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Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease primarily affecting the cerebellum.Very little
is known about the molecular mechanisms underlying the disease and, to date, no cure or treatment is available.
Here, we demonstrate the generation of an induced pluripotent stem cell (iPSC) line of a SCA2 patient. The select-
ed clone has been proven to be a bona fide iPSC line, which retains a normal karyotype. Due to its differentiation
potential into neurons, this iPSC line will be a valuable tool in studying a disease-specific phenotype of SCA2.

© 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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2. Resource details

Human skin fibroblasts, obtained by skin biopsy of a symptomat-
ic, female 25-year-old spinocerebellar type 2 (SCA2) patient
(anonymized as H266), were reprogrammed using episomal
vectors carrying transcripts for human OCT4, SOX2, KLF4, L-MYC,
LIN28, and small hairpin RNA for TP53 (Okita et al., 2011). The
clone described in this publication was termed H266 clone (c) 10.
The absence of the reprogramming plasmids was confirmed by
quantitative PCR (qPCR) on genomic DNA (Fig. 1A).

SCA2 is a dominantly inherited neurodegenerative disorder
caused by a mutation in the ATXN2 gene. Normal alleles contain 22
CAG repeats with CAA interruptions (also coding for glutamine),
whereas disease causing alleles contain trinucleotide repeats of 33
or more CAGs (usually without any CAA interruptions) (Pulst et al.,
1996). The repeat lengths for patient H266 were determined to be
22 and 44 by fragment length analysis (data not shown) and
confirmed to be present also in iPSC line H266 c10 by sequencing
both alleles individually (Fig. 1B).

Furthermore, the expression of key pluripotency genes was
observed both on RNA, as well as protein level, as demonstrated
by qRTPCR analysis and immunocytochemistry, respectively
(Fig. 1C and D). Additionally, the cells had the capacity to form
derivatives of all three germ layers upon embryoid body differenti-
ation (Fig. 1E). Taken together, this validates the true pluripotent
potential of the generated iPCS line.
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. (caption on page 168).
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3. Materials and methods

3.1. Reprogramming using episomal vectors

Fibroblasts were cultured in fibroblast medium, consisting of
Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10%
fetal bovine serum (FBS), 2mML-glutamine and 1% penicillin and strep-
tomycin (Pen/Strep). 1 × 105 fibroblasts were electroporated with a
total of 1 μg of episomal plasmids containing hOCT4with a short hairpin
to TP53 (shP53; Addgene plasmids 27077 and 27076, respectively),
hSOX2 and hKLF4 (Addgene plasmid 27078), and hL-MYC and hLIN28
(Addgene plasmid 27080), (Okita et al., 2011), and cultured in fibroblast
medium. Electroporation was carried out using a Neon™ electropora-
tion device with two pulses at 1200 V for 20 ms (Life Technologies).
One week after electroporation, fibroblasts were trypsinized and split
1:2 onto matrigel-coated dishes (BD Biosciences) and cultured in E8
medium (Gibco) under hypoxic conditions. After four weeks, primary
iPSC colonies were picked to establish stable clones.

3.2. Integration of episomal vectors

DNA for integration analysis was purified from fibroblasts and iPSCs
using the DNeasy Blood and Tissue kit (Qiagen). Data was plotted using
the delta delta Ct algorithm, 2(−ΔΔCt) with fibroblasts and GAPDH as
references. The following primers were used:
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3.3. Sequencing

Sanger sequencing of a 300 base pair region around the CAG repeat
region of the ATXN2 gene was carried out in an ABI PRISM 310 Genetic
Analyzer using the primers SCA2 seq2 forward 5′-CTTGGTCTCGGCGG
GC-3′ and SCA2 seq2 reverse 5′-GAGGAGACCGAGGACGAGG-3′.

3.4. RNA extraction, cDNA synthesis, and quantitative real-time PCR (qRT-PCR)

RNA was extracted using RNeasy Mini (QIAGEN) and cDNA synthe-
sis was performed using Revert Aid First Strand cDNA synthesis kit
(Thermo Scientific) according to the manufacturers' protocols. qRT-
PCR was carried out using LightCycler 480 SYBR Green I Master
(Roche). Data was plotted using the delta delta Ct algorithm, 2(−ΔΔCt).
The following primers were used:
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3.5. Immunocytochemistry

Immunocytochemistry was performed as previously described
(Marthaler et al., 2013). The following primary antibodies were used:
Anti-OCT4 (Santa Cruz, sc 8628); anti-NANOG (Peprotech, 500P236);
anti-TRA1-60 (BioLegend, 330602); anti-SSEA4 (BioLegend, 330402);
anti-TUBB3 (Millipore, MAB1637); anti-SMA (Dako, M0851), anti-AFP
(Dako, A0008); all 1:500. Secondary antibodies used were: Alexa Fluor
594 rabbit anti-goat (A21223) and goat anti-rabbit (A11072), Alexa
Fluor 488 donkey anti-rabbit (A21206), donkey anti-goat (A11055),
and goat anti-mouse (A11017), all 1:2000, (Invitrogen).

3.6. Embryoid body differentiation

iPSCs growing in E8 medium (Gibco) on matrigel (Corning Biosci-
ence) were dissociated with EDTA (Gibco) and allowed to form aggre-
gates in none-coated cell culture dishes. On day 3, aggregates were
transferred to matrigel-coated dishes andmediumwas switched to dif-
ferentiation medium: DMEM/F12 containing 20% FBS, L-glutamine, and
non-essential amino acids (all Gibco) for meso- and endoderm induc-
tion, or DMEM/F12 containing 50% neurobasal medium, B27, N2, and
L-glutamine (all Gibco) for ectoderm induction. Cells were fixed for im-
munocytochemistry on day 14.

3.7. Verification and authentication

An intact genome with no detectable abnormalities was demon-
strated by karyotyping using G-banding (Fig. 1F). Analysis was per-
formed by Cell Guidance Systems, Cambridge, UK.

3.8. Ethical approval

The studywas approvedby the regional scientific ethical committee in
the Capital Region of Denmark (RH), (protocol number H-4-2011-157),
Copenhagen, Denmark, and written informed consent was obtained in
all cases.
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