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Abstract

Obesity and its comorbidities are an increasing challenge for both affected individuals and

health care systems, worldwide. In obese individuals, perturbation of expression of both pro-

tein-coding genes and microRNAs (miRNA) are seen in obesity-relevant tissues (i.e. adi-

pose tissue, liver and skeletal muscle). miRNAs are small non-coding RNA molecules which

have important regulatory roles in a wide range of biological processes, including obesity.

Rodents are widely used animal models for human diseases including obesity. However,

not all research is applicable for human health or diseases. In contrast, pigs are emerging

as an excellent animal model for obesity studies, due to their similarities in their metabolism,

their digestive tract and their genetics, when compared to humans. The Göttingen minipig is

a small sized easy-to-handle pig breed which has been extensively used for modeling

human obesity, due to its capacity to develop severe obesity when fed ad libitum. The aim of

this study was to identify differentially expressed of protein-coding genes and miRNAs in a

Göttingen minipig obesity model. Liver, skeletal muscle and abdominal adipose tissue were

sampled from 7 lean and 7 obese minipigs. Differential gene expression was investigated

using high-throughput quantitative real-time PCR (qPCR) on 90 mRNAs and 72 miRNAs.

The results revealed de-regulation of several obesity and inflammation-relevant protein-cod-

ing genes and miRNAs in all tissues examined. Many genes that are known to be de-regu-

lated in obese humans were confirmed in the obese minipigs and several of these genes

have target sites for miRNAs expressed in the opposing direction of the gene, confirming

miRNA-mediated regulation in obesity. These results confirm the translational value of the

pig for human obesity studies.
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Introduction

Obesity is an increasing problem in the developed world due to obesity derived co-morbidities,

such as dyslipidemia, type 2 diabetes, high blood pressure, cardio vascular disease and cancer,

which are life threatening and costly for health care systems [1]. Obesity is defined as an excess

in accumulation of adipose tissue. Adipose tissue is an endocrine organ and many of the obe-

sity-derived comorbidities are linked to dysfunctional adipose tissue. Signaling in adipose tis-

sues occur to and from other tissues such as the skeletal muscle and liver, which are affected by

lipid spill-over from the adipose tissue and from the chronic low grade inflammation com-

monly seen in obesity [2]. Changes in adipose tissue signaling can be measured at the RNA

level and many of the obesity-relevant genes are potentially regulated by microRNAs (miR-

NAs). miRNAs are small non-coding RNAs that bind predominantly to the 3’untranslated

region (3‘UTR) of target mRNAs and degrade the mRNAs and/or inhibit their translation.

miRNAs regulate genes in many physiological processes, as well as in different developmental

stages and in different disease states, including obesity [3].

Pigs are an excellent model for human diseases due to their similarities in physiology, organ

size, genetics and metabolism [4,5]. The Göttingen minipig is a frequently used model for

human diseases due to their smaller size compared to production pigs, which makes housing

and handling of the pigs easier. Furthermore, Göttingen minipigs spontaneously develop obe-

sity when fed ad libitum [6,7]. Female Göttingen minipigs have the potential to become more

obese, more insulin-resistant and have higher plasma lipid levels than male Göttingen mini-

pigs [8]. Recent findings from our group examening quantitative trait locis (QTLs) influencing

obesity and metabolic traits in a Göttingen minipig x production pig crossbreed obesity

model, revealed that several genes located in obesity-relevant QTLs, overlap with findings in

human studies [9]. This research emphasizes the value of a porcine model for human obesity.

Moreover, in our previous research we have shown that miRNAs are differentially expressed

in lean versus obese pigs from the same pig population, confirming their relevance in obesity

studies [10]. One challenge with working with the pig as a model for miRNA studies is the

issue of miRNA target finding. In silicomiRNA target finding websites and databases of experi-

mentally supported miRNA targets, are only available for human and some other common

model organisms such as the mouse and the worm [11–15]. Hence, custom target finding

strategies must be designed for miRNA target finding in pigs.

