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Modeling of the Flux Decline in a Continuous Ultrafiltration System

with Multiblock Partial Least Squares

Anna Klimkiewicz,* " Albert Emil Cervera-Padrell,” and Frans van den Berg_“t

TNovozymes A/S, 4400 Kalundborg, Denmark

iSpectroscopy & Chemometrics section, Department of Food Science, Faculty of Science, University of Copenhagen, 1958

Frederiksberg C, Denmark

ABSTRACT: This study investigates flux decline in ultrafiltration as a capacity measure for
the process. A continuous ultrafiltration is a multistage process where a considerable coupling
between the stages is expected due to similar settings on the subsequent recirculation loops
and recirculation of parts of the process streams. To explore the flux decline issue from an
engineering perspective, two ways of organizing process signals into logical blocks are
identified and used in a multiblock partial least-squares regression: (1) the “physical location”
of the sensors on the process layout and (2) “engineering type of tags”. Abnormal runs are
removed iteratively from the original data set, and then the multiblock parameters are
calculated based on the optimized regression model to determine the role of the different
data building units in flux prediction. Both blocking alternatives are interpreted alongside
offering a compact overview of the most important sections related to the flux decline. This
way one can zoom in on the smaller sections of the process, which gives an optimization
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1. INTRODUCTION

Classical engineering strategies do not always perform well in
control and optimization of full-scale biomanufacturing steps.
This can be assigned to the complex multistage nature of these
production systems, which cannot be described sufficiently
accurately by mechanistic or first principle concepts.” The
alternative, use of historical production records combined with
statistical or data-driven models for process optimization, calls
for apt empirical methods. Principal component analysis (PCA)
and partial least squares (PLS) are popular multivariate
dimension-reducing methods which are known to cope well
with challenges associated with historical production databases,
such as their enormous size, a high degree of correlation
between variables, low signal-to-noise ratio, and recurrent
missing values.”

In the case where the process measurements and signals
originate from different phases in a manufacturing process, it is
possible to improve the interpretability of multivariate models
by multiblock methods.”” They are an extension of well-known
“single-block” factor models such as PCA and PLS. The
popularity of multiblock methods has, however, grown only
modestly over time. An explanation for this limited popularity is
that orginally these methods were developed for improved
(regression) modeling, but it was shown early on that most
strategies are equivalent—in predictive performance—to PCA
and PLS models on augmented data sets.” Instead, the
important added “twist” of multiblock methods is the additional
data organization layer plus block-specific information and
diagnostics that they provide, which alleviates the risk of being
overwhelmed by the size of the collected data set.” Some
industrial applications for modeling and monitoring of
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production processes have been reported in the chemical,
pharmaceutical,”® and food* sectors. The potential use of
blocking is for the “same product” at different stages or phases
of processing, such as distinctive time-steps in batch-wise
production, as seen in, e.g., tablet production, or successive unit
operations or sections of a unit in a continuous mode
operation, as encountered in downstream bioprocessing."”
The selection of a proper blocking structure for the process at
hand is driven by the aim of the investigation and based on
engineering intuition. Guidelines from the chemical process
industry suggest that blocks should correspond as close as
possible to discrete units of the process, in which all variables in
one block are expected to be highly coupled, while there is less
coupling expected between variables in neighboring unit
operations.6

The multiblock PLS (MB-PLS) algorithm allows for the
calculation of additional parameters such as so-called super
level weights (the contribution of each data block to the
solution), block level scores, and the percentage variation
explained per data block. The advantage of the multiblock
approach is that, by examining block contributions next to
individual variable contributions, it eases the interpretation and
helps in the understanding of the product and process analysis.
The low-level block models can still be studied by their local
block level scores and weights or loadings and the overall
model (upper or super level) by the super level scores and
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Figure 1. Conceptual scheme of the MB-PLS model.
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Figure 2. Scheme of the ultrafiltration system plus the approximate location of forty-nine process measurements and five calculated engineering
values; flow signals and the throttling valve on loop E are excluded during modeling.

weights. Multiblock methods can thus be used to group process
operating variables into meaningful blocks according to the
operational phase and concern both the inner relationship
within each phase and the interrelationship between different
phases. This helps to identify the important parts of the process
and, if necessary, to trace causes back to, e.g., the raw data.’® Via
the multiblock approach, one can build a model for the full
process that will take into account the interactions between the
units and their relative importance to the final product quality.”

