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Optimal Design for Estimation in Diffusion Processes from First Hitting Times∗

Alexandre Iolov† , Susanne Ditlevsen‡ , and André Longtin§

Abstract. We consider the optimal design problem for the Ornstein–Uhlenbeck process with fixed threshold,
commonly used to describe a leaky, noisy integrate-and-fire neuron. We present a solution to the
problem of devising the best external time-dependent perturbation to the process in order to fa-
cilitate the estimation of the characteristic time parameter for this process. The optimal design
problem is constrained here by the fact that only the times between threshold crossings from below,
known as hitting times, are observable. The optimal control is based on a maximization of the mu-
tual information between the posterior of the unknown parameter given these observations and the
distribution of the hitting times. Our approach is based on the adjoint method for computing the
gradient of a functional of a solution to a Fokker–Planck partial differential equation with respect to
an input function (i.e., to the control). Our method also enables the estimation of other parameters,
in the case when more than one parameter is unknown.

Key words. design of experiments, mutual information, leaky integrate-and-fire neuronal models, Fokker–
Planck equation, probability density function control method, Ornstein–Uhlenbeck process
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1. Introduction. Techniques for the estimation of model parameters from observations
of a stochastic process are an active area of research. Generally one hopes to have access to
sufficient measurements of the state variables to guide the estimation of these parameters.
However, in some cases the state variables are not measurable, and one has to work instead
with times at which specific events occur, such as an earthquake or an epileptic seizure.
Here we consider the problem of optimal design for estimation of parameters in a stochastic
differential equation (SDE) given only observations of hitting times, i.e., of times at which the
process crosses a fixed threshold. More specifically, since a primary motivation is the activity
of neurons, we study the leaky integrate-and-fire (LIF) neuronal model, where the hitting
times are identified with crossings from below of a threshold voltage. This corresponds to
so-called extracellular potential measurements of spikes, which occur when the voltage inside
the cell, evolving according to an Ornstein–Uhlenbeck process, crosses a fixed threshold value.
While our motivation is based in neuroscience, the technique we develop is more generally
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OPTIMAL DESIGN FROM FIRST HITTING TIMES 89

applicable to dynamical models from which a point process can be extracted.
We assume that the controller has influence over some part of the SDE by causing time-

varying perturbations of the process. In the case of a neuron, this would correspond to the
case where one could influence the voltage evolution, e.g., through modulation of synaptic
input, while one could only reliably record threshold crossing times. We further assume that
the objective is to obtain crossing time observations, known as hitting times or spike times in
the neural context, that are most informative in both formal and informal senses. That is, we
choose the control as the solution to a well-posed optimization problem, where the ultimate
goal is to obtain more accurate and more precise estimates of the unknown parameter(s).

We espouse a Bayesian perspective and proceed by assuming a prior distribution of the
unknown parameters. Then we seek to maximize the mutual information (MI) between the
posterior of the unknown parameters given the observations and the distribution of the hitting
times. We note that, even for a fixed and known parameter set, the hitting time observations
are still random due to the inherent stochasticity of the SDE.

Using MI for the selection of maximally informative experiments has been advocated by
several recent lines of research, for example, in experimental psychology [5, 19], computational
neuroscience [22, 21, 15], and quantum physics [9]. An alternative approach is to maximize
the expected Fisher information of the experiment as in [10]. This is especially effective if the
Fisher information is available as an analytical formula. That is the case when one observes
trajectories from the diffusion process, as in [10], but not in the much more limited context
of observations of hitting times.

The MI measures the expected reduction in uncertainty in the parameter value given an
observation, under a fixed experimental stimulation. Thus, the stimulation that maximizes the
MI should extract the maximum information about the model parameters, on average. Using
MI for estimating statistical quantities is formally justified; see, e.g., [21], where it is proven
under fairly weak assumptions that using a stimulus input that maximizes the MI between
future observations and the parameters of interest leads to consistent and efficient parameter
estimates. However, while theoretically sound, optimizing or even merely computing the MI
may be computationally prohibitive. For our problem, the primary issue is the low level of
information available given that one has access only to hitting times, rather than measurements
of the underlying state variable.

We explicitly single out a paper [9] that describes a strategy to experimentally estimate
the parameters of the Hamiltonian of a quantum system. The qubit state outcomes of zeroes
or ones follow a Bernoulli distribution whose parameter is sought, and the time at which
observations are made is under experimental control. They use a simple filtering technique
originally suggested by [16] to maintain and update the prior distribution of the unknown
parameters. In principle, their approach is similar to ours; the main difference is the nature
of the observations, which in our case are the hitting times.

As posed, our optimization problem reduces to a slightly nonstandard partial differential
equation (PDE) optimization problem, in particular a Fokker–Planck optimization problem.
The field of PDE optimization is vast, and we just mention one of many good references, [4]. A
series of papers on Fokker–Planck PDE optimization has also appeared; see, e.g., [1, 3]. None
of these, however, deals with the boundary-based term that arises from the objective based
on hitting times. This is done in our previous work [12], where we also solve a hitting time–
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90 A. IOLOV, S. DITLEVSEN, AND A. LONGTIN

inspired optimization problem. The fundamental difference is that there we assume model
parameters are known, whereas the uncertainty in the model parameters in the present work
complicates the problem, as it requires the solution of a system of (loosely) coupled PDEs
(the number depending on the form of the prior distribution), rather than just one as in [12].
That work, as well as the present paper, are part of growing efforts to control nerve cells (see,
e.g., [25]).

The present paper is also part of the general literature on estimating parameters of dif-
fusion processes from observations only of hitting times. Partly due to the applications of
this problem in theoretical neuroscience, a lot has been written on the subject, for example
in [23, 7, 13, 18], as well as in our own work [11], where we deal with the the more exotic case
of a sinusoidal driving force. The literature on estimation from hitting times of the class of
diffusion models we consider asserts that one parameter in particular, the characteristic time
(i.e., the time constant of the LIF model), is the most difficult to estimate and has by far the
widest confidence bounds. Thus, we focus on devising an input control that will provide the
most accurate estimates for this parameter, assuming that the other parameters are known
or at least nominally known in a sense that we explain below. We also shortly touch upon
estimation of all parameters, showing that it is in fact possible to do.

This paper can be summarized as solving a PDE optimization arising from maximizing
the MI between a prior of the characteristic time parameter and the random (future) hitting
times. Its outline is as follows: in section 2 we give the mathematical formulation of the
optimal design problem; in section 3 we describe the optimization procedure, in particular the
derivation of the objective gradient and the numerical methods used; in section 4 we discuss
the general shape of the optimal solution and its dependence on the various parameters in
the model as well as the robustness of the optimization algorithm; in section 5 we show the
performance of the optimally designed stimulation when many observations are first collected
and only a single-pass, batch estimation of parameters is performed afterwards; in section 6
we turn to the online problem, where the estimation is performed after each observation and
the stimulation is adjusted to reflect the newly updated prior of the unknown parameters; in
section 7 we make concluding and forward-looking remarks.