Studying the expression of protein-coding genes and miRNAs in obesity-relevant tissues of

obese and lean animals, may reveal some of the underlying genetic and regulatory mechanisms

in the progression of obesity and may further validate the Göttingen minipig as good model

for obesity. In this study, gene and miRNA expression was investigated in the liver, skeletal

muscle and abdominal adipose tissue of 7 obese and 7 lean female minipigs. A custom strategy

for finding miRNA-targets within differentially expressed protein coding genes was also

applied.

Materials and Methods

Animal material

The 14 female ovariectomized Göttingen minipigs used for the study were housed at the ani-

mal research facilities at the University of Copenhagen (Taastrup, Copenhagen) and humanely

euthanized by pentobarbital injection followed by bleeding at 41–47 months of age. The lean

group (n = 7), were fed restrictively 150 g of standard minipig chow, two times a day and the

obese group (n = 7), were fed ad libitum. The obese group had previously been used in phar-

macological studies with therapeutic peptides but underwent a suitable wash-out period, based
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on multiple half-lives of the peptide, prior to this study. Abdominal (retroperitoneal) adipose

tissue, skeletal muscle and liver were collected immediately after euthanization, snap-frozen in

liquid nitrogen and stored at -80˚C. The Danish Animal Experiments Inspectorate approved

all experimental procedures involving the Göttingen minipigs Animal care and maintenance

was performed according to the Danish “Animal Maintenance Act”, Act 432 dated 09/06/

2004.

RNA purification

Frozen tissue was homogenized in Tri Reagent (MRC gene, Molecular Research Center, Inc)

using a gentleMACS Octo Dissociator (Miltenyi Biotec). RNA extraction was performed

according to the manufacturer’s protocol, using chloroform for phase separation. For RNA

extraction from adipose tissue, visible fat was removed following the first centrifugation step,

before proceeding with the protocol.

Liver and muscle RNA samples to be used for mRNA qPCR were DNAse treated using

DNA-freeTM Kit (Ambion) with a reaction volume of 50 μl and a maximum RNA content of

10 μg, according to the protocol. Abdominal adipose tissues samples were not DNase treated,

due to very low RNA yields.

RNA concentration was measured using a NanoDrop ND-1000 Spectrophotometer

(Thermo Fisher Scientific) and the purity assessed from the OD 260/280 ratio.

RNA integrity was measured by the Experion system (Bio-Rad) using the Eukaryote Total

RNA StdSens Analysis Kit. Only samples with a RQI� 7 (6 for abdominal fat) were used for

downstream analysis (Mean ± SD of RQI: Abdominal adipose tissue 7.90 ± 0.64, liver 8.54 ±
0.64 and skeletal muscle 7.98 ± 0.67).

cDNA synthesis

cDNA synthesis for the mRNA qPCR study was made in duplicates from 200 ng RNA of each

sample in a final reaction volume of 10 μl. 0.5 μl Improm-II™ reverse transcriptase (Promega),

0.25 μg 1:3 OligodT/random primers, 2 μl ImProm-II buffer, 10 units RNasin Ribonuclease

inhibitor (Promega), 2.5 mM MgCl2 and 2 mM dNTP mix. Reactions were incubated for 5

min at room temperature, 1 hour at 42˚C and 15 min at 70˚C to inactive the enzyme according

to the manufacturer’s instructions. A negative control was made for each tissue with no reverse

transcriptase added (-RT control). The cDNA was diluted 1:8 prior to qPCR and stored at

-80˚C until use.

cDNA synthesis for the miRNA qPCR study was made according to the miRspecific

method [16,17]. Briefly, cDNA was made in duplicates from 100 ng RNA of each samples in a

final reaction volume of 10μl. 1μl 10x poly(A) polymerase buffer ((New England Biolabs), 0.1

mM ATP, 1 μM RT-primer (5’-CAGGTCCACTTTTTTTTTTTTTTTVN; V = A, C and G;

N = A, C, G and T, TAG Copenhagen), 0.1 μM dATP, 0.1 μM dCTP, 0.1 μM dGTP, 0.1 μM

dTTP, 100 units MuLV reverse transcriptase (New England Biolabs) and 1 unit poly(A) poly-

merase (New England Biolabs). The cDNA was diluted 1:16 prior to qPCR and stored at -80˚C

until use.