There are three prevalent ways to obtain MB-PLS models."’
The first method uses the block level scores for deflation of
dependents X and independents y'' in the regression equation
y = X*b, which ensures orthogonality between the block level
scores. In the second approach, the algorithm uses the super
level scores to deflate X and y,»” and it has proved to lead to a
superior predictive performance. The results of the latter are
equal to the calculation of the standard PLS on the combined
or augmented matrix from all data blocks (Figure 1), providing
the same weighing and variable scaling is applied.” This
algorithm also works faster and proved to be better at handling
missing values. In the third method, only y is deflated using the

10691

super level scores. This deflation scheme was recommended to
prevent mixing up information at the block level, which in turn
should lead to the easier interpretation of the block level
scores.'’ For a detailed theoretical and algorithmic viewpoint,

- 3,10,12
we recommend existing literature.

Data block scaling is an
important issue in multiblock applications, comparable with
variable scaling in regular bilinear modeling. Depending on the
block scaling, quite different results, and hence interpretations,
can be obtained."® Block weighing can be selected based, e.g,,
on the process knowledge or performance expectations.
However, if no such information is available, all blocks should
initially be given an equal contribution by scaling their variance
to the equal sum-of-squares (so-called block normalization).
This is especially important if the number of process variables
in different blocks varies considerably. All in all, it can be a good
strategy to try and investigate some different combinations of
block weights and blocking in MB-PLS and compare the cross-
validated prediction errors. If results are inferior to the standard
PLS model with no block-weighing, then blocking is done
incorrectly.”®
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This study uses flux in ultrafiltration (UF) as a capacity
measure of a process and focuses on the block level to
investigate the overall flux values, or more specific flux decline
as a function of process time. Significant attention, in both
public research and industry, has been paid to better
understand the mechanisms of membrane fouling observed as
flux decline in UF."*~"” These problems clearly affect the
production scheduling and hence economics in downstream
biomanufacturing. In the Novozymes production facilities at
Kalundborg (Denmark), a project was initiated to investigate
the flux decline issue based on historic full-scale processing
data. Preceding exploratory studies directed our attention to
one of the manufacturing recipes which is characterized by a
very steep flux decline.'* In the current study, we look closer at
this specific group of production runs and treat it as a
regression problem. Specifically, we want to construct models
based on process data to predict the flux values and we want to
interpret the role of the different data building blocks in this
prediction.

2. MATERIALS AND METHODS

2.1. The UF System. A plate and frame ultrafiltration
system is operated as a multistage recirculation plant where the
smallest working element of the UF equipment is a membrane
(Figure 2).'® Membranes retain enzyme molecules (based on
their size and shape) in the retentate while allowing for the
permeation of water and small molecules. Membranes are
polymer sheets, fitted in pairs between supporting hard plastic
plates with spacer channels. The pores of the ultrafiltration
membrane are very small, and a pressure must thus be applied
to make the separation process effective. The feed is pumped
between the paired membranes flowing parallel to the
membrane surface while permeate has a transverse flow
direction (termed “cross-flow”). This type of process flow
minimizes fouling and excessive material build-up. The
permeate passes through the membranes into the plastic plates
spacers, where it is led away through a permeate tube. One
membrane module consists of hundreds of membrane sheets
and supporting structures. Several modules working in parallel
form a recirculation loop. These stages are called “loops” in
Figure 2.

Each recirculation loop is supplied by a centrifugal pump
(JT) and the accompanying throttling valve (FV) to provide
pressure and to ensure an adequate cross-flow velocity of the
feed over the membranes. This helps permeate to pass through
the membranes, provides a fresh flow of the feed and
recirculation liquid, and prevents too much concentration
polarization over the membrane area. Centrifugal pumps
generate heat which has to be removed by cooling (TV).
Other key components external to the loops are a feed tank
followed by the feed pump (PT,), a permeate tank, pipelines,
and a heat exchanger on the retentate stream. There is also a
number of flow transmitters (FT) installed to monitor and
control the throughput.

