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Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease primarily affecting the cerebellum.
Very little is known about the molecular mechanisms underlying the disease and, to date, no cure or treat-
ment is available. We have successfully generated bona fide induced pluripotent stem cell (iPSC) lines of
SCA2 patients in order to study a disease-specific phenotype. Here, we demonstrate the gene correction
of the iPSC line H271 clone 1 where we have exchanged the expanded CAG repeat of the ATXN2 gene
with the normal length found in healthy alleles. This gene corrected cell line will provide the ideal control
to model SCA2 by iPSC technology.

© 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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An induced pluripotent stem cell (iPSC) line had been generated
from human skin fibroblasts of a male, symptomatic 33-year-old
spinocerebellar type 2 (SCA2) patient (anonymized as H271) using
episomal vectors carrying transcripts for human OCT4, SOX2, KLF4,
L-MYC, LIN28, and small hairpin RNA for TP53 (Okita et al., 2011).
This cell line, H271 clone (c) 1, has been described as a bona fide
iPSC line with a normal karyotype (Marthaler et al., submitted to
Stem Cell Research).

We have generated a gene-corrected clone of H271 c1 using the
CRISPRs/Cas9 system (Ran et al., 2013), where the expanded 44 CAG
region in the ATXN2 gene has been replaced with a wildtype 22 CAG
repeat (Fig. 1A). Successful exchange was validated by sequencing
(Fig. 1B). We have furthermore confirmed that the DNA sequence
stayed intact and no frameshift or other mutation had been introduced
into the gene edited site, by analyzing the region around the CRISPR
cutting site (nucleotide 121–143 in Fig. 1A).
.org/licenses/by-nc-nd/4.0/).
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Subsequently, we confirmed that the gene corrected clone of H271
c1, termed H271 c1 GC, remained truly pluripotent. This was demon-
strated by the expression of key pluripotency markers on RNA, as well
as protein level (Fig. 1C and D). Additionally, H271 c1 GC retained the
potential to differentiate into cell types of the three germ layers upon
embryoid body formation (Fig. 1E). More importantly, no genetic chro-
mosomal aberrations were introduced by the gene editing process and
the cells still exhibit a normal karyotype (Fig. 1F).

In summary, we have generated an isogenic, gene-corrected iPSC
line of an existing SCA2 iPSC line. Together with two more SCA2
patient-derived iPSC lines and their corresponding isogenic, gene-
corrected controls (Marthaler et al., submitted to Stem Cell
Research), they will serve as an ideal study tool for in vitro disease
modeling of SCA2.
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Materials and methods

CRISPR design

Isogenic gene-corrected controls were obtained using the CRISPRs/
Cas9 system in combination with a homologous construct in the pEasy
Flox II vector. CRISPRs targeting each site of the CAG repeat of the
ATXN2 locus were designed at http://crispr.mit.edu/. The CRISPRs were
generated following the protocol from Ran et al. (Ran et al. 2013) in a
single plasmid containing both sgRNA and the Cas9 (Addgene plasmid
ID 48139).
Nucleofection

iPSCs growing on dishes coated with matrigel (Corning Biosci-
ence) in E8 medium (Gibco) were detached using Accutase
(Gibco). 106 cells were co-nucleofected with 2 μg of each CRISPR/
Cas9 plasmid and 1 μg of the resistance marker using the Amaxa 4D
Nucleofector (program CA167) and P3 Primary Cell Kit according to
the manufacturer's instructions (Lonza). iPSCs were subsequently
transferred back to a matrigel-coated dish in E8 medium supple-
mented with 1 mM ROCK inhibitor (Sigma). 24 h postnucleofection,
cells were subjected to neomycin selection and allowed to recover
for a week. Resistant colonies were then picked and expanded for
genotyping.
Genotyping

DNA for genotyping was extracted using the FlexiGene Kit
(Qiagen). PCR genotyping was performed using TEMPase Hot Start
DNA Polymerase (Ampliqon) according to the manufacturer's in-
structions at an annealing temperature of 58 °C. The following
primers were designed 300 base pairs up- and downstream of the
CRISPR cutting site to ensure detection of insertion at homologous
site: SCA2 long1 forward 5′-CAGACCCGCCTTGAGGAAG-3′ and SCA2
long1 reverse 5′-GAGGAGACCGAGGACGAGG-3′. Clones where the
expanded SCA2 allele was successfully replaced with the ATXN2
wildtype construct were subjected to sequencing to exclude intro-
duction of frameshifts or other mutations.
Sequencing