2. Problem setup.

2.1. Mathematical model of a neuron. Consider a noisy LIF model. This is a diffusion
process that has an absorbing barrier at an upper boundary and is unbounded from below.
In particular, for t ≥ 0 and k = 1, 2, . . . , it is governed by

(1)

dX(t) =

(
α(t) +

1

τ
(µ−X(t))

)
ds+ σ dW (t), X(0) = 0,

X(Tsp) = xth =⇒


X(Tsp

+) = 0,

tk = Tsp,

k = k + 1.

The random variables Tsp are the first hitting times of the process on the upper boundary,
xth, which is set to xth = 1 without loss of generality. At each hitting time, the process is reset
to 0 and then continues from there. Here, Tsp

+ denotes the right limit at Tsp. The control
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OPTIMAL DESIGN FROM FIRST HITTING TIMES 91

α(t) is manipulated by us and can be altered at any time. The parameter set, θ = {µ, τ, σ},
is assumed to be constant.

In the context of parameter estimation, we assume that the parameter set θ = {µ, τ, σ} or
a subset thereof is unknown and only the hitting times, {tk}, are observable. First we consider
only estimating the characteristic time τ , assuming µ and σ are known. The literature on
estimating parameters of LIF models from hitting times (see, e.g., [7, 18]) has at length
discussed that the estimation of τ is clearly the hardest. In fact, the literature is not clear
about whether τ is hard to estimate (practically unidentifiable, needing unrealistically large
sample sizes) or whether it is structurally unidentifiable (hitting times contain no information
on τ , which can therefore never be estimated, no matter the sample size). Since these studies
were done in the context of no control, α = 0, or at least α constant, we posit that a judicious
choice for the shape of α can significantly improve the estimation of τ , so that it is in effect
identifiable, also for realistic sample sizes.

The goal is to choose the control, α(t), such as to best estimate τ given that only the spike
times {tk} are observed. Equivalently, setting t0 = 0, we observe only the interspike intervals,
{sk}, defined as the differences between consecutive spike times, sk = tk − tk−1.

The probability density of the length of the kth interval, which is a random variable
denoted by Sk, conditional on an applied control α(·), is denoted by

(2) gk(s) :=
1

dt
P[Sk ∈ [s, s+ dt) |α(·)].

We drop the index k when there is no confusion, and we sometimes write g(s|θ, α(·)) to
emphasize the dependence on the parameters and the control. The likelihood of the observed
interspike intervals, {sk}k=1,...,n, is then

(3) L({sk}k=1,...,n|θ, α(·)) =
n∏
k=1

g(sk|θ, α(·)),

and the maximum likelihood estimator of θ is

(4) θ̂ = arg max
θ
L({sk}k=1,...,n|θ, α(·))

for a given applied control and resulting spike train.
The transition density for the state variable, Xt, t ∈ [sk, sk+1), is denoted by

(5) f(x, t) :=
1

dx
P [Xt ∈ [x, x+ dx) |Xsk = 0, Xs < 1 for sk < s < t] .

The transition density satisfies a Fokker–Planck PDE over the domain, x ∈ (−∞, xth], which
we approximate with the domain x ∈ (x−, xth], for some lower boundary x− such that the
probability that the process takes values smaller than this is negligible. For notational conve-
nience, we denote the drift by U(x, t) = −(α(t) + (µ− x)/τ) and obtain

(6)

∂tf(x, t) = 1
2σ

2∂2
xf + ∂x

(
U(x, t) f

)
= −∂xφ(x, t),

f(x, 0) = δ(x),
1
2σ

2∂xf + Uf |x=x− = 0,
f |x=xth = 0.
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92 A. IOLOV, S. DITLEVSEN, AND A. LONGTIN

We have imposed absorbing boundary conditions at xth and reflecting boundary conditions
at x−. The time-dependent probability flux at the threshold, φ(xth, t), is important, as it is
related to the density of hitting times, (2), via

(7) g(t) = φ(xth, t) = −1

2
σ2∂xf |x=xth ,

since Uf = 0 at the absorbing boundary, xth.
To see why (7) is true, note that the integral of f(x, t) over the domain (x−, xth) equals

the probability that X has not left the domain until time t. This is related to g through

Pr[Tsp > t] = 1−
∫ t

0
g(s) ds =

∫ xth

x−

f(ξ, t) dξ.

Differentiating this expression with respect to t, we obtain

g(t) = −∂t
∫ xth

x−

f(ξ, t) dξ =

∫ xth

x−

∂ξφ(ξ, t) dξ = φ(x, t)
∣∣∣xth
x−
.

This gives (7), since φ(x−, t) = 0 is our reflecting boundary condition in (6); see [24] for
details.

Intuitively, we wish to find a measure that quantifies the information the sampled spike
train carries about the parameter as a function of the control. We take a Bayesian approach
and assume some prior distribution of the random variable Θ over possible values of θ. We
take a discrete prior distribution and denote it by

ρ(θ) := P(Θ = θ).

Given a single observation, Tsp, the parameter posterior distribution is

(8) p(θ|Tsp;α) =
g(Tsp|θ;α)ρ(θ)∫

Θ g(Tsp|θ;α)ρ(θ) dθ
,

where g(Tsp|θ;α) is the likelihood of the hitting time given in (2). We then choose the control,
α(·), that maximizes the MI between the two random variables, Θ and Tsp. Conditional on
α(·), the MI, I, is given by

(9) I[α] =

∫
Θ

∫ ∞
0

g(t|θ)ρ(θ) log

(
g(t|θ)∫

Θ g(t|θ)ρ(θ) dθ

)
dtdθ;

see Appendix A for the derivation. For different controls the MI will be different, since the
hitting time density depends on the shape of α, whereas the prior, ρ, does not. Note that
the Bayesian approach is only used to choose the control and thus obtain a sample spike
train. The estimator is still the standard maximum likelihood estimator (4), and can take any
value, including values which are not in the support of the prior nor in that of the posterior
distribution. This will become important later, when a simple discrete prior distribution will
be used and shown to be sufficient to find a control that improves the estimation over the
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OPTIMAL DESIGN FROM FIRST HITTING TIMES 93

noncontrolled case. A discrete prior on only a few values of θ, in contrast to a continuous
distribution over the entire parameter space, is chosen for computational reasons.

To summarize, we seek the control input α(·) which maximizes I in (9), and we then verify
that observations obtained under such optimal stimulation lead to parameter estimates that
are more accurate and more precise than those obtained for observations when the system is
perturbed by suboptimal stimulations, or no stimulation at all.