A membrane system designed as a multistage recirculation
plant with a high volumetric concentration ratio must be
controlled based on a very small flow of the retentate."® There
are two main control modes available. The first one is using the
concentration of dissolved solids measured by a refractometer
(RI) located on the last recirculation loop. As soon as the
concentration is equal to or exceeds an RI value set by the
operator, the regulation valve opens and adjusts its position
during filtration to ensure the desired enzyme concentration in

the retentate stream. As a second option, concentration can be
controlled using a flow ratio between the volume entering the
plant and the volume of retentate leaving the plant. This
calculated parameter is called the volumetric concentration
degree, and it is labeled as “calcS” in Figure 2. Additional
“upstream” information, related to the primary separation of
the enzyme from the biomass, is used in this study. It covers
parameters such as pH (AT), conductivity (CT), dilution
(calcl), and dosing of the flocculation chemical (calc2).

It is not easy to track the path of a product/effluent stream in
this UF operation. In general, recirculation loops work in
sequence from A to F but the retention times on each loop or
even within the entire unit are not known. The proper lags
between different process signals would as a consequence be
extremely hard to determine because they vary owing to the
different number of the loops in use, the degree of recirculation
on the loops, the process temperatures, the properties of the
feed, the degree of membrane fouling, and the degree of up-
concentration. Moreover, process signals have different logging
frequencies on the data historian, and it is not expected that
shifting the signals to match with a minute precision would
make any significant difference. Instead, we use average values
over a fixed and equidistant time interval and no lagging for any
of the parameters. Additionally, also the reference value in this
study, the volume flux, is a weighed estimate based on the
permeate flow over the same time interval.

The UF system can only run for a limited period before the
membranes have to be cleaned. In daily practice, the UF
capacity is monitored based on the permeate flow out of the UF
loops and the retentate flow (FT’s in Figure 2). The operator
stops the unit and proceeds to cleaning when these parameters
drop to unacceptably low values. It is, however, problematic to
use these seven parameters for the postrun capacity evaluation,
especially since not all UF loops are in use all the time. Instead,
we calculate the volume flux (J, L-m™>h™") by relating the total
permeate flow to the working membrane area at every
timestamp. This is done according to the formula:

Uoe(£)-1000

0= woa <1>
where v,,,(t) is total permeate flow, summed values from all
loops, at time ¢, in m3h~!, 1000 is the adjustment for L instead
of m®, Wb(t) is the number of loops working at timestamp ¢,
based on the assumption that a loop is working if the power of
the corresponding centrifugal pump is larger than 1%, and A is
the membrane area corresponding to one loop (m?). It should
be noted here that all values, including time, have been scaled
to arbitrary units to mask proprietary information.

2.2. Structure of the Data Set. All data originates from an
ultrafiltration operation in a full-scale downstream process of
industrial enzymes. The process data set is a sample from
records registered over a year of production of one type of
intermediate enzyme product. A previous study'* brought our
attention to the processing variant which was associated with a
particularly rapid membrane fouling (called “recipe 3” in ref
14). Consequently, this group of production runs (I = 40) is in
the center of the follow-up investigation presented here. As in
the previous study, it was decided to analyze only the data
corresponding to the (quasi-)steady-state UF phase after
exclusion of the startup phase. The term “process tag” is used
throughout this study as a synonym for process signal or
variable; in the production environment it is used in reference
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to process operating variables which are sampled and stored in
the data historian. Forty-nine tags are physically installed near
the locations depicted in the UF diagram in Figure 2. Eight tags
from flow meters are excluded from the analysis, as they are
either used in the calculation of flux or conjugated to it, owing
to the regulation of concentration factor and pressure in the
unit. The “FV” tag of loop E is also excluded, as its value does
not vary across the data set. In addition, five meaningful
engineering parameters have been calculated based on the tags
shown in Figure 2 and some other process variables not
revealed. Hence, each UF run i (i = 1, .., I) is represented by a
data matrix X; with N; measurement occasions (timestamps) by
J variables (J = 4S). J's are average values over a fixed and
equidistant time interval of the original process operating
variables. The total number of timestamps over all data sets is
equal to N = YL N, = 623. Process measurements recorded
upstream have been compressed or expanded using linear
interpolation in the time dimension to match the length of the
corresponding UF run.

