ configuration, membrane composition and Shh signalling.
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P
rimary cilia are microtubule-based sensory organelles that
project from the surface of most non-dividing cells in
our body and play pivotal roles in coordinating many

different signalling pathways that regulate development, sensory
perception and homeostasis1. Signalling pathways coordinated by
primary cilia include Sonic hedgehog (Shh) (ref. 2), Wingless/Int
(WNT) signalling3 and signalling via receptor tyrosine kinases4.
Importantly, these pathways crosstalk extensively, and mutations
in ciliary genes therefore impair multiple signalling pathways
leading to diseases—ciliopathies—which are highly pleiotropic
and may affect nearly all types of tissues and organs during
development and in adulthood5.

Cilia consist of a microtubule axoneme that extends from a
modified centriole called basal body and is surrounded by
a bilayered lipid membrane. In many cell types, the proximal part
of the cilium is embedded within a membrane invagination
known as the ciliary pocket, which is a hotspot for exo- and
endocytosis of vesicles destined to or derived from the ciliary
membrane. The ciliary pocket membrane is also called the
periciliary membrane, which demarcates the region between
the plasma and ciliary membranes6,7. Although the ciliary
membrane is continuous with that of the plasma membrane,
cilia are compartmentalized organelles whose protein and
lipid composition differ from that of the cell body. This
compartmentalization is essential for ciliary function and is
brought about by microtubule motor-based intraflagellar
transport (IFT) and by structural barriers located at the
transition zone (TZ) between the basal body and cilium proper,
together regulating trafficking of specific proteins in and out of
cilia to control their composition8,9. Consequently, mutations
that affect IFT or ciliary TZ integrity are associated with
ciliopathies such as Nephronophthisis (NPHP), Bardet Biedl
(BBS), Joubert (JBTS) and Meckel Gruber (MKS) syndromes5,8.
The IFT system consists of large ‘trains’ of IFT particles with
associated ciliary cargoes, which are ferried across the TZ
from the base to the tip of cilia by kinesin-2 motors and
returned to the base by cytoplasmic dynein 2. Since cilia are
devoid of protein synthesis, their assembly and maintenance rely
on IFT-mediated transport of axonemal components from the
cell body to the ciliary tip where axoneme assembly occurs.
Consequently, mutations in IFT components usually lead to
absent or structurally defective cilia that are functionally
impaired, depending on the protein mutated and the severity of
the mutation9. IFT has also been implicated directly in ciliary
membrane protein trafficking and signalling. For example, during
Shh signalling, which in vertebrates functions exclusively at the
primary cilium2, IFT and a complex of associated BBS
proteins (BBSome (ref. 10)) are required for ciliary exit of the
Shh receptor Patched homolog 1 (PTCH1), which leaves the
ciliary compartment upon binding of Shh, facilitating ciliary entry
of Smoothened (SMO) and leading to pathway activation11–13.
On the other hand, ciliary entry of SMO and additional
membrane proteins may occur independently of IFT, for
example by lateral diffusion from the plasma- and periciliary
membranes across the TZ (refs 14–18). Despite intense
investigation (reviewed in refs 6,8), the precise mechanisms
involved in targeting and transport of most ciliary membrane
receptors, from their site of synthesis in the cell body, across the
TZ and into the cilium proper, remain unclear. Interestingly,
studies in nematodes have implicated kinesins other than
conventional anterograde IFT kinesin-2 motors in ciliary
membrane protein transport. Specifically, in the male sensory
cilia of Caenorhabditis elegans, kinesin-3 motor KLP-6 mediates
anterograde transport of polycystin-2 (PC-2) towards the ciliary
tip, and in a klp-6 mutant PC-2 signalling is deregulated resulting
in male mating behavioural defects19.

The kinesin-3 family is one of the largest within the kinesin
superfamily of microtubule motors. The mouse genome harbours
eight kinesin-3 genes (Kif1A, Kif1B, Kif1C, Kif13A, Kif13B, Kif14,
Kif16A, Kif16B) while humans contain only seven due to the
presence of a single KIF16 gene20. Kinesin-3 motors have been
implicated in multiple physiological processes, including
transport of organelles and vesicles towards the plus end of
microtubules20, but so far cilia-related functions have not been
described for any mammalian kinesin-3 motor.

In this study we show that kinesin-3 motor KIF13B localizes to
centrosomes and primary cilia in mammalian cells and we
identify KIF13B as a novel member of the RPGRIP1N-C2
domain-containing TZ protein family that interacts with the
ciliary TZ protein Nephrocystin-4 (NPHP4). Using genetic
silencing and gene knock out in cultured mammalian cells, we
provide evidence that KIF13B and NPHP4 are both required for
establishment of a specialized caveolin-1 (CAV1) membrane
microdomain at the ciliary TZ, which is essential for Shh-induced
accumulation of SMO in the primary cilium as well as for
activation of GLI-mediated target gene expression. Our study
thus identifies KIF13B as a novel regulator of TZ configuration,
ciliary membrane composition and Shh signalling.

Results
KIF13B localizes to the basal body and primary cilium. To
identify putative kinesins regulating ciliary trafficking in
mammals we performed global transcriptomics profiling of
mouse NIH3T3 cells cultured in the presence or absence of serum
to induce ciliogenesis, reasoning that genes with ciliary functions
are likely upregulated during ciliogenesis. Among the kinesin
gene transcripts that were highly upregulated by serum
deprivation, we identified Kif13b (also known as GAKIN) as the
most abundant (Fig. 1a), confirming an earlier qPCR-based
screen21. Furthermore, luciferase assays in NIH3T3 cells using
wild type and mutant Kif13b promoter constructs substantiated
that Kif13b is transcriptionally upregulated by serum deprivation,
and that this upregulation involves at least three different sites in
its promoter (Supplementary Fig. 1b–d). Finally, immunoblot
analysis of mouse embryonic fibroblasts (MEFs) demonstrated
that KIF13B protein is correspondingly upregulated during serum
deprivation (Fig. 1b). Consequently we chose Kif13b for further
analysis.

Kif13b encodes a vertebrate kinesin-3 motor protein that,
together with its proximal paralog KIF13A (comprising the KIF13
subgroup) (Supplementary Fig. 2a), shows the closest sequence
homology to C. elegans KLP-6 (see below) previously implicated
in ciliary trafficking and sensory functions19. To investigate
whether KIF13B similarly regulates trafficking at the primary
cilium, we first asked whether it localizes to this compartment.
Indeed, immunofluorescence microscopy (IFM) and live cell
imaging analysis revealed that endogenous and GFP-tagged
KIF13B accumulated prominently at the ciliary base and in
some instances along the cilium (Fig. 1c-e; Supplementary
Fig. 1e). These observations are in line with previous reports
identifying KIF13B in the proteome of swine choroid plexus22

or MEF (ref. 23) 9þ 0 cilia. Close examination of GFP-KIF13B
localization in ciliated detergent-extracted, fixed Human
Telomerase-Immortalized retinal pigmented epithelial
(hereafter: RPE1) cells indicated that the pool of GFP-KIF13B
at the ciliary base is concentrated at two distinct sites flanking the
centrosomal marker Pericentrin 2 (PCTN2), with the most distal
site overlapping the mother centriole distal appendage/transition
fibre marker CEP164 (Fig. 1d,e). Quantitative analysis of
detergent-extracted, GFP-KIF13B expressing cells (33 cells
analysed in total) revealed that approximately 72% of the cells
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displayed GFP-KIF13B at the ciliary base whereas in 23% of the
cells GFP-KIF13B was detected both at the ciliary base and along
the axoneme (n¼ 3). GFP-KIF13B was also found to localize to
the centrosome in non-ciliated cells (Fig. 1g; Supplementary
Fig. 1h), as well as to the cytoplasmic microtubule network
(Supplementary Fig. 1f), consistent with previous reports24–26.

Thus, KIF13B is upregulated by serum deprivation and localizes
in part to the primary cilium-centrosome axis.