2.2. Experiment description. We consider two possible experimental setups. In the first,
given a prior, ρ, a single stimulus control α∗ is found by maximizing I; then that same
waveform is applied N times, resetting it along with the voltage at each hitting time. We call
this batch estimation.

In the second setup, we allow for updating α after each observed hitting time. The idea
is that observations update the prior and that a different optimal α(·) may correspond to this
updated prior. We call this online estimation. Obviously, online estimation is computationally
more demanding.

A subtle issue is that, even in the batch context, applying a sequence of not necessarily
equal controls might result in more accurate estimation. However, there is no simple gener-
alization of the MI-optimizing formalism that would produce a sequence of optimal controls,
and so we leave this for future work.

3. Maximizing the mutual information. Consider the optimization problem of maximiz-
ing the MI in (9),

α(·) = arg max
admissible α

I[α].

We consider as admissible controls those that are continuous and bounded, α(t) ∈ [αmin, αmax]
for all t. First we calculate the gradient of I with respect to α and then use it in a standard
gradient-based optimization procedure. There is the added complexity that the gradient here
is an infinite-dimensional object, which raises some subtle functional analysis questions from
a purely mathematical point of view; we refer the reader to the references [14, 4] for rigorous
justification of our manipulations.

3.1. Calculation of the gradient using the adjoint method. A standard approach of
deriving a gradient of a functional of a solution to a PDE with respect to an input is the
adjoint method. We first rewrite (9) in terms of the transition density using (7),

(10) I[α] = −
∫

Θ

∫ ∞
0

∂xfθ(xth, t|θ)ρ(θ) log

(
∂xfθ(xth, t|θ)∫

Θ ∂xfθ(xth, t|θ)ρ(θ) dθ

)
dt dθ,

where the constant term σ2/2 is dropped, as it is irrelevant for obtaining the maximizing
value of α. The objective, I, is augmented with the dynamics of f by introducing the adjoint
variable p:

I =−
∫

Θ

∫ ∞
0

∂xfθ(xth, t|θ)ρ(θ) log

(
∂xfθ(xth, t|θ)∫

Θ ∂xfθ(xth, t|θ)ρ(θ) dθ

)
dtdθ

+

∫
Θ
ρ(θ)

∫ ∞
0

∫ xth

x−

pθ(x, t) (∂tfθ(x, t) + ∂xφθ(x, t)) dx dt dθ,(11)
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D
ow

nl
oa

de
d 

01
/1

9/
17

 to
 1

30
.2

25
.9

8.
20

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



94 A. IOLOV, S. DITLEVSEN, AND A. LONGTIN

where φ is the probability flux; see (6).
The added (11) is always zero for all choices of adjoint variable pθ, since f satisfies the

PDE in (6). However, by adding this null term and choosing pθ in an appropriate way, we can
remove the dependence of I on first-order perturbations of f . This allows one to compute the
differential of I with respect to α, without needing to additionally compute the differential
of f with respect to α as the chain rule would otherwise require. This is useful, since the
differential of f with respect to α is a complicated mathematical object because any value of
f(x, t) depends on the entire history of α(·), i.e., on all values α(s) for s ≤ t.

The elimination of I’s dependence on f is done by transferring the derivatives of f to p
using repeated integration by parts. For completeness, we demonstrate in detail how this is
done, dropping θ from the notation. First we introduce a finite (large) final time tf where we
can approximate f(x, tf ) = 0. Then

∫ tf

0

∫ xth

x−

p [∂tf + ∂xφ] dx dt =

∫ xth

x−

p f
∣∣∣tf
0

dx−
∫ tf

0

∫ xth

x−

∂tp f dx dt

+

∫ tf

0
p φ
∣∣∣xth
x−

dt−
∫ tf

0

∫ xth

x−

∂xp φdx dt.

Using that φ = −Uf − 1
2σ

2∂xf yields

−
∫ tf

0

∫ xth

x−

∂xp φdx dt =

∫ tf

0

∫ xth

x−

∂xpUf dx dt

+

∫ tf

0

1

2
σ2∂xp f

∣∣∣xth
x−

dt−
∫ tf

0

∫ xth

x−

1

2
σ2∂2

xpf dx dt.

Some simplifications can be made based on the terminal and boundary conditions for f .
Since the initial conditions for f are fixed so that perturbations of f at t = 0 do not exist,
perturbations of the control, α, do not perturb the initial conditions of f . The same is true for
t = tf . Thus, we disregard any terms involving f(x, 0) or f(x, tf ), since they are constant in
α and therefore vanish when taking derivatives. Furthermore, φ(x−, t) = 0 and f(xth, t) = 0.
Let C be a constant; then the adjoint term simplifies to

∫ tf

0

∫ xth

x−

p [∂tf + ∂xφ] dx dt =C +

∫ tf

0

∫ xth

x−

[
−∂tp−

1

2
σ2∂2

xp+ U∂xp

]
f dx dt

−
∫ tf

0

1

2
σ2p(xth, t)∂xf(xth, t) dt

+

∫ tf

0

1

2
σ2∂xp(x−, t)f(x−, t) dt.

The adjoint term thus breaks down into a constant term, a spatial term giving the (backwards)
evolution for the adjoint variable, p, and two terms providing the boundary conditions for p.
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OPTIMAL DESIGN FROM FIRST HITTING TIMES 95

Now replace the adjoint term in the original equation for I, (11),

I =

∫
Θ
ρ(θ)

[
−
∫ tf

0
∂xfθ(xth, t) log

(
∂xfθ(xth, t)∫

Θ ∂xfθ(xth, t)ρ(θ) dθ

)
dt

+

∫ tf

0

∫ xth

x−

[
−∂tpθ −

1

2
σ2∂2

xpθ + U∂xpθ

]
fθ dx dt

−
∫ tf

0

1

2
σ2pθ(xth, t) ∂xfθ(xth, t) dt

+

∫ tf

0

1

2
σ2∂xpθ(x−, t) fθ(x−, t) dt

]
dθ.

Consider the effect of small perturbations, δα, of the control on our objective,

δIε =
I(α+ εδα)− I(α)

ε
.

The natural assumption is that given α+ εδα, there is a corresponding solution to the PDE,
f + εδf . Taking the limit of ε→0, we get

(12)

δI =

∫
Θ
ρ(θ)

∫ tf

0

[
− ∂xδfθ(xth, t) log

(
∂xfθ(xth, t)∫

Θ ∂xfθ(xth, t)ρ(θ) dθ

)
− ∂xδfθ(xth, t) +

∂xfθ(xth, t)
∫

Θ ρ(θ)∂xδfθ(xth, t) dθ∫
Θ ∂xfθ(xth, t)ρ(θ) dθ

+

∫ xth

x−

[
−∂tpθ −

1

2
σ2∂2

xpθ + U∂xpθ

]
δfθ dx−

∫ xth

x−

∂xpθ fθ δα dx

− 1

2
σ2pθ(xth, t) ∂xδfθ(xth, t) +

1

2
σ2∂xpθ(x−, t) δfθ(x−, t)

]
dt dθ.