Flux (J, in Figure 2) is used as the dependent y-variable.
Figure 3 illustrates the variation in the flux profiles encountered

flux

(tmea) filtration time ~ tmax

Figure 3. Flux values/fouling profiles encountered in the investigated
data set (I = 40).

in the examined data set. These flux reduction profiles might at
first encounter resemble trajectories typically seen in batch
processes. Nevertheless, the perfect development in a steady-
state continuous UF process is expected to be a plateau,
preferably situated at a high flux level. One can also recognize
that runs significantly vary in length as filtration is stopped
either due to unacceptably low flux or because the order (a “lot
of material”) has been processed.'*

2.3. Data Analysis. We identify and compare two concepts
for organizing process signals into logical blocks. The first
blocking strategy is to group variables according to the
“physical location” of the sensors with respect to the process
layout as indicated by the shaded areas in Figure 2. This
resulted in the formation of ten blocks: (1) upstream
parameters, (2) feed, (3—8) recirculation loops A—F,( 9)
retentate, and (10) permeate. In this scenario, there are
between three and seven process variables per block. In the
second approach variables are grouped according to the
“engineering type of tags” (clustering together variables of
similar characteristics, e.g. readings from temperature sensors,
records from the centrifugal pumps, etc.). This blocking
strategy leads to the formation of nine groups as listed in the

frame presented in Figure 2, comprising between two and nine
variables.

Multiblock PLS with super level scores deflation of X and y
has been used throughout this work, the general structure of
which is depicted in Figure 1.'” In our computations first the
standard PLS models are calculated and examined. Next, the
multiblock parameters are determined from the optimized PLS
model interpretation using the super level scores to deflate X
and y.” Strategy with only y-deflation'”'” was also investigated.
The outcome was very similar as when both X- and y were
deflated, leading to exactly the same interpretation, and hence,
it is not presented here. Data analysis was performed using
Matlab (version 8.0.0.783/R2014a, Mathworks, USA) in
combination with in-house code and the PLS Toolbox (Version
7.9.5, Eigenvector Research Inc., Manson, WA, USA).

3. RESULTS AND DISCUSSION

3.1. PLS Model on Augmented Data. Steady-state
filtration data from the 40 runs has been concatenated in the
process tag direction (variable-wise), and all data has been
autoscaled. A PLS model is built between the process variables
X (NXJ) and the flux y (NX1). This way, every sampling time is
represented by a row vector of length equal to the number of
process variables and the number of rows is determined by the
time-horizon included in modeling (N). PLS models extract
latent variables (LVs) that explain the variation in the process
data X which is most predictive of flux and disregard the
measurement errors and random variations which are
uncorrelated with other X-variables and the flux. Stratified
cross-validation has been applied to determine the optimal
number of latent factors in the model where each of the
investigated runs (I) is assigned a number between 1 and 10
and four runs with the same numbers were removed at the
time. The average root mean squared error of cross-validation
(RMSECV) as a function of model complexity is plotted in
Figure 4 together with the root mean squared error of
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Figure 4. Calibration (RMSEC) and cross-validation (RMSECV)

errors for the PLS models constructed using all data (I = 40, N = 623)

or NOC data (I = 30, N = 508).

calibration (RMSEC). Results of cross-validation suggest that
the model works best using four LVs which corresponds to
explaining 86.8% flux variation and an RMSECV equal to 0.46
(arbitrary units). The first dimensions of the PLS model are
certainly the most dominant but for prediction purposes all
dimensions determined via cross-validation should be used.®
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Next, four data points (meaning four time stamps) which
appear extreme in the influence plot (not shown) have been
removed. Samples showing the outstanding behavior were
either from the very beginning or the end of a process run. In
these instances, pressure, which is normally tightly controlled
during UF, had been outside its normal limits. Removal of the
outlying data points did not affect the decision on the number
of LVs in the model which now corresponds to an RMSECV
equal to 0.45. The first LV explains the highest amount of
variation in y (68.8%) and the subsequent components explain
significantly less variation of the flux (13.1%, 3.4%, and 1.9%,
respectively).