Primer design

The genes included in this study were individually selected based on results from previous obe-

sity studies in pigs and other organisms as well as unpublished information obtained from

conferences [9,10,18–20]. Primer sequences for protein coding gene expression were designed

using the Primer3 software (http://bioinfo.ut.ee/primer3/). They were designed to make a

miRNA and mRNA Profiling in Pig Obesity Model
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product in the range of 75–200 nucleotides, and if possible, were designed to span a large

intron. Some primer sequences were also obtained from other pig studies [21–23].

Primers for miRNA were designed using the miRprimer software [24]. All miRNA primer

sequences have previously been published [18]. All primers sequences can be found in the sup-

plementary file S1 Table.

qPCR

High-Throughput qPCR was conducted using the Biomark HD system (Fluidigm Corpora-

tion) on a 96.96 IFC chip. 15 cycles of pre-amplification of 8x diluted cDNA using TaqMan

PreAmp Master Mix (Life Technologies) and subsequent cleanup with Exonuclease I (New

England BioLabs) was performed according to the manufacturer’s protocol (Fluidigm PN

100–5875 C1). A single modification was made, including an altered concentration of primers

at 250 nM in the primer pool. Exonuclease cleaned cDNA was diluted 5x before running the

qPCR reactions using SsoFastTM EvaGreen1 Supermix with Low ROX (Bio-Rad Laborato-

ries) according to the manufacturer’s instructions (PN 100–9792 B1) with a modification of

using primer concentrations of 5 μM. Standard curves were performed using pre-amplified

cDNA in 5x dilution rows. Data was obtained using the associated software.

qPCR data analysis

The efficiency of the primer assays was calculated from the log-linear portion of the standard

curves. For high-throughput qPCR efficiency of 85–110% was accepted with an R2 > 0,98.

miRNAs that had expression levels outside the standard curve, but had robust data had their

efficiencies set to 1. All qPCR data was analyzed using GenEx6 Pro (MultiD Analyses AB).

For the protein-coding gene expression study, quantification cycle (Cq) values where nor-

malized to the geometric mean of the most stable assays (Adipose tissue: 45 genes, Liver: 38

genes, Muscle: 54 genes) which were determined using the NormFinder algorithm [25].

miRNA qPCR data was normalized to the mean expression value of all expressed miRNAs as

recommended for large-scale miRNA studies [26].

Technical replicates from the reverse transcription were averaged. Relative expression of

the lowest expressed sample for each assay was set to 1 and the data was log2 transformed to

achieve normal distribution. Student’s t-test was used for statistical analysis. Due to limited

material from the abdominal adipose tissue samples, only 5 animals in the obese group was

used for the miRNA study. Raw Cq values, efficiencies and t-test results are shown in the sup-

plementary file, S1 Dataset.

All figures were produced using Graphpad Prism 6 (Graphpad Software).

miRNA-target interactions

To the best of our knowledge, no compiled database reporting miRNA binding sites in porcine

transcripts exists. Therefore, two parallel strategies were used to find the links between differ-

entially regulated miRNAs and mRNAs; 1) miRNA target prediction using pig transcript

sequences and 2) homologous interaction search using human transcripts.