Thus, δI depends on both δα and δfθ. In fact, it only depends on δα through the third-to-last
term and on δfθ through all the others. However, we can select pθ in a judicious matter, such
that the dependence on δf vanishes. To eliminate δf on the lower boundary, x−, we need
that

∂xp(x−, t) = 0.

To eliminate the spatial dependence on δf , we enforce that p evolves (backwards) as

∂tp+
1

2
σ2∂2

xp− U∂xp = 0.

Note that, by interchanging the order of integration with respect to θ,∫
Θ
ρ(θ)

∫ tf

0

[
− ∂xδfθ(xth, t) +

∂xfθ(xth, t)
∫

Θ ρ(θ)∂xδfθ(xth, t) dθ∫
Θ ρ(θ)∂xfθ(xth, t) dθ

]
dtdθ

=

∫
Θ
ρ(θ)

∫ tf

0

[
− 1 + 1

]
∂xδfθ(xth, t) dt dθ

= 0.
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96 A. IOLOV, S. DITLEVSEN, AND A. LONGTIN

Finally, to eliminate the dependence of δI on ∂xδfθ, we apply the simple boundary condition,

pθ(xth, t) = − 2

σ2
log

(
∂xfθ(xth, t)∫

Θ ∂xfθ(xth, t)ρ(θ) dθ

)
.

In summary, the adjoint variables, pθ, must satisfy the following adjoint PDE:

∂tpθ = −1

2
σ2∂2

xpθ + U(x, t; θ)∂xpθ,

(13)


pθ(xth, t) = − 2

σ2 log
(

∂xfθ(xth,t)∫
Θ ∂xfθ(xth,t)ρ(θ) dθ

)
,

∂xpθ
∣∣
x=x−

= 0 ,

pθ(x, tf ) = 0 .

This finally provides us with a simple equation to calculate the objective gradient. Given pθ
and fθ, the differential of I in (12) with respect to the control α(t) is

δI =

[
−
∫

Θ
ρ(θ)

(∫ xth

x−

∂xpθ fθ dx

)
dθ

]
δα.(14)

The computational details on how to calculate δI are given in the next section.

3.2. Gradient ascent procedure. Maximization of the MI, (10), is approached as a
gradient-based iterative method, where the infinite-dimensional gradient, δI in (14), is calcu-
lated by some finite-dimensional approximation. The process involves three basic stages:

1. Given the current control iterate, αn(t), numerically solve for the corresponding f, p
from their respective PDEs, (6) and (13).

2. Form the adjoint differential, δI/δα, using (14).
3. Increment αn+1 in the direction of increasing δI/δα,

(15) αn+1(t) = αn(t) +
δI

δα
(t) ∆α

for some step-size ∆α.
In practice, we need to align the various discretization grids, and the simplest thing to do

is to discretize α, f, p at the same time points, tj . The gradient evaluated at tj is

δI

δα
(tj) = −

∫
Θ
ρ(θ)

(∫ xth

x−

∂xpθ(tj , x)fθ(tj , x) dx

)
dθ.

Equation (15) is the simplest gradient ascent scheme one can devise. The literature on
gradient-based optimization [20] and the subset on PDE-based gradient optimization [4] offers
more sophisticated schemes, but for simplicity we start with this basic one. An example of
a more sophisticated scheme is the nonlinear conjugate-gradient ascent, as recommended in
the literature on Fokker–Planck control [2]. A full description of the optimization algorithm
is provided in the supplemental material.

In general, there is no a priori way to select the terminal time, tf . For practical purposes
we proceed as follows. Given a set of plausible parameters we set tf large enough for f ≈ 0,
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OPTIMAL DESIGN FROM FIRST HITTING TIMES 97

and we further select a subinterval, [0, topt] ⊂ [0, tf ], such that we only seek to optimize over
t ∈ [0, topt] and for t > topt we let α = αmax. This should ensure that∫

t>tf

g(t) dt� 1.

Finally, the calculation of the posterior distribution should be addressed. For computa-
tional reasons, we need to approximate the integral with respect to θ by a sum. For a given
α(t), we solve for p, f for a few sampled values of θ from the updated prior distribution ρ(θ)
and their corresponding probabilities. This is equivalent to assuming a discrete or a particle
prior, i.e., a sum of weighted Dirac delta masses. In the simplest case, these are N values
with equal probability,

(16) ρ(τ) =
∑
i

1
N δ(τ − τi).

4. Properties of the optimal control. We now investigate the optimization algorithm
and the properties of the optimal control. In the calculations below, we set µ = 0, σ = 1,
tf = 15, topt = 10, αmin = −2, αmax = 2 unless otherwise stated. We use the same numerical
scheme, the Crank–Nicolson method, for the integration of the forward and adjoint PDEs as
in our previous work, [12], as this is a well-known classic technique for parabolic PDEs.

In the computational neuroscience literature this parameter set for µ, σ corresponds to
what is known as the subthreshold and high-noise regime [11], as long as the control α equals
zero. Increasing the control to α > 1 will move it into the qualitatively different superthresh-
old regime, where the process can hit the threshold even in the absence of noise. In the
subthreshold regime, a nonzero noise parameter is required if any spikes are to occur.

4.1. Optimization algorithm. A single control increment is shown in Figure 1, while an
example of a full optimization ascent is given in Figure 2 using an assumed prior with two
possible values of τ , namely 1/4 and 4.

Intuitively, the control tries to separate the hitting time distributions, such that an ob-
served hitting time can more clearly be attributed to one of the two potential parameter
values, τ . For the combination of known parameters µ, σ and prior ρ, used in Figure 2, the
optimal control first suppresses firing for an initial time interval and then maximally stim-
ulates firing in the remaining time. It is visually obvious that the result on g(t|τ) is to go
from a case where the two hitting time distributions overlap to one where they are clearly
delineated. Thus, given an observation from the optimally stimulated system, one can more
confidently estimate what the underlying value of τ was that produced the observation.

For reference, a single optimization ascent takes on the order of 5 seconds on a dual-core
i5 Intel laptop (2.67GHz). We should also point out that in general the computational time
scales linearly with the number of points in the prior. However, for certain points in the prior
a much finer discretization grid may be warranted to accurately solve the PDE.