Projection of the process time-points on the first two latent
factors reveals which runs follow the normal operating
conditions (NOC). Based on the LV1 vs LV2 score plot, it is
possible to classify the behavior of the process as NOC or AOC
(abnormal operating conditions). In Figure S, the behaviors of

10

Scores on LV 2 (6.59%)

L L

-20 -15 -10 -5 0 5 10

Scoreson LV 1(17.25%)

Figure 5. LV1 vs LV2 score plot of the PLS model constructed on
NOC data; three instances of AOC runs are projected onto the model:
blue and yellow represent abnormal pressure behavior, purple shows
abnormal temperature behavior (see text for details).

what were iteratively identified as the normal processes are
marked in gray on the LV1 vs LV2 score plot. Runs classified as
NOC start on the right side of the plot (high positive score)
and end on the left side of the plot (high negative score), and
they follow an arc-shaped trajectory. Thus, the first LV
represents mainly filtration time. The second LV (dictated by
the “stretch” of an arc) is related to the regulation on the first
two UF loops (A and B in Figure 2). Those data points which
are located outside the 95% coverage ellipse and which are
characterized by a high score on LV1 and a very low score on
LV2 represent the situation when not all loops are used at the
early stages of a UF run. This explanation could be found by
constructing the Hotelling’s T> contributions plot for those
timestamps (not shown) and confirmed by looking at the raw
data (not shown). Specifically, the Hotelling’s T* contributions
from the process sensors located on the first two loops were
high. It is not unusual to run with a lower capacity at the early
stages of ultrafiltration and add loops gradually over the course
of a process run. Furthermore, recirculation loops which are
physically located as first are added as the last. Therefore, these
data points which are characterized by a high score on the first
LV and a very low score on the second LV have been kept in

the model. Ten AOC runs have been removed iteratively from
the original data set, as they follow a distinctly different
trajectory to those of the NOC runs. It should be emphasized
here that all runs investigated are within predetermined quality
control limits. All the “abnormal runs” are associated with
optimization trials, operator interventions, or other known
causes. However, since our aim in this study is to elucidate the
relationship between process variables and regular permeate
flux decline it was decided to model NOC runs only. A new
PLS model was calculated using the remaining 30 runs. The
stratified cross-validation procedure points at three LVs as the
optimal number of components in this model (Figure 4) which
corresponds to an RMSECV equal to 0.40. Components used
explained jointly 89.0% of the variation in y and 35.9% of the
variation in X.

For a diagnostic interpretation Figure S includes three
instances of AOC runs which were projected onto the model
built using NOC data only. In general, the reason for the
outstanding behavior of the excluded runs could be related to
either a noticeable drift in the ultrafiltration pressure or extreme
temperature values. Abnormal events manifested themselves
along all three latent components. If the fault was related to
pressure, then it showed itself across LVI1. If the unusual
behavior was caused by extreme temperatures, then it could be
identified across LV2. Two examples of the first situation are
seen in Figure 5. This could be confirmed in the raw signals
involved in pressure regulation and monitoring as plotted in
Figure 6. Pressure is the driving force in a membrane filtration
system.'® Those measurements and the regulating pump are
strongly correlated owing to a stringent control over the
ultrafiltration pressure. Variable “PT,” (Figure 6) is the tag
directly controlled using the feed pump (“PT,”, Figure 6). The
three remaining pressure sensors are only monitored and not

. ’
9 (

9 (
‘

|
9

filtration time e

Figure 6. Signals related to pressure control (see Figure 2) in the UF
system collected during NOC runs (marked in gray) and examples of
the AOC runs: pressure related (blue and yellow) and temperature
related (purple; compare with Figure S).
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Figure 8. MB-PLS model variances explained when blocking is considered according to (a) physical location or (b) sensor type (see Figure 2 for

interpretation).

used in the closed loop feedback control. From this overview of
part of the raw data, it is clear that pressure at “PT,” is always
within its control limits. However, a clear decline in pressure at
other measuring points happened over the filtration time in the

10695

case of the above-mentioned runs. It is an interesting
observation that even though pressure at “PT,” is always
tightly and effectively controlled, pressure at the other
measuring points shows a strong decline in those runs. Also
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marked in Figure 5 (and in Figure 6 for completeness) is an
example of a situation when the processing temperature was
controlled significantly higher than usual.