Strategy 1: The reference sequence (refSeq) transcript identifiers of the sequences targeted

by the primers was confirmed and retrieved by the Primer-BLAST web interface [27]. mRNA

sequences in FASTA format were manually retrieved using the NCBI web interface and open

reading frame (ORF) region information was used to locate the 3’UTR regions. Mature

miRNA sequences were obtained from miRBase version 21 [28]. Three different tools,

miRanda [29], PITA [30], and RIsearch2 (a suffix array enhanced improved version of

RIsearch) (Alkan et al, submitted) [31], were used to predict miRNA-mRNA interactions

miRNA and mRNA Profiling in Pig Obesity Model
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between differentially expressed pig transcripts using default parameter settings. This was per-

formed including both the differentially expressed mature miRNA and full mRNA sequences.

In this study, interactions predicted on ORF and 5’UTR regions were filtered out and we only

focused on the canonical miRNA target sites within 3’UTR regions.

Strategy 2: interactions between homologous miRNA and mRNA sequences in human

were also assessed. Homologous mature miRNA sequences in humans were identified using

the “search by sequence” option in miRBase using the mature miRNA sequences of all differ-

entially expressed pig miRNAs. For differentially expressed pig mRNAs, homologous protein-

coding genes were retrieved from Ensembl version 84 by using BioMart martview [32]. To

find experimental support for interactions between identified human miRNA and mRNA

homologs, TarBase v7.0 [11] was queried for homologous miRNA-mRNA pairs with experi-

mental support for interaction. The RAIN database (http://rth.dk/resources/rain), which

incorporates RNA interactions into the STRING database (Junge et al, submitted) [33] was

also queried to find further experimental evidence for possible RNA–RNA interactions within

human homologs. The RAIN database compiles RNA–RNA interactions, not only from vari-

ous experimental miRNA target databases, such as StarBase [12] and miRTarBase [13], but

also provides interaction predictions between all human miRNAs and 3’UTR sequences by

using several different tools, including miRanda, PITA, TargetScan [14] and STarMiRDB [15].

All interactions can be found in S2 Dataset.

Results

Lean and obese minipigs differ significantly in their bodyweight (kg±SEM, 50.3±1.6 vs. 92.6

±5.2) and other physical traits, such as fat mass measured by dexa scan (kg±SEM. 12.9±1.0 vs.

36.4±2.7). However, they do not differ significantly in their plasma lipid levels. A full table of

phenotypic traits registered in these minipigs has been previously published [6].

High-throughput qPCR on both lean and obese Göttingen minipigs showed significantly

different expression profiles in all three tissues for both protein-coding genes and miRNAs.

Figs 1–3 shows all significantly differently (p< 0.05, t-test) differentially expressed genes and

miRNAs with a fold change (FC) of either above or below 1.5, depending on up- or downregu-

lation in the obese minipigs. The genes with the highest fold change are reported for each indi-

vidual tissue with p values in the sections below. Raw Cq values and t-test data for all analyzed

genes and miRNAs are reported in supplementary file S1 Dataset.

Differentially expressed protein-coding genes and miRNAs in abdominal

adipose tissue

The differentially expressed protein-coding genes are shown in Fig 1A. Stearoyl-CoA Desatur-

ase (SCD1) (FC 10.2; p value: 2.71x10-4) was the most upregulated gene in the obese pigs and

the second most upregulated gene was Chemokine (C-X-C Motif) Receptor 4 (CXCR4) (FC

3.4; p value: 6.23x10-5). Patatin-Like Phospholipase Domain Containing 3 (PNPLA3), Leptin

(LEP), Interleukin 6 (IL-6), Interleukin 18 (IL-18), Chemokine (C-X-C Motif) Ligand 14

(CXCL14), Toll-Like Receptor 4 (TLR4), Molybdenum Cofactor Sulfurase (MOCOS) and

Sphingomyelin Phosphodiesterase, Acid-Like 3A (SMPDL3A) were all upregulated and had

fold changes > 1.5 and p values < 0.05. The most downregulated gene was β-klotho (KLB) (FC

2.1; p value: 1.81x10-5). Diacylglycerol O-Acyltransferase 2 (DGAT2), Adiponectin (ADIPOQ),

V-Akt Murine Thymoma Viral Oncogene Homolog 2 (AKT2) and Jagged 1 (JAG1) were all

downregulated with fold changes of< -1.5 and p values< 0.05.