4.2. Switch point sweep. Given the optimal solution obtained in Figure 2, we suspect
that the optimal solution is approximately of a simple switching type, in the sense of first
holding everything back and then exciting maximally (“inhibit-excite”). It is interesting to

c© 2017 SIAM and ASA. Published by SIAM and ASA under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

01
/1

9/
17

 to
 1

30
.2

25
.9

8.
20

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



98 A. IOLOV, S. DITLEVSEN, AND A. LONGTIN

−2.0

0

2.0

α
(t

)

Control Increment
pre-increment
post-increment

0.0 topt 15.0

t

−0.1

0.0

0.1

∇
α
I

Objective Gradient

Figure 1. Illustration of how the control is incremented given the gradient. Top panel: the initial control
in dashed and the incremented control in solid with arrows indicating the incremental change. Bottom panel:
the corresponding value of δI/δα(t). Note that we only optimize α(t) for t ∈ [0, topt] and set α = αmax for
t ∈ [topt, tf ]. Note that we have applied the thresholding at αmin for the post-increment, so that α ∈ [αmin, αmax].

check how sensitive the objective is to the exact value of the switching time, tswitch. If it is
not very sensitive, it would be practically useful, as the exact optimization of the PDE-based
objective will not be necessary, and any such switching-type solution will achieve satisfactory
improvement in the estimation. We therefore sweep through different points of exactly when
the switch from inhibition to excitation occurs, using a sharp sigmoid function, α(t) = αmax ·
tanh(4(t − tswitch)), as the applied control, and see how it impacts the resulting objective,
I. The results are in Figure 3. It is clear that, at least for this parameter set, there is
an improvement in the objective by delaying the switching time, with later switching times
producing similar and even marginally better objective values than the objective corresponding
to the solution of our iterative optimization. This suggests that the optimization procedure
has trouble finding the exact maxima either due to initial conditions of the optimizer or other
numeric artifacts. However, the differences in terms of objective value are marginal.

4.3. Sensitivity of the optimization method. In this subsection, we explore the effect of
the number of points in the prior, the variance of the prior, the initial guess for the control
α(·), and the values of the known parameters µ and σ.

Number of points and shape of the prior. It is of interest to know whether the exact shape
of the prior matters or whether the first two moments (mean and variance) are sufficient to
determine the optimal control. We make a simple experiment where we compute the optimal
control for two similar priors, the first using 2 points in the prior and the second using 11
points, such that both priors have the same log-mean and log-variance. Results are presented
in Figure 4, where it is seen that the optimal control is essentially the same. This suggests that,
for practical purposes, it suffices to choose a 2-point prior that matches the (log-) variance
of the more detailed prior distribution. This would substantially reduce the computational
burden.
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6.0 topt 18.0
−2.0

0

2.0

α
(t

)

Control Waveform

Initial Control
Optimal Solution

6.0 topt 18.0
0

0.8

g(
t|τ

)

Hitting-Time Densities for Initial-Control
τ=0.25

τ=4

6.0 topt 18.0

t

0

0.8

g(
t|τ

)

Hitting-Time Densities for Optimal-Control
τ=0.25

τ=4

1 2 3 4 5 6
k

0

0.6

I k

Gradient Ascent of the Objective I

Figure 2. Example of the gradient ascent algorithm for the optimization of I in (10) illustrating that the
effect of the optimal control is to separate the hitting time distributions corresponding to the potential values of
τ , here for two values of τ . Top panel: initial and optimal controls, α0(t) and αopt(t). Second panel: hitting
time distributions g(t|τ) conditional on using the initial control, α0. Third panel: g(t|τ) conditional on using
the optimal control, αopt. Bottom panel: progress of the mutual information, (9), as a function of the gradient
ascent iterations (here the algorithm converged in nine iterations). The optimal control significantly improves
the objective in comparison to the initial guess.

The dispersion of the prior. It is also of interest to know how the dispersion of the prior,
here quantified by the log-variance, changes the optimal control. Again, we take two 2-point
priors, one with particles at τ ∈ {1/4, 4} and the other at τ ∈ {3/4, 4/3}. Results are shown
in Figure 5. It is clear that while the general shape of the optimal control is the same,
regardless of the width of the prior, there is some difference. We further investigate the
practical difference between the two priors in section 5.

The initial guess for the control α0. Like all gradient-based optimization procedures, the
algorithm is sensitive to the choice of initial guess for the independent variable, i.e., the choice
of α0. We illustrate this in Figure 6. For three different priors, namely a wide, a medium,
and a narrow prior, we run the optimization scheme from four different initial guesses for α0:
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100 A. IOLOV, S. DITLEVSEN, AND A. LONGTIN

4.0 8.0 12.0
tswitch

0

0.6

I

Mutual information as function of switching time

inhibit-excite
no control
optimal control

Figure 3. Effect of switching time, ts, in an inhibit-excite control on the MI. The applied control is a sharp
sigmoid function, α(t) = αmax · tanh(4(t − tswitch)). The red line is the value of the MI as a function of the
switching time, ts, between maximally inhibitive to maximally excitatory control. The green line, plotted for
reference, is the value of the mutual information for no control (α = 0 for all t). And the blue line is the
objective value achieved by the optimal control as Figure 2; all simulation parameters are also as in Figure 2.

6.0 12.0 18.0
t

−2.0

0

2.0

α
(t

)

Optimal Controls
2-point prior
11-point prior

Figure 4. Effect of the number of points in the prior on the optimal control. The blue curve was calculated
with a 2-point prior and the green curve with an 11-point prior. The priors have the same log-mean and log-
variance. For the 2-point prior, we use τ = [0.5, 2]; for the 11-point prior, we set the weights at τn = exp(n∆τ),
where n runs from −5 to 5 and ∆τ is chosen to match the log-variance of the 2-point prior. All other parameters
are as in Figure 2.

4.0 8.0
t

−2.0

0

2.0

α
(t

)

Optimal Controls
wide prior

narrow prior

Figure 5. Effect of the variance of a 2-point prior on the optimal control. The wide prior has probability
0.5 for both the values τ = 1/4 and 4, while the narrow prior has points positioned much closer to each other,
τ = 3/4 or 4/3.
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Optimal Solution for the Control
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(a) Wide prior

0 1 2 3 4 5 6 7 8
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0
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α
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Initial Guesses for the Control
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−2.0

0
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α
(t

)

Optimal Solution for the Control
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0.00

0.45

I

Iterated values of mutual information

(b) Medium prior

0 1 2 3 4 5 6 7 8
−2.0

0

2.0

α
(t

)

Initial Guesses for the Control

0 1 2 3 4 5 6 7 8
t

−2.0

0

2.0

α
(t

)

Optimal Solution for the Control

0 10 20 30 40 50
k

0.00

0.04

I

Iterated values of mutual information

(c) Narrow prior

Figure 6. Illustration of the dependence of the optimization scheme on the initial guess for the optimal
control for (a) a wide prior, (b) a medium prior, and (c) a narrow prior. In the top panels the initial guesses
are shown; in the middle panels the corresponding solutions obtained by the optimization routine are shown,
and in the bottom panels the corresponding evolutions of the MI are shown. The various initial conditions
considered are maximum stimulation for all t (blue); sinusoidal stimulation (green); no control at all, α = 0
(red); and a linearly increasing control from min to max (cyan).