It is interesting to note that in the case of the examined
process the first two LVs would be truly sufficient for the
monitoring purposes. This observation is consistent with the
recommendation made before for a large chemical process.’

3.2. Blocking in MB-PLS. Two MB-PLS models have been
calculated from the optimized PLS model (I = 30 runs, 3 LVs).
They differ in the way that variables are arranged in
conceptually meaningful blocks using system knowledge and
engineering insight (Figure 2). The objective is to keep track of
different blocks during the analysis which leads to a more
parsimonious investigation compared to keeping track of
individual variables. Block normalization was also investigated.
However, it was concluded that for our process it might force
the solution in a direction where the fact-finding aspect of the
MB-PLS models is suppressed. Moreover, no significant
improvement in terms of RMSECV was registered when
blocks entered the model with equal norm. This is a natural
consequence of the different building blocks being not too
different in size (ranging from two to eight variables). It should
be noted that if block normalization would have been used the
relation to the full model would be lost and the two blocking
approaches would not be comparable. This would certainly
make the model interpretation more complex. Therefore, the
two MB-PLS models presented in this study both have as
starting point the optimized PLS model described in the
previous section with each process tag having a weight one
(due to the autoscaling preprocessing).

Figure 7 presents the super level block weights of the two
MB-PLS model calculated when sectioning is done according
to physical location or to the sensor type. Figure 8 summarizes
the variances explained per block for each LV retained in the
model, again for the two blocking strategies. It is expected that
weights and variances explained point at similar phenomena on
the corresponding LV. From a phenomenological point of view
weights represent features in the process data X which are
related to the original flux values in y. In both blocking
strategies a solid coupling between variables in each block is
anticipated. In the case of physical blocking also a considerable
coupling between the sections is expected. On the other hand,
each section can face its own set of distinctive events like
membrane fouling (or e.g. more extreme upsets like leakage). It
is, therefore, rational to split up the process into physical blocks
and keep track of these sections separately. We found it most
useful when both blocking alternatives are interpreted together
rather than choosing one over the other. For instance, super
level block weights on the first LV point at loops A, F, B, and C
and at the feed valves and centrifugal pumps. To translate this
into process understanding, cross-flow regulation on the A, B,
C, and F loops can explain 75.7% of the variation in flux. The
second LV explains 11.3% of the variation in y, and implying
from the super level weights this can be related to the
temperature regulation on loops A, B and in the feed.

The third LV is explaining only 2.0% of the variation in flux.
Judging from the variances explained by this component, it is
primarily related to temperature regulation on loops D, E, and
F (Figure 8a). Yet, super level weights point at loop F being the
most important (Figure 7b).

Proper expert insight is necessary to clarify which of the
observed relations lead to new, unexpected findings and hence
can be used in optimization. After a closer inspection, a

dominant amount of the y variation covered by the first two
LVs can be explained by the mechanics of the UF system. For
instance, the cross-flow control on the recirculation loops is
indirectly responding to the degree of membrane fouling,
hence, to the flux decline. Most of the process signals dominant
on the first two LVs cannot be utilized to improve process
performance. In relation to the high variance explained by the
first LV, it is, however, interesting to have a closer look at the
“PT” tags which are third in terms of super level weight on this
component. Feed pressure (PT;) to the unit shows a decrease
over filtration run time, and it correlates positively to flux
decline (Figure 9, R* = 0.67, in relation to flux data shown in

filtration time trnax filtration time tnax

Figure 9. Pressure measured during the NOC runs (see Figure 2).