KIF13B tail region contains two RPGRIP1N-C2 type domains.
To delineate the minimal polypeptide portion required for
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centrosomal localization of KIF13B, cells expressing different
GFP-KIF13B truncations (Fig. 1f; Supplementary Fig. 1g) were
analysed by IFM and the data quantified. This analysis showed
that centrosomal accumulation of GFP-KIF13B was mediated by
one or more sites located in the tail region spanning from
residues 558-1,649 (Fig. 1f,g; Supplementary Fig. 1h). Interest-
ingly, computational sequence analysis revealed that this region
(residues 861–1,000) contains an RPGRIP1N-C2 type domain
(also known as C2-C2_1 domain; registered as DUF3250 in the
PFAM database) (E-value¼ 2.6e–06), previously identified
exclusively in the TZ components RPGRIP1 (also known as
LCA6) and RPGRIP1L (also known as NPHP8/FTM/MKS5)
(ref. 27) (Fig. 2a,d; Supplementary Fig. 2b), thus expanding the
evolutionary sub-branch of RPGRIP1N-C2 domains previously
classified by Zhang and Aravind (Fig. 2b) (ref. 27). Homology
searches in the Protein Data Bank (www.rcsb.org 1999) identified
the solved RPGRIP1N-C2 domain as the best match to this
KIF13B C2 domain (hereafter: KIF13B-C2861-1,000), allowing 3D
structure modelling of KIF13B-C2861-1,000 (Fig. 2c). Comparative
analysis of secondary structure scores, as assessed by three-state
PSI-blast based secondary structure PREDiction (PSIPRED),
between KIF13B-C2861-1,000 and the RPGRIP1N-C2 profile
yielded highly significant HHpred probabilities in the range of
(97-98) (ref. 28), and visual inspection of the aligned sequences
indicated near perfect agreement between the predicted
secondary structures (Fig. 2d), supporting the sequence
homology searches. A smaller, more degenerate RPGRIP1N-C2
type domain was also identified N-terminal to this domain in
KIF13B (residues 796-838; Fig. 2a). Interestingly, while
KIF13B-C2861-1,000 showed closest homology by sequence among
all C2 domains to the RPGRIP1N-C2 domain in the PFAM
database (Fig. 2a,b; Supplementary Fig. 2b), significant homology
was also identified to the neighbouring PKC-C2-like domains in
the RPGRIP1/L proteins, indicating that both of the central C2
domains, RPGRIP1N-C2 and PKC-C2, have hitherto unknown
sequence homology. Indeed, we could show that the RPGRIP1N-
C2 and PKC-C2 domains in RPGRIP1/1L and KIF13B-C2861-1,000

bear a distinct signature of enriched conserved aromatic residues
(Fig. 2d and Supplementary Fig. 2b) not found in the other C2
families, including the PKC-C2 subfamily. In addition, extensive
database searches for other proteins bearing this domain
signature identified three additional human proteins: the
kinesin-3 members KIF13A, KIF1A, KIF1B, as well as C. elegans
kinesin-3 members KLP-4, KLP-6 and UNC-104 (Fig. 2a;
Supplementary Fig. 2a,b), thus establishing a novel/expanded
family of RPGRIP1N-C2 domain-containing proteins (Fig. 2b,d).
When using the C. elegans KLP-6 RPGRIP1N-C2 domain (amino
acids 701-824) as a query we also found more remote homology
to C2 domains in C2CD3 (E-value¼ 0.01), supporting that
C2CD3 is related to the RPGRIP1N-C2 domain branch (Fig. 2b

and ref. 27). KLP-6 mediates ciliary membrane protein
trafficking in C. elegans male sensory neurons, and a mutant
expressing C-terminally truncated KLP-6 lacking the identified
RPGRIP1N-C2 domain (residues 701-824; Fig. 2a), rendered
KLP-6 unable to accumulate in cilia, causing male mating
defects19. Therefore, this RPGRIP1N-C2 domain likely has a
ciliary function in this kinesin.

Given that the kinesin-3 members KIF13A, KIF1A, KIF1B also
contain RPGRIP1N-C2 domains, like KIF13B (see above), we
tested whether these kinesin-3 motors similarly localize to the
cilium-centrosome axis. Expression of fluorescently tagged
versions of these motors in ciliated RPE1 cells, followed by IFM
analysis of pre-extracted, fixed cells, revealed undetectable levels
of heterologously expressed KIF13A at the centrosome/cilium
whereas in approximately 20-25% of cells expressing KIF1A or
KIF1B, the fusion protein was detected at the ciliary base but not
within the cilium itself (Supplementary Fig. 3a,b). Hence KIF13B
displays a unique preference for the cilium-centrosome axis.

KIF13B binds NPHP4 via its C2 domain and DUF region.
RPGRIP1 and RPGRIP1L reside at the centrosome and TZ where
they have been shown to anchor the second C2 domain of
NPHP4 via mutual C2-C2 domain dimerizations29,30. We
therefore asked whether KIF13B is recruited to or tethered at
centrosomes through physical binding to any of these C2
domain-containing TZ proteins. Indeed, an immuno-
precipitation (IP) assay revealed that KIF13B interacts with
NPHP4 but not with RPGRIP1L (Fig. 3a). The interaction
between KIF13B and NPHP4 appeared to be specific since the
ciliary kinesin-2 motor KIF17 did not interact with NPHP4 under
similar conditions (Fig. 3b). However, we also detected
interaction between NPHP4 and KIF1B (Supplementary
Fig. 3c), suggesting that NPHP4 can bind to other C2 domain-
containing kinesin-3 motors. Reciprocal IP of GFP-KIF13B
confirmed its binding to NPHP4 (Supplementary Fig. 3d) and
size exclusion chromatography of extracts from KIF13B-HA and
FLAG-NPHP4 expressing cells indicated that NPHP4 forms
several larger complexes, one of which co-elutes with KIF13B in a
high molecular mass fraction (Fig. 3c). This substantiates that
KIF13B and NPHP4 reside in a mutual complex and that NPHP4
exists in multiple complexes as proposed recently by others31.
Furthermore, IP analyses of GFP-KIF13B deletion fragments
revealed that the KIF13B C2 domain-containing region mediates
interaction with NPHP4 (Fig. 3d,e), but that an additional
NPHP4 binding site is present within the region spanning
residues 1,000–1,288 of KIF13B (Fig. 3e), which contains a
domain of unknown function (DUF3694 (DUF); Fig. 1f). IP and
IFM analysis with tagged KIF13B-C2861-1,000 confirmed its
sufficiency for NPHP4 binding (Fig. 3f) and centrosome

Figure 1 | Kif13b is upregulated during serum deprivation and localizes to the base and along the primary cilium. (a) Kinesins identified in a global

transcriptomics analysis of up- and downregulated genes in serum-deprived relative to non-starved NIH3T3 cells. Only kinesin genes that are significantly

up- or downregulated (Po0.05, two-tailed t-test; n¼ 3) are listed. (b) Immunoblot analysis of MEFs cultured in the presence or absence of serum using

mouse monoclonal KIF13B antibody #1 (see Methods for details). (c) Localization of endogenous KIF13B in serum-starved MEFs using KIF13B-specific

rabbit antiserum (green) (Supplementary Fig. 1a) and antibody against acetylated a-tubulin (Ac-tub; red) to mark the cilium (closed arrow). DNA is stained

with DAPI (blue). Note localization of KIF13B along the length and base (asterisk) of the cilium. (d) GFP-KIF13B (green) localization in pre-extracted RPE1

cells. GFP-KIF13B is found along the cilium (Ac-tub, blue) and at two distinct puncta at the ciliary base, flanking Pericentrin 2 (PCTN2; red). Open arrows

indicate the distal end of the basal body; closed arrows show cilia. Quantitative analysis revealed that approximately 72% of the cells displayed GFP-KIF13B

at the ciliary base whereas in 23% of the cells GFP-KIF13B was detected both at the ciliary base and along the axoneme (33 cells analysed in total, n¼ 3).