1. zero for the entire (optimization) time interval;
2. linearly increasing from the lower to the upper control bound over the optimization

interval;
3. a sinusoidal wave from maximum to minimum and again to maximum;
4. maximum for the entire optimization time interval.
In Figure 6, we see that for different initial guesses the optimization routine finds different

optimal controls (see middle panels). An initial guess which is nonconstant, here linearly
increasing or sinusoidal, is better than the constant initial guesses (the MI is larger; see lower
panels). It is also seen that the shape of the prior does not have much influence on the optimal
control found by the algorithm (the optimal solutions for the same initial guesses but different
priors are close, as one can see by comparing the middle panels). The final value of the MI is
larger for a wider prior (see lower panels), but this is a scaling issue, since of course the final
parameter estimation will be the same if the control is the same. To summarize, the initial
guess of the control is important, and different initial guesses should be tried to see whether
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102 A. IOLOV, S. DITLEVSEN, AND A. LONGTIN

the objective can be improved, whereas the choice of prior distribution is less important.
Values of the known parameters µ, σ. So far we have restricted ourselves to one scenario of

the assumed known parameters, µ = 0 and σ = 1.
We also redid the basic analyses by varying these parameters, analyzing six qualitatively

different sets of parameter values. In all cases the same 2-point prior was used, with probability
one half for each of τ = 1/2 and 2. The following parameter sets were investigated: (µ, σ) =
(−0.5, 1), (0.1, 1), (1, 1), (0, 0.3), (0, 0.9), and (0, 1.5). In all cases the algorithm succeeded in
finding an optimal control (a different one for each pair) that significantly increased the MI
relative to that of the initial control guess (results not shown). Although not an exhaustive
study, this strongly suggests that our optimal design procedure is applicable and would be
effective for a wide range of the values of µ, σ.

5. Batch estimation. We now proceed to generate a large sample of hitting times with
several types of controlled stimulation and then estimate the unknown parameter after ob-
serving the whole sample. For each controlled stimulation, that same waveform is applied N
times, resetting it along with the voltage at each hitting time. We call this batch estimation
as opposed to online estimation. In the latter case, parameter estimates are updated after ev-
ery single observation, and the control is updated according to an updated prior distribution.
Online estimation is performed in section 6.

We assume that the true parameters governing (1) are as before: µ = 0, τ = 1, and σ = 1.
We will assume σ, µ are known and only estimate the time constant τ , so we will maximize
the MI between Tsp and τ . To obtain the optimal control, we take a discrete uniform prior
on τ , using 10 points uniformly spaced in the interval [1/4, 4]; i.e., each point in the prior has
probability 1/10. Note that neither the mean nor the log-mean of the prior corresponds to
the unknown true τ or log(τ).

The obtained control is denoted by opt. In addition, we consider two optimal controls
obtained using a wide and a narrow 2-point prior, as shown in Figure 5. We call these opt-
wide for the prior with τ = [1/4, 4] and opt-narrow for the prior with τ = [3/4, 4/3]. We also
use the control crit where α is set to the fixed critical value α = αcrit = xth/τ = 1. The
critical value defines the smallest value for α such that the process converges to the spiking
threshold in the absence of noise (i.e., for σ = 0). Finally, we use a control max set to its
upper bound, α = αmax.

5.1. The estimation algorithm for the batch problem. In this section, we only aim
to estimate one parameter, τ , which amounts to single-variable optimization. The negative
log-likelihood of an observed hitting time set {tn} is

(17) l(τ) = −
∑
n

log(g(tn|τ)) = −
∑
n

log

(
−σ

2

2
∂xf(tn|τ)|xth

)
.

We minimize (17) using the standard single-variable optimization routine in NumPy based on
Brent’s method.

5.2. Comparison of estimators. To summarize, we will stimulate the system using five
stimulation waveforms:

1. opt: the optimal control αopt, based on a 10-point uniform prior between [1/4, 4];
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OPTIMAL DESIGN FROM FIRST HITTING TIMES 103

Table 1
Results for the estimates arising from simulations using various values of α (opt, crit, max). In each

subtable there are Nb parameter estimates for each distinct α, with Ns hitting times used to form a τ -estimate.
The true value of τ is τ = 1. See also Figure 7.

Control type mean(τ̂) std(τ̂)

opt 0.887 0.27
opt-wide 0.766 0.32

opt-narrow 0.826 0.30
crit 0.913 0.53
max 0.872 0.37

(a) Nb = 103, Ns = 102

Control type mean(τ̂) std(τ̂)

opt 1.011 0.08
opt-wide 0.946 0.20

opt-narrow 1.005 0.07
crit 0.797 0.07
max 0.787 0.06

(b) Nb = 102, Ns = 103

Control type mean(τ̂) std(τ̂)

opt 1.018 0.01
opt-wide 1.016 0.01

opt-narrow 1.012 0.01
crit 0.791 0.02
max 0.782 0.02

(c) Nb = 10, Ns = 104

Control type mean(τ̂) std(τ̂)

opt 1.018 -
opt-wide 1.016 -

opt-narrow 1.012 -
crit 0.790 -
max 0.781 -

(d) Nb = 1, Ns = 105

2. opt-wide: the optimal control using a 2-point prior on [1/4, 4];
3. opt-narrow: the optimal control using a 2-point prior on [3/4, 4/3];
4. crit: the constant control αcrit, (= xth/τ);
5. max: the max constant control, αmax (= 2).

We simulate Nb blocks of Ns hitting times each for each of the five α’s above. That is, we
apply each control Ns times to obtain Ns hitting times, and after each hitting time the control
is reset. Thus, observations are independent and identically distributed. We then estimate
τ over each set using maximum likelihood with the computed expression for the density,
g(t|τ ;α(t)). For a fair comparison between controls, we use the same Gaussian random draws
per block of Ns hitting times for each control. The estimation results are tabulated in Table 1,
and scatterplots of estimates can be found in Figure 7.

Together, Table 1 and Figure 7 confirm a clear advantage to using the optimal control,
αopt, over the simpler, constant controls. In particular, the bias of the estimates is significantly
reduced, except for Ns = 100, where the bias is comparable. From Figure 7(a) it is seen that
this is caused by the presence of a few outlier estimates for the optimal control, but for most
data sets, the optimal control is clearly better. These outliers disappear for larger sample
sizes.

Comparing the different optimal controls based on various priors, opt vs. opt-wide or opt-
narrow, we see that they all perform approximately the same. This confirms the findings of
the previous section that the number of points in the discrete prior is not that essential, and
computational time can be considerably reduced by choosing priors with only a few points.