Figure 3). This observation would be very hard to make just by
looking at the raw data before the AOC runs have been
removed (Figure 6). Interestingly, except for variable “PT,”
which is the tag used in control, the other pressure monitoring
points show a drift over the filtration time. It could be an
indication that the current control strategy is not optimal and
that controlling the pressure using the other measurements in a
cascade setting may result in a more stable overall flux. This was
not revealed in our previous data mining approaches of a more
diversified data set where pressure tags quickly fall out of
analysis as they appeared constant over the course of
ultrafiltration."*

A second interesting observation from the MB-PLS models is
related to the third LV which, as was noted before, is associated
with temperature regulation in the last three recirculation loops.
Originally, temperatures have been at the same level on all
loops (represented by the red markers in Figure 10). At some
point in time it was decided to lower the temperature of the last
three loops (represented by green markers in Figure 10), and it
can be observed that most of the AOC runs belonged to the
first group (shaded markers in Figure 10). The two processing
recipe variants overlap on the first two LVs (Figure 10a). On
the other hand, Figure 10b shows that the third LV neatly
separates data according to the temperature on the last three
recirculation loops. This distinction is naturally even more
striking on temperature block level scores on the third LV (not
shown). Indisputably, the cross-validated PLS model (Figure 4)
points at a third LV as being important for the flux prediction.
Understanding this relation is however not straightforward
from the PLS scores and loading plots but can be explained
based on the more parsimonious representation of the MB-PLS
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Figure 10. (a) LV1 vs LV2 (analog to Figure 5) and (b) LV1 vs LV3
score plots of the PLS model constructed on NOC data colored
according to a temperature related processing recipe change: red
markers, equal temperature on all loops; green markers, lower
temperature on D-F loops; shaded markers, AOC (excluded) data
projected into the NOC PLS model; (c) mean (bold) and individual
(thin) flux reduction profiles encountered until median ultrafiltration
length, colored according to the recipe.

models and, afterward, on the low-level interpretation of the
raw data. If we compare the mean flux trajectories up to the

median filtration length of the investigated data set, it can be
seen that the higher processing temperature converts into
higher flux at the start of a run but a lower flux toward the end
(Figure 10c). This is also reflected in the first LV as the score
values of the runs with equal temperatures on all blocks are
more spread on this latent component (Figure 10a). This
corresponds to faster membrane fouling at the higher
temperatures. It is important to recall here that optimization
of a UF system is combined mechanistic and stochastic
challenge. The MB-PLS model identified more mechanistic
(run time along LV1 in Figure 10a) or operational principles
(temperature recipe along LV3 in Figure 10b). But Figure 10c
shows that for the same settings the flux decline profiles still
differ significantly. Hence, next to operational recipe and local
closed-loop control strategies there are obvious opportunities
to improve the performance of a complex system like
ultrafiltration by data-driven statistical process control.

4. CONCLUSIONS

The interpretability of the PLS model can be more holistic and
simplified by calculation of the lower and super level multiblock
parameters. In the approach taken by us, MB-PLS is not a
different variant of the PLS model, but an additional set of
diagnostics offering a prompt overview of the most important
phenomena happening in the data. In the investigated process,
we identify two natural ways to block the data and find it most
useful to use them together. As process variables were assigned
to groups corresponding to distinct phases of the process or
belonging to similar engineering types of sensors, it was
considerably easier to study and interpret the behavior of these
blocks rather than keeping track of forty-five individual loading
values. The upper level of the MB-PLS indicates the
relationship between different groups of variables and points
at those which are the most relevant in the prediction of flux
and flux decline. This multiblock feature is helpful in
concentrating efforts of the process engineers on those areas
that have an optimization potential.

Similarly to our previous study, it appears that higher
processing temperature can have both positive and negative
consequences to the UF flux. Additionally, a potential field for
improvement has been reported, related to the pressure
monitoring point used in the closed loop feedback control of
ultrafiltration pressure.

In a previous manuscript,'* we have used blocking in the row
or time direction to look at differences and similarities between
and within process runs. It could be a useful future perspective
to develop methods capable of blocking in both the row and
column directions—hence, time or dynamics and equipment
layout—which in turn could relax the exploration and analysis
of the multivariate historical data sets even more.
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