(e) GFP-KIF13B co-localizes with CEP164 in pre-extracted RPE1 cells. Cilia and CEP164 were stained with the indicated antibodies. Open arrows indicate the

two different pools of GFP-KIF13B at the basal body; closed arrows show cilia. (f,g) Schematics of the GFP-tagged deletion constructs and IFM analysis

(representative images) of their ability to localize to the centrosome, marked by p150Glued antibody (red), in non-ciliated interphase RPE1 cells. Assessment

of centrosome localization, quantified in Supplementary Fig. 1h, is based on IFM analysis of at least 40 cells per construct (n¼ 3). DNA was stained with

DAPI (blue). Insets in (g) show enlarged views of the centrosome region. Scale bars: 2 mm in c; 10mm in d,e,g.
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localization (Fig. 3g). The observed interaction of NPHP4 with
KIF13B (Fig. 3d,e) was not a result of spurious protein-protein
interactions caused by protein truncations, as the same
truncations failed to bind another FLAG-tagged protein
unrelated to NPHP4 (Angiomotin p80; Supplementary Fig. 3f).
Reciprocal mapping of the KIF13B binding domain in NPHP4
showed that the central C2 domain (NPHP4-C2666-784) (ref. 27),
but not the divergent N-terminal C2 domain (residues 53-140;
ref. 27), mediates KIF13B binding. An additional KIF13B-
binding domain was identified in the NPHP4 C-terminus
harbouring ASPM, SPD-2, Hydin (ASH) domains (Fig. 3h,i),
whereas a binding assay using bacterially purified GST-NPHP4-
C2650-839 fusion protein and high salt immunoisolated GFP-
KIF13B-C2861-1,000 suggested that KIF13B-C2861-1,000 directly
binds NPHP4-C2650-839 (Fig. 3j). Supporting this, overexpressed
FLAG-NPHP4 co-localized with full length GFP-KIF13B in
cytoplasmic puncta, whereas no co-localization was observed with

a GFP-KIF13B version containing only the motor and FHA
domain (Supplementary Fig. 3e). Moreover, expression of
GFP-KIF13B in Nphp4þ /þ and Nphp4� /� MEFs indicated
that NPHP4 is at least partially required for recruitment of GFP-
KIF13B to the centrosome (Fig. 3k). Specifically, we observed
88.5% (±3.5%) GFP-KIF13B positive centrosomes in Nphp4þ /þ

MEFs versus 42% (±3%) GFP-KIF13B positive centrosomes in
Nphp4� /� MEFs (n¼ 2; 45-49 cells analysed per condition).
This suggests that NPHP4 alone or in concert with other scaffolds
recruits or tethers KIF13B at the ciliary base. In summary,
KIF13B interacts with NPHP4 via its C2 domain-containing and
DUF3694 regions and this interaction is at least in part required
for localization of KIF13B to the centrosome.

KIF13B and NPHP4 regulate CAV1 TZ localization. Previous
work uncovered a role of KIF13B in conveyance of CAV1, a
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Figure 2 | Identification of RPGRIP1N-C2 type domains in KIF13B and related kinesin-3 motors. (a) Schematics of the domain structure of selected

RPGRIP1N-C2 domain-containing proteins identified by bioinformatics analysis. (b) Cladogram showing the evolutionary relationship of the different C2

domain families and superfamilies. DOCK-C2, CC2D2A-C2, B9-C2, NT-C2 represent PFAM C2 superfamilies. NPHP4N-C2, human NPHP4 central C2

domain (amino acids 661-756); C2CD3, human C2CD3 C-terminal C2 domain (amino acids 1,436-1,501); RPGRIP1, human RPGRIP1 RPGRIPN-C2 type

domain (amino acids 609-711); RPGRIP1L, human RPGRIP1L RPGRIP1N-C2 type domain (amino acids 588-690); KIF13B-C2, human KIF13B RPGRIP1N-C2

type domain (amino acids 861-1,000). The cladogram was reconstructed using a Neighbour Joining Using PAM250 method implemented in the Jalview

program under default parameters. (c) Predicted three-dimensional structure of KIF13B-C2861-1,000 compared to the solved crystal structure of the

RPGRIP1N-C2 domain in RPGRIP1L (PDB: 2YRB). (d) Alignment of selected RPGRIP1N-C2 type domains identified in our bioinformatic survey. The remote

C2 domain of synaptotagmin I (SYTI) is included for comparison. The defining signature of aromatic amino acids specific to the RPGRIP1N-C2 type domains

are highlighted in light orange. Homologous residues other than those found in aromatic amino acid profiles are shown in blue. Secondary structure

predictions as assessed by PSIPRED are shown above (predicted for KIF13B RPGRIP1N-C2 domain) and below (predicted for RPGRIP1 RPGRIP1N-C2

domain) the alignment. H, a-helix; E, b-sheet; C, random coils.
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structural component of caveolae, specialized cholesterol-enriched
condensed membrane microdomains32, from the plasma
membrane to cytoplasmic vesicles33. Because Chlamydomonas
reinhardtii NPHP4 resides in the distal TZ in close proximity to
the TZ membrane34, which comprises a highly condensed
membrane microdomain35 similar to caveolae36, we surmised

that KIF13B may regulate the localization of CAV1 to the ciliary
membrane compartment or in the TZ. Remarkably, both
endogenous and GFP-tagged CAV1 were detected at the ciliary
compartment of RPE1 cells and found to be enriched at the TZ
region, distal to CEP164, which marks the distal mother centriole
appendages/basal body transition fibres (Fig. 4a–c; Supplementary
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Fig. 4a). A similar localization was observed for another marker of
condensed membrane microdomains, flotillin-2 (FLOT2;
Supplementary Fig. 4b), providing further support for the
condensed membrane microdomain in the TZ. Treatment with
the cholesterol depleting reagent methyl-b-cyclodextrin (MBCD)
led to removal of CAV1 from the TZ area without affecting ciliary
localization of type III adenylyl cyclase (ACIII) and inositol
polyphosphate 5-phosphatase E (INPP5E) (Supplementary Fig. 4c-
e), suggesting that the CAV1-enriched microdomain in the TZ is
enriched in sterols. Furthermore, because ciliary localization of
INPP5E was reported to be disrupted by mutations in TZ proteins
such as TMEM231 (also known as JBTS20 and MKS11) (ref. 37)
and MKS1 (also known as BBS13) (ref. 38), the results suggest that
removal of CAV1 does not grossly perturb TZ structure and
function. Similar to MBCD treatment, transfection of RPE1 cells
with CAV1-specific siRNA also led to removal of CAV1 antibody
staining at the TZ (Supplementary Fig. 4f), validating the
specificity of the CAV1 antibody.

Interestingly, in cells depleted for KIF13B by siRNA treatment
(Fig. 4d) CAV1 was largely absent from the TZ and accumulated
aberrantly along and near the distal region of the cilium
(Fig. 4e,f). To support these results, we generated three KIF13B
knock out RPE1 cell lines using CRISPR-Cas9 technology39

(Fig. 4g) and chose one of these (clone #3; hereafter referred
to as KIF13B� /� ) for further analysis. Importantly, IFM analysis
of CAV1 localization in KIF13B� /� and control RPE1
cells confirmed that CAV1 TZ confinement is reduced in
KIF13B� /� cells and KIF13B� /� cells expressing GFP
(Fig. 4h-j), whereas TZ confinement of CAV1 is restored in
KIF13B� /� cells complemented with wild-type GFP-KIF13B
(Fig. 4j). These results suggest that CAV1 mislocalization in
KIF13B-ablated cells can be rescued by heterologous KIF13B
expression. Analysis of cells expressing dominant negative
GFP-KIF13B (hereafter: GFP-DN KIF13B) in which the motor
domain has been deleted26 led to sequestration of CAV1 in GFP-
DN KIF13B positive puncta in the cytoplasm and in the vicinity
of the basal body, correlating with CAV1 absence from the TZ
region (Fig. 4k; Supplementary Fig. 4g). These puncta likely
correspond to endosomes as revealed by co-expression and
staining with the early endosome marker Myc-RAB5 or a
constitutively active Myc-RAB5 mutant (Myc-CA RAB5)
(Supplementary Fig. 5a). Notably, GFP-KIF13B did not seem to
co-localize with CAV1 at the TZ (Fig. 4k), consistent with the
observed co-localization of GFP-KIF13B with CEP164 (Fig. 1e;
see also Fig. 4c). Collectively, based on three different approaches
to inhibit KIF13B activity (siRNA depletion, CRISPR-Cas9-
mediated gene knock-out and rescue experiments, and expression
of dominant negative fusion protein), we conclude that KIF13B is

required for establishment of a CAV1 microdomain at the TZ.
Finally, consistent with a role of NPHP4 in recruiting or tethering
KIF13B at the centrosome (Fig. 3k and see text above), the ciliary
CAV1 mislocalization seen in KIF13B invalidated cells (Fig. 4e-k)
was essentially phenocopied in Nphp4� /� MEFs, but not in
Nphp4þ /þ MEFs (Fig. 5a-c). In contrast Dynll1GT/GT MEFs,
which have a mild defect in retrograde IFT (ref. 40), displayed
normal ciliary/TZ CAV1 localization (Fig. 5d).