5.3. Estimating the entire parameter set. So far we have assumed that the drift parame-
ter µ and the variance parameter σ are known. We now relax that assumption and attempt to
also estimate these two parameters, in addition to the characteristic time τ . We will still use
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104 A. IOLOV, S. DITLEVSEN, AND A. LONGTIN

opt opt-wide opt-narrow crit max

Control Strategy
0

1

2

τ̂

(a) Nb = 103, Ns = 102

opt opt-wide opt-narrow crit max

Control Strategy
0

1

2

τ̂

(b) Nb = 102, Ns = 103

opt opt-wide opt-narrow crit max

Control Strategy
0

1

2

τ̂

(c) Nb = 10, Ns = 104

opt opt-wide opt-narrow crit max

Control Strategy
0

1

2

τ̂

(d) Nb = 1, Ns = 105

Figure 7. Visualization of the maximum likelihood estimates of τ for the different controls. Note that in
(d) there is only one estimate per control; all simulated hitting times are used in that estimation. See also
Table 1.

the optimal control obtained assuming µ, σ are known. Why is this expected to work? First
of all we found that the optimal control seems largely insensitive to the exact values of µ, σ
as long as they are not too far from the nominal values (µ = 0, σ = 1). This is in agreement
with the findings of [8], where it is shown that the estimation of the time constant in the
Ornstein–Uhlenbeck process from observations of the process itself can be hugely improved by
perturbating the process, leaving the estimation of the other parameters largely unaffected.
Moreover, as discussed in the introduction, the τ parameter is well known to be the hardest to
estimate. Thus, a scheme designed to estimate it well is conjectured to help with estimation of
the entire parameter set, since reducing fluctuations in one parameter estimate is expected to
reduce (or leave unaffected) fluctuations in the others. Finally, the computational complexity
quickly increases when optimizing the MI for three-dimensional priors, due to the potentially
much larger number of PDEs required to be solved.

We use the same simulated hitting time data set as in Table 1 and Figure 7, using Ns = 104

hits and Nb = 10 separate samples; i.e., we make 10 estimates. The results in Figure 8 make it
clear that the optimally stimulated samples yield much more accurate and precise estimates.
In particular, all stimulation schemes come up with high-fidelity estimates for σ; it is in
resolving the interplay between µ and τ that the optimal stimulation excels. The constant
stimulations do not allow one to distinguish a high µ and a small τ from a low µ and a high
τ ; this can be most easily seen in the scatterplot on the right of Figure 8, where the constant
stimulations tend to overestimate µ and greatly underestimate τ . On the other hand, the
MI-optimizing dynamic stimulations do not have this erroneous correlation estimating both
parameters fairly accurately, without a noticeable relation between the estimation errors.
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opt opt-wide opt-narrow crit max−0.40
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Control Strategy
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(a) Individual estimates
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µ vs. τ
opt
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(b) µ vs. τ scatterplots

Figure 8. Optimal stimulation significantly improves estimates when all model parameters are jointly
estimated. In the left panel, we show Nb = 10 estimates of µ, τ , and σ, formed after observing Ns = 104 hitting
times per estimate. There are three optimal stimulations (opt, opt-wide, and opt-narrow) and two constant ones
(crit and max). The scatter dots are the individual estimates per stimulation-parameter pair. The horizontal
line indicates the true value of the parameters, i.e., the value used to simulate the hitting times in the data
samples. In the right panel, we focus on the interaction between the µ vs. τ estimates produced by the opt, crit,
and max stimulations. The constant stimulations tend to consistently overestimate µ and underestimate τ .

6. Online estimation. In the online optimization, we proceed as follows:
1. Find αopt using the gradient ascent for the prior ρ.
2. Apply αopt, and measure Ns hitting times tk, k = 1, 2, . . . , Ns.
3. Update the ρ into a posterior conditional on the observed {tk}.
4. Recalibrate αopt using the new ρ; i.e., go back to 1.

We progressively double Ns during the course of the simulation, starting from Ns = 1, so
we recompute αopt after the 1st spike and then after the 3rd, 7th, and so on. The heuristic
is that at the beginning of the experiment the updated prior would be changing more rapidly
than after already having observed several hundred spikes.

Computational efficiency considerations aside, we have all the tools to carry out points 1,
2, and 4 above. For point 3, updating the prior, we use the same particle filtering scheme as
detailed in [9], in particular section 4 therein; the original reference is [16]. The algorithm is
also provided in the online supplemental material, linked from the main article webpage.

6.1. Single hitting time illustration. In Figure 9, we illustrate one iteration of the update,
that is, one hitting time given a stimulation from either the MI optimal control, or from
a random control or from zero control; the random control just gives a randomly chosen
constant stimulation for the computation of each hitting time. Lower values of τ imply a
higher restoring force of the LIF process towards the origin and therefore longer time between
hitting times. Since in this sample the observed hitting times were fairly long, especially for
the MI-optimal stimulation, weights for smaller τ ’s grow larger, while weights for bigger τ ’s
become smaller. However, it is immediately clear that the MI-optimal stimulation is more
discerning, as it has almost entirely discarded (correctly) the possibility that τ > 2, while the
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Figure 9. Examples of a single iteration of the Online Stimulation-Estimation scheme. The actual hitting
time observations were 8.16 (optimal stimulation), 1.02 (random stimulation), 7.62 (zero-stimulation).

other two stimulations have resulted in only mild perturbations of the prior distribution.

6.2. Full multiple hitting time experiment. Finally, let us compute an entire estimation
experiment. We stimulate the process and obtain a sequence of hitting times and online
update our parameter prior distribution after every observation. We also online update our
MI-optimal stimulation as the prior evolves after the 1st, 3rd, 7th, and so on observations.

We repeat and simulate 50 independent experiments of 500 hitting times each and then
average the obtained ensembles of estimates. The aggregated evolutions for the updated
prior distributions are visualized in Figure 10. We plot the quantiles of the running means
of the updated priors for the N experiments. It is immediately clear that the MI-optimal
control produces more accurate and more precise estimates and that the increase in precision
is especially clear in the earlier parts of the experiment where less information is available.
That is, using the MI-optimal control protocol reduces the uncertainty in the parameters much
faster.

The fact that the base cases of constant controls are neither accurate nor particularly
precise is consistent with the general results on the estimation of the characteristic time
parameter. The novel finding is that a suitably tuned stimulation can result in much more
accurate estimates.

It turns out that for the problem and the illustrative parameters, online upating the prior
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Optimal Control

Random Control-per-Hit
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Figure 10. Optimal-designed stimulation produces more precise and more accurate parameter estimates.
Visualized are the median and 5/95th percentiles of the mean of the updated prior distribution over the N = 50
experiments. That is, for each experiment, j, and each hitting time, k, we compute the mean of the updated
prior ρj,k(τ), and then we plot the median (crosses) of these N means as well as the third smallest and third
largest of them (dashes). The black line indicates the true value of τ used to generate the synthetic observations.
Again we see that the median and the extreme quantiles of the optimally stimulated estimates are much closer
to the true value of the parameter, τ , than the estimates obtained from the naive stimulations.

does not result in significant differences in the computed optimal control (results not shown).
This is somewhat expected given the results in subsection 4.3. Therefore, if recomputing the
optimal control is relatively time-consuming (as might be the case in neural experiments), one
can just apply the batch control with comparable performance.