Differentially expressed miRNAs are shown in Fig 1B. No miRNAs were upregulated with a

fold change > 1.5 and a p value < 0.05. However, miR-9 was highly downregulated (FC 7.6;

miRNA and mRNA Profiling in Pig Obesity Model
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p value 0.046). In addition, miR-30a, miR-125a and miR-148a all had fold changes of< -1.5

and p values< 0.05.

Differentially expressed protein-coding genes and miRNAs in liver

Differentially expressed protein-coding genes are shown in Fig 2B. Leptin receptor (LEPR)

(FC 4.6; p value: 0.03), CXCR4 (FC 3.93; p value: 2.31x10-5) and v-Myc Avian Myelocytomato-

sis Viral Oncogene homolog (MYC) (FC 3.56; p value: 0.03) were the most highly upregulated

genes in obese minipig liver and Interleukin 10 (IL-10) and Chemokine (C-C Motif) Ligand 2

Homolog (CCL2) were the most downregulated. ELOVL Fatty Acid Elongase 6 (ELOVL6), C-

reactive protein (CRP), Aquaporin 7 (AQP7), Peroxisome proliferator-activated receptor A

Fig 1. Expression of protein coding genes and miRNAs in adipose tissue. (A) Protein-coding genes and

(B) miRNAs with a fold change of > ±1.5 and significant differential expression with a p value < 0.05 (Student´s

t test) are shown. The fold change (Obese/Lean) for each significant gene is shown. A positive fold change

denotes upregulation in obese Göttingen minipigs and a negative fold change denotes down regulation in

obese Göttingen minipigs.

doi:10.1371/journal.pone.0167285.g001
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(PPARA), Adiponectin Receptor 2 (ADIPOR2), Nuclear Factor Of Kappa Light Polypeptide

Gene Enhancer In B-Cells 1 (NFKB1), Glucose transporter 4 (GLUT4) and Tumor Necrosis

Factor Receptor Superfamily, Member 6 (FAS) were all up regulated with fold changes of> 1.5

and p values< 0.05. Snail Family Zinc Finger 2 (SNAI2), tumor necrosis factor A (TNF), Lipo-

calin 2 (LCN2) and Pellino E3 Ubiquitin Protein Ligase Family Member 2 (PELI2) were all

downregulated with fold changes of< -1.5 and p values< 0.05.

Differentially expressed miRNAs are shown in Fig 2B. MiR-34a (FC 2.4; p value 1.0x10-3)

was the most upregulated miRNA. MiR-1285 and miR-199a-5p were also up regulated with

fold changes of> 1.5 and p values < 0.05. MiR-181d (FC 2.27; p value 0.03) was the most

downregulated while miR-195 and miR-16 were down regulated with fold changes < -1.5 and

p values< 0.05.

Fig 2. Expression of protein coding genes and miRNAs in liver. A) Protein-coding genes and (B) miRNAs

with a fold change of > ±1.5 and significant differential expression with a p value < 0.05 (Student´s t test) are

shown. The fold change (Obese/Lean) for each significant gene is shown. A positive fold change denotes

upregulation in obese Göttingen minipigs and a negative fold change denotes downregulation in obese

Göttingen minipigs.

doi:10.1371/journal.pone.0167285.g002
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Differentially expressed protein coding genes and miRNAs in skeletal

muscle

Differentially expressed protein-coding genes are shown in Fig 3A. LEP (FC 4.1; p value

0.027), IL-18 (FC 3.4, p value 1.2x10-3) and Uncoupling Protein 3 (UCP3) (FC 2.8; p value

1.7x10-3) were the most upregulated genes in muscle. ADIPOR2, CCAAT/Enhancer Binding

Protein a (C/EBP-a), AQP7 and SMPDL3A were all up regulated with fold changes of> 1.5

and p values< 0.05. IL8 (FC -4.5; p value 0.01) was the most down regulated gene. CCL2,
TNFa, Myostatin (MSTN), Retinoic acid receptor-related orphan receptor α (RORA) and

ELOVL Fatty Acid Elongase 4 (ELOVL4) were all downregulated with fold changes of< -1.5

and p values< 0.05.