We did not observe co-localization of GFP-DN KIF13B with
EEA1 (Supplementary Fig. 5b), which marks a subset of early
endosomes, or with PCM1, which marks centriolar satellites
(Supplementary Fig. 5c). Expression of GFP-DN KIF13B did not
markedly impair localization of the ciliary membrane component
ARL13B (Supplementary Fig. 5d) nor the IFT-B protein IFT88
(Supplementary Fig. 5e), indicating that KIF13B specifically
affects ciliary localization of CAV1. Further, because ciliary
localization of ARL13B was reported to be disrupted by
mutations in several TZ proteins, including TMEM231
(ref. 37), MKS1 (ref. 38), NPHP4 and others41, the results
indicate that expression of GFP-DN KIF13B does not grossly
perturb ciliary TZ structure and function.

KIF13B and CAV1 promote Shh-induced ciliary SMO
accumulation. We next addressed the functional significance of
KIF13B at cilia by investigating effects of KIF13B invalidation on
Shh signalling, a cilium-dependent pathway42 that is initiated by
Shh-induced clearance of the Shh receptor PTCH1, which in turn
leads to ciliary accumulation of SMO and activation of
GLI-dependent transcription2,11,12. We chose to focus on this
pathway because SMO ciliary translocation is partially dependent
on NPHP4 (ref. 43) and is impaired by MBCD-induced
cholesterol depletion44. Shh signalling is known to be important
in the maintenance of retinal pigmented epithelium from which
the RPE1 cell line is derived45, and we therefore applied our
analysis in RPE1 cells, in which we already established a
requirement for KIF13B in mediating CAV1 TZ localization
(Fig. 4e-k). In control RPE1 cells, stimulation with conditioned
medium (CM) from cell cultures expressing N-terminal Shh
(Shh-N) led to pronounced ciliary enrichment of SMO (Fig. 6a,b;
Supplementary Fig. 3g) and increased GLI1 expression (Fig. 6d),
as expected. In contrast, we found a severe reduction in Shh-N
CM-induced ciliary SMO accumulation and GLI1 transcript
levels in KIF13B siRNA-depleted cells (Fig. 6a,b,d), whereas
purmorphamine-mediated ciliary accumulation of SMO was
unaffected by KIF13B knock down (Fig. 6c). Given that
purmorphamine directly targets and activates SMO
independently of PTCH1 (ref. 46), we infer from this result

Figure 3 | KIF13B interacts with NPHP4 via its C2 domain and DUF region. (a) FLAG pulldown analysis of HEK293T cells co-expressing GFP-KIF13B with

FLAG-NPHP4 or FLAG-RPGRIP1L. FLAG-constructs were IP’ed using anti-FLAG conjugated agarose beads and resolved proteins were subjected to

immunoblot analysis with the indicated antibodies. WCE, whole cell extract. The appearance of GFP-KIF13B as a double band (top panel) is likely a

consequence of protein overexpression. (b) FLAG IP of cell extracts from HEK293T cells co-expressing FLAG-NPHP4 with either GFP-KIF13B or GFP-KIF17

using anti-FLAG conjugated beads followed by immunoblotting with indicated antibodies. (c) Size exclusion chromatography of HEK293T cells

co-expressing KIF13B-HA and FLAG-NPHP4 followed by immunoblot analysis with HA or FLAG antibodies. (d,e) FLAG-NPHP4 expressing HEK293T cells

co-expressing GFP-tagged full-length (FL) or truncated KIF13B fusion proteins were subjected to FLAG IP followed by immunoblotting with indicated

antibodies. (f) IP of HEK293T cells co-expressing GFP-KIF13B-C2861-1,000 and FLAG-NPHP4 using antibodies as indicated. (g) IFM of RPE1 cells expressing

GFP-KIF13B-C2861-1,000. The insets show enlarged views of the boxed area containing the centrosome, marked by PCTN2 antibody. (h) HEK293T cells

co-expressing GFP-KIF13B and truncated versions of FLAG-NPHP4, as indicated, were harvested and cell extracts subjected to FLAG IP followed by

immunoblotting with indicated antibodies. (i) Diagram showing FLAG-NPHP4 deletion constructs used in h. (j) Binding assay of immuno-purified GFP

(negative control) or GFP-KIF13B-C2861-1,000 mixed with bacterially purified GST fused to the central C2 domain of NPHP4 (GST-N4-C22650-839). (k) IFM

analysis of Nphp4þ /þ and Nphp4� /� MEFs expressing GFP-KIF13B (green). The insets show enlarged views of the boxed area containing the

centrosome, marked by antibody against p150Glued (red). In all, 45-49 cells were analysed per condition (n¼ 2). Difference in the percentage of cells with

GFP-KIF13B centrosome localization obtained as mean±s.e.m. (n¼ 2) Nphp4þ /þ ; Nphp4� /� (88.5±3.5; 42±3) and two-tailed t-test (Po0.01).

Representative IFM pictures of MEFs are shown. Scale bars: 10mm in g,k.
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that KIF13B-mediated effects on SMO ciliary translocation are
PTCH1-dependent. To confirm that KIF13B promotes Shh-
mediated ciliary translocation of SMO, we performed IFM
analysis of SMO ciliary localization in Shh-N CM stimulated
control RPE1 and KIF13B� /� cells expressing either GFP-
KIF13B or GFP alone. This analysis showed that upon Shh-N CM
stimulation, GFP-KIF13B expression, but not GFP alone, could
rescue SMO accumulation in cilia compared to control conditions
(Fig. 6e,f), substantiating a requirement for KIF13B in

Shh-induced SMO ciliary accumulation. Since treatment with
MBCD (Fig. 6g-j; ref. 44) or CAV1 depletion (Fig. 6k,l;
Supplementary Fig. 4f) similarly prevented Shh-N CM-induced
ciliary SMO accumulation, these results suggest that KIF13B
promotes ciliary SMO translocation indirectly via establishment
of a CAV1 membrane microdomain at the TZ compartment.

KIF13B promotes WNT5A expression and ciliary elongation.
Since CAV1-mediated effects on membrane lipid composition