7. Discussion. We introduced a method for optimal design given hitting time observa-
tions. This contrasts with earlier work where the control is based on observations of the
state variable of the SDE whose parameters are to be estimated. Our method is based on
maximizing the MI between the observed hitting times and the posterior distribution of the
parameters. The optimal control tends to separate the hitting time distributions associated
with alternative values of the unknown parameter, thereby facilitating the identification of the
parameter once an observation is made. The simulations show that the resulting estimates
from the optimally stimulated system have higher precision and accuracy than sensible alter-
natives, such as random stimulation, critical stimulation at α = xth/τ , or no stimulation at
all.

Since the MI is expressed in terms of the hitting time density and the hitting time density
can be related to the boundary term of a Fokker–Planck PDE, we approach the maximization
of the MI as a PDE optimization problem. The standard use of an adjoint variable to obtain
the objective gradient is made more complicated by the outer integration with respect to the
unknown parameter prior. However, we are still able to derive the adjoint PDEs and thus to
compute the objective gradient despite this added complication.

Our PDE-based adjoint optimization methods can be expensive and sensitive to the var-
ious parameters of the optimization. The main computational cost is the numerical solution
to the forward and backward PDEs, which have to be solved numerous times during the op-
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timization search. In principle, one has to solve as many PDEs as there are particles in the
prior distribution. However, we have seen that in practice it is sufficient to use very coarse
approximations to the prior. For example, as few as two or three particles which match the
mean/variance of the more detailed higher-resolution prior seem to be sufficient to obtain the
same optimal control as that obtained by using all the particles in the prior, at least for our
problem.

In general, the optimally stimulated samples give (much) more accurate estimates than
the ones that are naively stimulated. However, we see in Figure 7(b) that occasionally (once),
the optimally stimulated sample can give very wrong estimates. We have taken a closer look
at what happens in those situations. It seems that in the bad cases, there are enough extreme
(i.e., very long) hitting times that the estimation procedure infers a very small characteristic
time (i.e., the attractive force towards µ = 0 is very strong). Generally in long samples such
extreme hitting times are relatively rare, and the correct parameter value is inferred.

Our results point to a novel way to estimate the characteristic time of the LIF process.
Parameter estimation techniques applied to the hitting time process have reported difficulties
for this particular parameter. This is unfortunate given that it is a parameter that is deemed
important to understand the integrative properties of single neurons. It is also a parameter
that can vary based on the amount of inputs the neuron receives from other cells; more
specifically, it reflects the ongoing conductance of the cell. It would be particularly interesting
to see whether the batch or online implementations of the hitting time–based optimal design
method could be implemented in an experimental setting and what new challenges arise in
this context. Our method has the advantage of dealing with the intrinsic stochasticity of the
underlying process for designing stimulation protocols that best reveal system parameters.

Doing a batch estimation, when the control is computed only once and then applied for all
observations, is the computationally simpler approach. More interestingly, we show that the
optimal control can be evolved online as new observations are assimilated into the parameter
prior, and the optimal control is updated accordingly. However, we note that the optimal
control is fairly similar for a wide range of priors, which somewhat limits the additional value
of recomputing the optimal control as the observations from the experiment are recorded.

In line with the observation that the optimal control is fairly similar for various priors
of τ , we note that the slight differences in the actually obtained stimulations do not make a
big difference when it comes to estimating the parameters. Independent of the prior used,
the resulting estimates in all cases are much better, more accurate and precise, than the
estimates obtained using the base case of no stimulation. In fact, we empirically demonstrate
that the optimal stimulation scheme also results in excellent estimation results for all system
parameters, even though it is designed only to estimate τ .

In general, we note that the control shape that consists of an initial segment that inhibits
spiking, α(t) ≈ αmin, followed by a segment that promotes spiking, where α(t) ≈ αmax, is
obtained for a wide variety of priors or model parameters, µ, σ. In some contexts, however,
we have observed a more complex optimal control, where for an initial region that is excitation,
then inhibition, and then excitation again. It is very much an interesting open problem to
determine how exactly these switching times depend on the various model parameters.

Future work could address the case where all the parameters are treated in a full Bayesian
setting and the parameter prior is over all of them, not just over τ . In principle our derivations
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OPTIMAL DESIGN FROM FIRST HITTING TIMES 109

carry over unchanged. The only potential complication is that the prior will need to contain
more points to fully describe the uncertainty in all three parameters. It would also be of inter-
est to test the estimation scheme for dynamical regimes other than the subthreshold high-noise
one studied here. We anticipate that the estimation will improve in suprathreshold and/or
lower-noise cases. Other minor tweaks involve using a more sophisticated gradient optimiza-
tion method, such as a nonlinear conjugate gradient, which might be more computationally
efficient.

Our formalism is not restricted to the linear SDE model presented here. In particular,
the SDE could include nonlinear drift and/or diffusion terms and be treated in exactly the
same manner by our optimal design method. The resulting PDEs (forward and adjoint) will
remain linear, and the optimization calculations will be the same. More esoteric processes,
where the SDE depends on its own density, can also be considered, although those result in
nonlinear forward PDEs and the concomitant complications.

Our work can be viewed as an optimal design for parameter estimation of PDEs. It would
be interesting to see whether in general the MI criterion can be applied successfully for the
selection of perturbation in other PDE parameter estimation contexts.

Appendix A. Mutual information. The MI, I, between two random variables X and Y
is defined by

(18) I(X,Y ) =

∫
Y

∫
X
p(x, y) log

p(x, y)

p(x)p(y)
dx dy,

where p(·) are density functions of their arguments; see, e.g., [17, 6]. Intuitively, it measures
the average reduction in uncertainty about one of the variables by the knowledge of the other
variable, and it is zero if and only if the two variables are independent.

Here we show that (9) is the MI between the random variables Tsp and Θ. The marginal
distribution of Θ is simply the prior, p(θ) = ρ(θ). The joint distribution is p(t, θ) = g(t|θ)ρ(θ)
by the Bayes formula. The marginal of Tsp is p(t) =

∫
Θ g(t|θ)ρ(θ) dθ. Plugging the three

expressions into the definition in (18) yields

(19) I =

∫
Θ

∫ ∞
0

g(t|θ)ρ(θ) log

(
g(t|θ)ρ(θ)

ρ(θ)
∫

Θ g(t|θ)ρ(θ) dθ

)
dtdθ.

After canceling ρ(θ) inside the log, we get (9).
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