Sanger sequencing of a 300 base pair region around the CAG
repeat region of the ATXN2 gene was carried out in an ABI PRISM
310 Genetic Analyzer using the primers SCA2 seq2 forward 5′-CTTG
GTCTCGGCGGGC-3′ and SCA2 seq2 reverse 5′-GAGGAGACCGAGGA
CGAGG-3′.
RNA extraction, cDNA synthesis, and quantitative real-time PCR (qRT-PCR)

RNA was extracted using RNeasy Mini (QIAGEN) and cDNA synthe-
sis was performed using Revert Aid First Strand cDNA synthesis kit
(Thermo Scientific) according to the manufacturers' protocols. qRT-
PCR was carried out using LightCycler 480 SYBR Green I Master
(Roche). Data was plotted using the delta delta Ct algorithm, 2(−ΔΔCt).
The following primers were used:
CT4 for
 5′-CCCCAGGGCCCCATTTTGGTACC-3′

CT4 rev
 5′-ACCTCAGTTTGAATGCATGGGAGAGC-3′

X2 for
 5′-TTCACATGTCCAGCACTACCAGA-3′

X2 rev
 5′-TCACATGTGTGAGAGGGGCAGTGTGC-3′

ANOG for
 5′-AAAGAATCTTCACCTATGCC-3′

ANOG rev
 5′-GAAGGAAGAGGAGAGACAGT-3′

EX1 for
 5′-TTTCTGAGTACGTGCCCAGGCAA-3′

EX1 rev
 5′-CTCTGAGAAAGCATCTCTCCTTC-3′

N28 for
 5′-AGCCATATGGTAGCCTCATGTCCGC-3′

N28 rev
 5′-TCAATTCTGTGCCTCCGGGAGCAGGGTAGG-3′

CTB for
 5′-TCAAGATCATTGCTCCTCCTGAG-3′

CTB rev
 5′-ACATCTGCTGGAAGGTGGACA-3′

PL13A for
 5′-TTCCAAGCGGCTGCCGAAGA-3′

PL13A rev
 5′-TTCCGGCCCAGCAGTACCTGT-3′

SP90AB1 for
 5′-TCCGGCGCAGTGTTGGGAC-3′

SP90AB1 rev
 5′-TCCATGGTGCACTTCCTCAGGC-3′

APDH for
 5′-CTGGTAAAGTGGATATTGTTGCCAT-3′

APDH rev
 5′-TGGAATCATATTGGAACATGTAAACC-3′.
G
Immunocytochemistry

Immunocytochemistry was performed as previously described
(Marthaler et al., 2013). The following primary antibodies were used:
Anti-OCT4 (Santa Cruz, sc 8628); anti-NANOG (Peprotech, 500P236);
anti-TRA1-60 (BioLegend, 330602); anti-SSEA4 (BioLegend, 330,402);
anti-TUBB3 (Millipore, MAB1637); anti-SMA (Dako, M0851), anti-AFP
(Dako, A0008); all 1:500. Secondary antibodies used were: Alexa Fluor
488 donkey anti-rabbit (A21206), donkey anti-goat (A11055), and
goat anti-mouse (A11017), all 1:2000 (Invitrogen).
Embryoid body differentiation

iPSCs growing in E8 medium (Gibco) on matrigel (Corning Biosci-
ence) were dissociated with EDTA (Gibco) and allowed to form aggre-
gates in none-coated cell culture dishes. On day 3, aggregates were
transferred to matrigel-coated dishes and medium was switched to
differentiation medium: DMEM/F12 containing 20% FBS, L-glutamine,
and non-essential amino acids (all Gibco) for meso- and endoderm in-
duction, or DMEM/F12 containing 50% neurobasal medium, B27, N2,
and L-glutamine (all Gibco) for ectoderm induction. Cells were fixed
for immunocytochemistry on day 14.
Verification and authentication

An intact genome was demonstrated by karyotyping using
G-banding (Fig. 1F). Analysis was performed at the Institute of
Medical Genetics and Applied Genomics, University of Tübingen,
Tübingen, Germany.
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