i k

G
F

P
-K

IF
13

B

* *

Ac-tub CAV1 ShiftedGFP Merged

G
F

P
-D

N
 K

IF
13

B

* *

f hg

Mr(K) Ctrl Clon
e 

#1

Clon
e 

#2

Clon
e 

#3
Ac-tub CAV1Ac-tub CAV1

*** ***

*

K
IF
13

B
–/

–
C

tr
l

170 KIF13B

α-tub

*

C
A

V
1 

di
st

rib
ut

io
n,

%
 o

f a
na

ly
se

d 
ce

lls

j

siCtrl
siKIF13B

Confined
to TZ

Accumulation
in cilium

100

0

20

40

60

80

**** ****

Confined
to TZ

Accumulation
in cilium

60

80

0

20

40

C
A

V
1 

di
st

rib
ut

io
n,

%
 o

f a
na

ly
se

d 
ce

lls

Ctrl
KIF13B –/–

Ctrl
KIF13B –/–

* NS

GFP

80

100

0

20

40

60

%
 C

el
ls

 w
ith

 C
A

V
1 

at
 T

Z

GFP-KIF13B

DIC DAPI Ac-tub Ac-tub CAV1CAV1 DIC Ac-tub CAV1
a b

Ac-tub
CAV1-GFP

PCTN2

* * *

d
Control siRNA KIF13B siRNA

c

Distal

TZ

Distal

* * *

C
A

V
1 

A
c-

tu
b

170
KIF13B

α-tub

Mr(K) siC
trl

siK
IF

13
B

Base Base

Proximal

* * *

C
E

P
16

4
C

A
V

1 
A

c-
tu

b

Ac-tub CAV1
p150Glued

Proxi-
mal

Ac-tub CAV1
p150Glued

e

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14177

8 NATURE COMMUNICATIONS | 8:14177 | DOI: 10.1038/ncomms14177 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


impinge on a range of additional signalling pathways, such as
receptor tyrosine kinase (for example, IGF-1R, PDGFRa, EGFR)
and WNT signalling32, which may also be coordinated by
primary cilia3,4 we reasoned that KIF13B-mediated control of
ciliary CAV1 homeostasis might affect ciliary function beyond
Shh signalling. Indeed, during the course of our studies, we
noticed that KIF13B-deficient cells (for example, Fig. 4e) had
elongated cilia. Ciliary length measurements of such cells
(Supplementary Fig. 6a) or cells expressing GFP-DN KIF13B
(Supplementary Fig. 6b) confirmed this observation. Ciliogenesis
frequency appeared to be the same in control and KIF13B
siRNA-depleted cells (Supplementary Fig. 6c). Similarly,
in CAV1 siRNA-depleted cells ciliation frequency was not
significantly different from that of control cells (Supplementary
Fig. 6d), but the cilia appeared to be longer (Supplementary
Fig. 6e).

The mechanisms that control ciliary length are highly
complex47, and KIF13B could therefore regulate ciliary length
by multiple direct and/or indirect mechanisms. Because previous
work suggested a role for low density lipoprotein receptor-related
protein 1 (LRP1) in regulating expression of the WNT ligand
WNT5A (ref. 48), a negative regulator of ciliary length49, and
since KIF13B was reported to interact with and promote
endocytosis of LRP1 (ref. 33) we tested if the elongated ciliary
length phenotype observed in KIF13B-depleted cells was due to
reduced expression of WNT5A. Indeed, RT-qPCR analysis of
KIF13B depleted cells showed a significant reduction in WNT5A
transcript levels as compared to control siRNA-treated cells
(Supplementary Fig. 6f). Moreover, stimulation with purified
WNT5A ligand completely rescued the ciliary length phenotype
of KIF13B-depleted cells (Supplementary Fig. 6g). Therefore we
conclude that KIF13B negatively regulates ciliary length, at least
in part, by promoting expression of WNT5A, although alternative
pathways cannot be excluded.

Discussion
The TZ plays an essential role in regulating ciliary protein and
lipid composition, which is critical for establishment and
maintenance of the cilium as a compartmentalized signalling
organelle. Consequently, genes that encode components of the TZ
are frequently mutated in ciliopathies, such as NPHP, JBTS and
MKS (refs 5,8). These TZ proteins interact extensively with each
other, forming two distinct subcompartments/modules within the
TZ region known respectively as the NPHP and MKS/JBTS
modules8,31,50. RPGRIP1, RPGRIP1L and NPHP4 are integral
constituents of the NPHP TZ module and were shown previously
to harbour distinct RPGRIP1N-C2 type domains27 that are
important for their mutual interaction and mutated in

ciliopathies such as JBTS, NPHP and Leber congenital
amaurosis29,30. Here we have identified KIF13B as a new
member of the RPGRIP1N-C2 domain-containing protein
family and we have uncovered a physical interaction between
KIF13B and NPHP4, which is mediated in part by the KIF13B C2
domain-containing region as well as by the DUF3694 region
located between residues 1,168 and 1,281. This suggests that the
KIF13B-NPHP4 interaction is complex and further experiments
will be required to elucidate the precise binding mechanism
involved. However, given that KIF13B is known to exist in an
autoinhibitory conformation in which the tail region folds back
on the motor domain51, it can be speculated that NPHP4 binds
the autoinhibited version of KIF13B and contributes to regulation
of its activity. This would explain why NPHP4 associates with
multiple regions in the KIF13B tail.

Since we did not observe physical interaction between KIF13B
and RPGRIP1L, KIF13B appears to reside in a distinct NPHP4-
containing complex that excludes RPGRIP1L. Our IFM and live
cell imaging analyses indicated that the pool of KIF13B associated
with the ciliary base is concentrated primarily at the proximal
region of the TZ marked by CEP164. Interestingly, a recent study
in C. elegans showed that NPHP4 not only localizes to the distal
end of the TZ, but also concentrates at the proximal end
coinciding with CEP164 (ref 31). Using Nphp4� /� mutant
MEFs we found that NPHP4 is at least partially required for
recruitment or tethering of KIF13B to the centrosome/basal body,
consistent with our results showing that the KIF13B truncations
that bind NPHP4 (Fig. 3d,e) also localize prominently to the
centrosome (Fig. 1g and Supplementary Fig. 1h). Further
substantiating a physical and functional interaction between
KIF13B and NPHP4, we found that functional invalidation of
either KIF13B or NPHP4 caused a similar lack of CAV1 TZ
confinement and impaired SMO ciliary accumulation in response
to Shh stimulation (this study and ref. 43). The simplest
explanation that consolidates these observations is that NPHP4
recruits or tethers KIF13B to the basal body/transition fibres prior
to or independently of NPHP4 translocation to the TZ. An
elegant study in Chlamydomonas showed that once NPHP4 is
incorporated at the TZ, it remains stably associated with this
compartment34. Once KIF13B has been deposited at the basal
body and following TZ formation, it is therefore unlikely that
KIF13B actively mediates transport of NPHP4 within the ciliary
compartment although it cannot be excluded that KIF13B might
mediate such transport within other cellular contexts, for
example, at cell junctions52. Studies using live cell imaging
approaches should help to explore these possibilities further.

How might KIF13B control CAV1 tethering at the TZ? Since
CAV1 and KIF13B do not co-localize at the ciliary TZ, and
because CAV1 accumulated in cilia of KIF13B-depleted cells,

Figure 4 | KIF13B-dependent TZ localization of CAV1 in RPE1 cells. (a) IFM using antibodies against CAV1 (red) and Ac-tub (blue) to mark the cilium

(closed arrows). Open arrow marks CAV1 above the basal body (asterisk). The leftmost image is a digital interference contrast (DIC) micrograph of the cell

with the nucleus stained with DAPI (pseudocoloured yellow). Insets show enlargement of the cilium-centrosome region. (b) IFM of CAV1-GFP expressing

cells. Open arrow, TZ; asterisk, basal body (PCTN2; blue). (c) IFM of endogenous CAV1 (red). CEP164 (green) marks the transition fibres. (d) Cells treated

with control- or KIF13B siRNA were immunoblotted and proteins detected with indicated antibodies. For KIF13B, mouse monoclonal anti-KIF13B #2 was used

(see Methods). (e) CAV1 staining (red; open arrow) in ciliated cells treated with control- or KIF13B-specific siRNA. Closed arrow marks the cilium (Ac-tub,

green), asterisk the centrosome (p150Glued antibody, green). (f) Quantification of CAV1 staining in control- or KIF13B-siRNA transfected cells. In all, 50-100

cells were analysed per condition (n¼ 3). Bars: mean±s.e.m. P values result from two-way ANOVA followed by Sidak’s multiple comparison (***, Pr0.001).

(g) Immunoblot of control (wild type) and three KIF13B knock out clones generated using CRISPR-Cas9 technology. Clone #3 was used for further analysis

and designated KIF13B� /� . For KIF13B detection, mouse anti-KIF13B #2 antibody was used (see Methods). (h) IFM of CAV1 in control (wild type) and

KIF13B� /� cells. Open arrow, TZ; closed arrows, cilia. (i) Quantification of data in h. Between 5 and 20 cells were analysed per condition (n¼ 3). Bars:

mean±s.e.m. P values result from two-way ANOVA followed by Sidak’s multiple comparison (****, Pr0.0001). (j) Quantification of CAV1 staining in control

(wild type) and KIF13B� /� cells expressing GFP or GFP-KIF13B. Bars: mean±s.e.m. P values result from two-way ANOVA followed by Sidak’s multiple

comparison (*, Pr0.05; NS, not significant). Between 5 and 20 cells were analysed per condition (n¼ 3). (k) CAV1 localization (red; open arrow) in cells

expressing GFP-KIF13B or GFP-DN KIF13B (green). Closed arrow: cilium (Ac-tub; blue). Scale bars: 10mm in a; 2mm in b,c; 5mm in e,h; 3mm in k.
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KIF13B is unlikely to directly transport CAV1 into cilia and
tether it at the TZ. Rather, KIF13B may associate with and deposit
one or more factors at the TZ that tether CAV1 to this region as
CAV1 diffuses from the periciliary- to the ciliary membrane
compartment. The CAV1 TZ tethering factors might include the
known KIF13B partners DLG1 (ref. 24) and/or UTRN (ref. 33),
which bridge KIF13B with CAV1 (ref. 33), or one or more TZ
components yet to be identified. CAV1 likely functions as part of
a membrane diffusion barrier in association with further TZ
components31,35,41,53, limiting ciliary access of SMO in the
absence of Shh stimulation. How stimulation with Shh allows
SMO to cross this barrier is an open question. SMO has several
binding sites for cholesterol, and a recent study using a variety of
SMO deletion constructs indicated that cholesterol critically
regulates the interaction of the SMO transmembrane domains
with the lipid bilayer at the ciliary base44. It is possible that CAV1,
a cholesterol-binding protein, similarly modulates this interaction
and that the ability of CAV1 to organize the TZ lipid bilayer is
subject to regulation, for example, by Shh-mediated ciliary exit of
PTCH1 that presumably involves recruitment of PTCH1 to
CAV1-positive lipid rafts54. This scenario is in line with our
result showing that purmorphamine-mediated ciliary
translocation of SMO is unaffected by KIF13B depletion,
implying that KIF13B-mediated effects on SMO ciliary
translocation are PTCH1-dependent46.

Although defects in ciliary TZ integrity and Shh signalling are
hallmarks of many ciliopathies (see above), so far no disease-
causing mutations have been identified in KIF13B. However, a
recent study using mutant mice in which Kif13b was specifically
ablated in Schwann cells or oligodendrocytes revealed a
requirement for Kif13b in peripheral and central nervous system
myelination55—processes known to involve primary cilia-
mediated Shh signalling56–60. It will therefore be of interest to
investigate potential Shh signalling defects in the conditional
Kif13b mutant mice55.

Methods
Antibodies. For immunoblot analysis, the following primary antibodies were used
(dilutions in parenthesis): rabbit anti-GAPDH (2118, 1:2,000), rabbit anti-phospho
RbS807/811 (9308, 1:200) from Cell Signaling Technology; rabbit anti-HA
(sc-805, 1:500), rabbit anti-GFP (sc-8334, 1:500), mouse anti-GFP (sc-9996, 1:500)
from Santa Cruz; mouse anti-KIF13B #2 (SAB1412812, 1:500), mouse
anti-a-tubulin (T5168, 1:5,000), mouse anti-FLAG (F-1804, 1:500) from Sigma;
mouse anti-KIF13B #1 (1:500) and rabbit anti-KIF13B (1:500) were generously
provided by Athar Chishti, Tufts University. Secondary antibodies used for
immunoblot: horseradish peroxidase-conjugated goat anti-mouse (P0447, 1:4,000)
or swine anti-rabbit (P0399, 1:4,000) from Dako; alkaline phosphatase-conjugated
goat anti-mouse (A1293, 1:5,000) or goat anti-rabbit (A3937, 1:5,000) from Sigma.
For IFM analysis, the following primary antibodies were used: rabbit anti-ARL13B
(17711-1-AP, 1:1,000), rabbit anti-IFT88 (13967-1-AP, 1:500) from ProteinTech;
mouse anti-EEA1 (610456, 1:200), mouse anti-p150Glued (610473, 1:500)
from BD Biosciences; rabbit anti-detyrosinated a-tubulin (ab48389, 1:1,000),
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rabbit anti-SMO (AB7817, 1:200), rabbit anti-PCM1 (ab72443, 1:500), goat
anti-Myc (ab9132, 1:1,000) from Abcam; rabbit anti-CAV1 (3238, 1:200), rabbit
anti-Myc (2278, 1:1,000) from Cell Signaling Technology; goat anti-PCTN2
(sc-28145, 1:500), mouse anti-SMO (sc-166685, 1:200), rabbit anti-HA (sc-805,
1:250) and rabbit anti-ACIII (sc-588, 1:250) from Santa Cruz; mouse anti-acety-
lated a-tubulin (T7451, 1:2,000) and rabbit anti-CEP164 (HPA037606, 1:500) from
Sigma; rabbit anti-INPP5E (17797-1-AP, 1:250) from Proteintech; rabbit
anti-KIF13B (1:500) was a gift from Athar Chishti, Tufts University. Secondary
antibodies used for IFM (all from Invitrogen and diluted 1:600, catalogue number
in parenthesis): Alexa Fluor 350-conjugated donkey anti-mouse (A-10035) or
donkey anti-rabbit (A-10039); Alexa Fluor 488-conjugated donkey anti-mouse
(A-21202), donkey anti-rabbit (A-21206) or donkey anti-goat (A-11055), Alexa
Fluor 568-conjugated donkey anti-mouse (A-10037), donkey anti-rabbit (A-10042)
or donkey anti-goat (A-11057).

PCR, cloning procedures and plasmids. Primer sequences are listed in
Supplementary Table 1. For generation of wild-type mouse Kif13b promoter
constructs (Supplementary Fig. 1c), relevant regions were PCR amplified from
genomic wild-type mouse DNA (gift from Lisbeth B. Møller, Centre for Applied
Human Molecular Genetics, Kennedy Centre, Copenhagen, Denmark) and cloned
into promoter-less, pGL3-basic Firefly Luciferase vector (Promega) by standard
procedures. Mutant versions of the 494 bp Kif13b promoter in pGL3 (494 bp wt;
Supplementary Fig. 1d) were generated by PCR with relevant mutant primers and
cloned into pGL3 by standard procedures. Plasmid encoding human GFP-KIF13B
(ref. 24) was provided by Dr Athar Chishti (Tufts University, Sackler School of
Graduate Biomedical Sciences, Boston, MA, USA). Plasmids encoding truncated
versions of GFP-KIF13B were generated by PCR with relevant primers and
GFP-KIF13B plasmid as template, followed by cloning into pEGFP-C1 (Clontech)
by standard procedures. Plasmids encoding full-length or truncated human
NPHP4 were generated by PCR with relevant primers and human NPHP4 cDNA
as template, followed by cloning into pCMV2-FLAG (Sigma) by standard
procedures. Plasmid encoding GFP-KIF13A was generated by PCR with relevant
primers and human cDNA as template, followed by cloning into pEGFP-N1
(Clontech). Plasmid encoding FLAG-RPGRIP1L was provided by Dr Sebastian
Patzke (Oslo University Hospital, Norway), plasmid encoding GFP-KIF17 was
from Dr Geri Kreitzer (Department of Cell & Developmental Biology, Cornell
University, NY, USA), GFP-KIF1B plasmid was from Dr Niovi Santama
(University of Cyprus, Nicosia, Cyprus), YFP-KIF1A plasmid was from Dr Kristen
Verhey (University of Michigan, Ann Arbor, MI, USA), TagRFP-T-RAB8 plasmid
was provided by Dr Yuko Mimori-Kiyosue (RIKEN Center for Life Science
Technologies (CLST), Kobe, Japan), KIF13B-HA plasmid was from Dr Joel L.
Pomerantz (Johns Hopkins University School of Medicine, Baltimore, MD, USA),
FLAG-Ap80 plasmid was from Dr Joseph Kissil (Scripps Research Institute, Jupiter,
FL, USA), HA-RAB5 plasmids were from Dr Harald Stenmark (Oslo University
Hospital, Norway), Renilla Luciferase Reporter vector (pHRG-B) was from
Promega, CAV1-mEGFP/FRT/TO (ref. 61) and pSpCas9(BB)-2A-Puro (PX459)
(ref. 39) were from Addgene, plasmid encoding HA-tagged Flotillin-2/Reggie-1 was
from Dr Claudia Stuermer (Universität Konstanz, Germany), and plasmid
encoding Shh-N (ref. 62) was from Drs B.K. Yoder (Deparment of Cell Biology,
University of Alabama, USA) and C.J. Haycraft (Department Oral Health Sciences,
Charleston, SC, USA). For CRISPR-Cas9 mediated knock out of KIF13B, 20 nt
oligos targeting exon 1 in KIF13B (50-CCGCACCGCCACTTTCACTT-30) were
cloned into pSpCas9(BB)-2A-Puro (PX459) using a published procedure39.
Escherichia coli DH10a was used for transformation and plasmid amplification,
and plasmids were purified using NucleoBond Xtra Midi EF Kit from
Macherey-Nagel. Plasmid inserts were sequenced at Eurofins MWG Operon,
Ebersberg, Germany.

Transcriptomics and bioinformatics analysis. Transcriptomics analysis of
NIH3T3 cells cultured in the presence and absence of serum was performed as
described previously63. ClustalW2 (www.ebi.ac.uk/Tools/msa/clustalw2/ 2016) was
used for multiple alignment of selected KIF13B sequences from different species,
CLC workbench 6.7.1.—Limited mode was used for depicting results, and
consensus transcription factor binding sites were obtained from the ENCODE
consortium using the UCSC Human Genome Browser, February 2009
(GRCh37hg19) Assembly64. Computational analysis of the KIF13B amino acid
sequence was done using profile-to-profile hidden Markov model (HMM)-HMM
searches against the PFAMA database (http://pfam.sanger.ac.uk) and by HHpred
(ref. 28) as performed previously65. The conserved C2 domains in human KIF13B
were identified by using amino acid 861-1,000 as a search query in PSI-BLAST
searches against the non-redundant database (nr). A minimum of three reiterative
searches were used to construct a multiple sequence alignment (MSA) suitable for
HMM-based searches against the PFAM database. High sequence homology to the
RPGRIP1N-C2 type domain (C2-C2_1 domain; registered as DUF3250 in the
PFAM database) was readily attained producing highly significant expect values in
the range of E¼ 1e-07. No other type of C2 domain family matched the KIF13B
query with high probability indicating that the KIF13B C2 domain belongs to the
RPGRIP1N-C2/C2_1 domain family. Indeed, database searches for homologous
sequences of the KIF13B/KLP-6 C2 domain against the human proteome (using
the KLP-6 RPGRIP1N-C2 domain between residues 701-824 as query) identified,

besides the kinesin-3 members KIF1A, KIF1B, KIF13A and KIF13B, RPGRIP1 and
RPGRIP1L as the other highly significant matches (RPGRIP1 E-value¼ 1.6e-05
and RPGRIP1L E-value¼ 2.4e-06). Likewise, a reciprocal HMM-HMM search
seeded with the RPGRIP1N-C2/C2-C2_1 domains of either RPGRIP1 or
RPGRIP1L found C. elegans KLP-6 as the highest scoring match besides RPGRIP1
and RPGRIP1L themselves. A second iterative search using a query constructed
from the initial MSA merged with the matched KLP-6 C2 domain, identified all the
above kinesin-3 members as well as to the C2 domains of the centrosome/cilia
proteins C2CD3 and more remotely to NPHP4. Similar searches seeded with
divergent C2 family domains failed to identify any homologues of KIF13B, thus
confirming that KIF13B is a genuine RPGRIP1/1L family member. Multiple
sequence alignment was obtained and edited in Jalview66, the consensus calculated
and coloured using ClustalX, as implemented in Jalview. Construction of
cladograms was also performed in Jalview. Homology modelling of 3D structures
was done with Modeller67. Analysis of resulting 3D model coordinates was done
using Discovery Studio 3.5 Visualizer.

Cell culture and transfections. Swiss NIH3T3 mouse fibroblasts (laboratory
stock, originally derived from American Type Culture Collection (ATCC) clone
CRL-1658) were grown at 37 �C in Dulbecco’s modified Eagle’s medium (DMEM,
Gibco) with 10% heat inactivated fetal bovine serum (FBS, Gibco) and 10 ml l� 1

penicillin-streptomycin (Gibco) using 5% CO2 and 95% humidity. MEFs were
isolated using Freshney’s protocols 11.1 and 11.5 (ref. 68) and cultured at 37 �C in
45% DMEM and 45% F12þ L-glutamine (InVitrogen) supplemented with 10%
heat inactivated FBS and 10 ml l� 1 penicillin-streptomycin, using 5% CO2 and
95% humidity. The Dynll1GT/GT MEFs were kindly provided by Dr Dominic Norris
(MRC Harwell, Oxfordshire, UK) and were described recently40. Generation and
characterization of Nphp4� /� MEFs will be described elsewhere (Bizet et al., in
preparation). Microscopy studies using MEFs were performed with cells cultured
only in low passage. NTERA-2 (NT2) cells (ATCC CRL-1973) and HEK293T cells
(ATCC CRL-3216) were cultured at 37 �C in DMEM with 10% heat-inactivated
FBS and 10 ml l� 1 penicillin-streptomycin. Neuronal differentiation of NT2 cells
was induced by treatment with 10 mM retinoic acid for 21 days; retinoic acid-
containing medium was changed every 3 days. The RPE1 cells (laboratory stock,
derived from the immortalized hTERT RPE1 cell line, ATCC CRL-4000) and were
grown in 45% DMEM and 45% F-12 (Ham; Sigma) with 10% FBS and 10 ml l� 1

penicillin-streptomycin; cultures were passaged every 3-4 days. Generation of
KIF13B knock out RPE1 cell lines was done using CRISPR-Cas9 methodology39 by
utilizing plasmid pSpCas9(BB)-2A-Puro (PX459) encoding KIF13B-specific guide
RNA targeting the first exon of KIF13B (50-CCGCACCGCCACTTTCACTT-30).
Sequencing of PCR-amplified genomic DNA from one of these cell lines (clone #3
used for functional analyses) revealed a homozygous frameshift mutation in exon 1
of KIF13B (single nucleotide insertion in codon 9; GCG-GCTG). For transfection
of NIH3T3 cells, cells were grown to 70% confluency in 9.6 cm2 petri dishes, before
transfection. Transfections were carried out using DharmaFECT Duo
(Dharmacon) according to manufacturer’s instructions. Twenty-four hours after
transfection, cells were harvested or the medium was changed to serum-free
medium and cells incubated for additional 24 h before harvest.

For KIF13B protein depletion, RPE1 cells were transfected with siRNA two
times over two days and incubated additionally two days. To obtain growth arrest
prior to knockdown (to avoid biased outcome due to cell cycle effects), cells were
grown to approximately 80% confluence in 9.6 cm2 petri dishes before first
transfection; 5-6 h after transfection the medium was changed. Two previously
validated KIF13B-specific siRNAs were used, both purchased at Eurofins MWG
Operon: siKIF13B-1 (50-CCGAAGGUGUUUGCUUAUGAU-30) corresponding to
shRNA2b in ref. 26, and siKIF13B-2 (50-GUGCCUUGGAGAGAAUAUC-30)
described in ref. 69. In addition, KIF13B-specific esiRNA (SigmaMISSION esiRNA
human KIF13B, cat. No. EHU088721) was used in the experiment in
Supplementary Fig. 6a. Ctrl siRNA (50-UAAUGU AUUGGAAUGCAUA(dTdT)-30

was from Eurofins MWG Operon. A previously validated human CAV1-specific
siRNA was used70: siCAV1 (50-AAGAGCUUCCUGAUUGAGA-30). All
transfections with siRNA (final concentration 250 nM) were carried out using
DharmaFECT Duo as described above for NIH3T3 cells. Six hours after
transfection fresh growth medium was added. The cells were subjected to double
transfection with an interval of 24 h before 24 h of serum deprivation prior to
further manipulation or analysis. For transfection of RPE1 cells with plasmids for
live cell imaging, cells were grown in six well-plates to a confluence of ca. 90%. In
total, 1 mg of plasmid (GFP-KIF13B and TagRFP-T-RAB8) was transfected using
FuGene 6 (E2692, Promega) as transfection reagent and cells were incubated for
24 h followed by 20 h of serum deprivation.

For plasmid transfection of HEK293T cells, 8 mg DNA was transfected into cells
in a 15 cm dish using FuGene 6 and incubated additionally 48 h. For IFM of RPE1
cells 1 mg DNA was transfected into the cells using FuGene 6. Cells were transfected
2 h before change to serum-depleted medium for no more than 16 h prior to fixing.
For CAV1-GFP and GFP-FLOT2 localization studies, no more than 100 ng
plasmid was tranfected into cells.

Rapid amplification of cDNA 50 ends (50RACE). The 50/30 RACE Kit, 2nd
Generation (Roche Applied Science) was used to amplify the untranslated region of
human and mouse KIF13B, following the instructions of the manufacturer. For
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purification of cDNA, the GeneJet PCR purification Kit (Fermentas) was used.
RNA was collected from human differentiated NT2 cells and MEFs serum-
deprived for 24 h. Amplification products were sequenced by Eurofins MWG
Operon. For Dual Luciferase reporter assay, NIH3T3 cells were grown and
transfected with pGL3-based plasmids and pHRG-B as described above. Cells were
lysed in Passive Lysis Buffer (5�PLB) from the Dual-Luciferase Reporter Assay
System Kit (Promega), the lysates collected in eppendorf tubes and stored at
� 20 �C. Samples were thawed and luciferase activity measured on a RamCon
Fluostar Optima plate reader following the manufacturer’s instructions. Briefly,
20ml of each lysate was dispensed in a white 96-well Polystyrene Cell Culture
Microplate (Greiner bio-one). One hundred microlitres LAR II was added and
mixed by careful resuspension, and the Firefly Luciferase activity was measured.
One hundred microlitres Stop & Glo Reagent was then added and mixed by careful
resuspension, and Renilla Luciferase activity was measured. The Firefly Luciferase
activity was normalized to that of the Renilla Luciferase.

Ligand stimulation assays, SDS-PAGE, immunoblotting. For rescue of ciliary
length with WNT5A, RPE1 cells were treated with PBS or 200 ng ml� 1 WNT5A
(R&D Systems) for 6 h prior to IFM. For Shh stimulation assays, Shh-N CM was
generated as previously described62. Cells were cultured in a 1:1 mixture of
conditioned medium and DMEM prior to harvest or fixation. Stimulation of
serum-starved, siRNA treated RPE1 cells with purmorphamine (1 mM; Sigma) was
done for 12 h prior to IFM analysis. Methyl-b-cyclodextrin (MBCD; 5 mM final
concentration) cholesterol depletion assay was performed on serum-starved RPE1
cells with or without Shh-N CM stimulation. Cells were incubated in fresh serum-
free medium 1 h prior to MBCD addition, incubated for 1 h and subsequently fixed
for IFM analysis as described below.

Analysis by SDS-PAGE and immunoblotting with relevant antibodies was
performed using the Novex system from Invitrogen and by following the protocol
supplied by the vendor. Blots were incubated in primary antibodies at appropriate
dilutions, incubated with relevant horse radish peroxidase-conjugated secondary
antibodies, and developed with FUSION-Fx chemiluminescence system from
Vilber Lourmat. Images were processed in Adobe Photoshop CS6. Quantification
of immunoblot signals was done using ImageJ software. Original scans of all
immunoblots are provided in Supplementary Figs 7–12.

RNA isolation, RT-qPCR analysis and statistical analyses. Total RNA was
extracted from cells using Nucleospin RNA II Kit (Machery-Nagel) according to
the manufacturer’s instructions. One microgram RNA was reverse transcribed into
cDNA using SuperScript III (Invitrogen), following the provided instructions.
Relative qPCR was carried out in 20 ml reactions using SYBR premix Ex Taq
(TaKaRa). Nineteen microlitres mastermix was mixed with 1 ml cDNA and each
reaction was measured in triplicates on the Stratagene Mx4000 Multiplex Quan-
titative PCR system. The relative amount of mRNA normalized to beta-2micro-
globulin (B2M) was calculated using the Pfaffl method. Statistical analyses were
performed using GraphPad Prism 6 software.

Immunofluorescence microscopy and live imaging analysis. Unless stated
otherwise, IFM analysis was carried out as follows. Cells grown on glass coverslips
were washed once in ice cold PBS, fixed with 4% paraformaldehyde (PFA) solution,
permeabilized with permeabilization buffer (PBS with 0.1% (v/v) Triton-X100 and
1% (w/v) bovine serum albumin (BSA)) and subjected to IFM as described
previously21. For IFM analysis of KIF13B (endogenous and tagged) or other
kinesin-3 motors, cells were treated the same way except that they were subjected
to a brief pre-extraction with permeabilization buffer containing either 1 mM
AMP-PNP prior to fixation with PFA or with gentle incubation with ice cold CSK
pre-extraction buffer (10 mM Hepes, pH 7.0, 100 mM NaCl, 300 mM sucrose and
10 mM EDTA) containing 0.5% Triton X-100) for 5 min on ice prior to fixation
with ice cold 4% PFA. After fixing cells were allowed to air dry to prevent further
cell loss from the coverslips. Imaging was done using a motorized Olympus BX63
upright microscope with a DP72 colour, 12.8 megapixel, 4,140� 3,096 resolution
camera and differential interference contrast. The software used was Olympus
CellSens dimension, which was able to do 3D isosurfacing on captured z stacks,
and images were processed for publication using Adobe Photoshop CS4 version
11.0. For quantification of ciliary SMO levels, an outline was drawn around each
cilium and using the measurement and region of interest (ROI)-function in the
CellSens dimension software (Olympus) the Mean Green Fluorescence Intensity
was measured in this area along with a background reading. The corrected mean
fluorescence in the cilia was calculated by subtracting the corresponding
background value. For live imaging analysis (Supplementary Fig. 1e), RPE1 cells
were grown in six-well plates and transfected as described previously. Prior to
imaging the cover slip was placed in the specimen chamber, 2 ml of fresh pre-
heated medium was added and the chamber installed in the incubator connected to
the microscope, keeping the temperature of the chamber at 37 �C during the whole
imaging process. Imaging of the red and green channel was performed
simultaneously on a Spinning disk confocal microscope, as described previously71.

Immunoprecipitation and size exclusion chromatography. HEK293T cells were
transfected the day before IP or gel filtration assays. Cells were harvested in ice

cold, modified EBC buffer (500 mM NaCl, 10 mM Tris-HCl, 0.5% NP-40 and
protease inhibitor cocktail (Roche)). For FLAG and GFP IP experiments, cleared
cell extracts were incubated 1 h with either 20 ml Anti-FLAG (M2) conjugated
beads (Sigma, catalogue number A2220) or protein G-conjugated sepharose beads
(GE Healthcare, catalogue number 17-0618-01) bound to rabbit anti-GFP antibody
(Santa Cruz, catalogue number sc-8334) under constant rotation (4 �C). Immu-
nocomplexes were washed five times before elution with 3� FLAG peptide
(Sigma, catalogue number F4799) for FLAG IP or with SDS-PAGE sample buffer
(GFP IP). Eluted FLAG-proteins complexes were purified further by micropore
filter centrifugation. For gel filtration assay cleared HEK293 cell extracts were run
on a NaPO4 buffered Superose 6 column powered by a HPLC pump to resolve
protein complexes. Fractions of 500ml were collected and concentrated by speedvac
centrifugation. IP with bacterially purified GST-NPHP4-C2650-839 (500 ng ml� 1)
with high salt-purified GFP- KIF13B-C2861-1,000 was done by washing GFP-
KIF13B-C2861-1,000-anti-GFP immunocomplexes two times in a high salt buffer
(600 mM NaCl, 10 mM Tris-HCl, 0.1% NP-40 and protease inhibitor cocktail
(Roche)) before adding GST-NPHP4-C2650-839 in modified EBC buffer (140 mM
NaCl, 10 mM Tris-HCl, 5 mM EDTA, 0.5% NP-40 and protease inhibitor cocktail
(Roche)) and subsequent standard GFP IP.

Data availability. The data that support the findings of the current study are
available from the corresponding author on reasonable request.
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