Fig 3. Expression of protein coding genes and miRNAs in skeletal muscle. Protein coding genes (A)

and miRNA (B) with a fold change of > ±1.5 and significant differential expression with a p value < 0.05

(Student´s t test) are shown. The fold change (Obese/Lean) for each significant gene is shown. A positive fold

change denotes upregulation in obese Göttingen minipigs and a negative denotes downregulation in obese

Göttingen minipigs.

doi:10.1371/journal.pone.0167285.g003

miRNA and mRNA Profiling in Pig Obesity Model
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Differentially expressed miRNAs are shown in Fig 3B. MiR-215-5p (FC 3.1; p value 0.02)

and miR-1285 (FC 2.9; p value 7.35x10-5) were the most upregulated miRNAs. MiR-208b-3p,

miR-1, miR-16 and miR-195 were upregulated with a fold change of> 1.5 and p value< 0.05.

MiR-9 (FC -8.5; p value 0.02) was the most downregulated miRNA. MiR-204, miR-148a, miR-

30a, miR-196b, and miR-17a were downregulated with fold changes of< -1.5 and p values <

0.05.

miRNA-target analysis

The results from the miRNA-target analysis are summarized in supplementary file S2 Dataset,

where predicted interactions between differentially expressed pig miRNA and pig mRNAs

can be observed together with predicted and experimental support in human homologs for

interactions.

Table 1 shows selected predicted miRNA-mRNA interactions. miRNA-mRNAs were

selected if PITA, miRanda and RIsearch2 all showed potential interactions in pig, or if two of

them showed potential interactions in pig, together with supplementary experimental evidence

in human. A couple of interactions are shown where there is extensive support for interaction

in humans, but none in pigs. LEP was the gene containing the most miRNA target sites, i.e. is

targeted by miR-148a-3p, miR-125a-5p, miR-30a, miR-9-5p and miR-17-5p. All these

miRNA-target interactions have support from both porcine and human predictions. SCD is

also targeted by many of the same miRNAs, namely miR-148a-3p, miR-125a-5 and miR-9-5p.

Discussion

In this study, 7 lean and 7 obese Göttingen minipigs were used for studying differential mRNA

and miRNA expression in abdominal adipose tissue, liver and skeletal muscle. In total, 40 pro-

tein-coding genes and 18 miRNAs were significantly differentially expressed with fold changes

larger than 1.5 suggesting important differences in obesity-relevant gene expression between

lean and obese Göttingen minipigs. We expected to encounter a large number of differentially

expressed protein-coding genes and miRNAs in this study, since the genes included were indi-

vidually selected, based on results from previous obesity studies in pigs and other organisms as

well as unpublished information obtained from conferences [9,10,18–20]. Previous studies

using the same animals have shown significant differential expression of several other inflam-

mation (mainly genes involved in innate immunity) and obesity relevant genes in multiple tis-

sues as well as a slight enlargement of the adipocytes within the obese minipigs [20,22]. A

custom miRNA-target finding strategy was applied and miRNA-target sites were discovered in

several of the differentially expressed genes.

Many of the differentially expressed genes in obese versus lean minipigs were de-regulated

in the same pattern as seen in studies of obese human and mice. Furthermore, several of these

genes were targeted by miRNAs previously detected in obesity studies. IL18, LEP and

SMPDL3A were upregulated in both adipose tissue and muscle of obese pigs and the leptin

receptor, LEPR, was upregulated in the obese liver. IL-18 is a pro-inflammatory cytokine

expressed in macrophages but also adipocytes and muscle cells and its expression correlates

with obesity, type 2 diabetes and the metabolic syndrome [34]. Serum leptin levels correlates

with obesity and hepatic steatosis and the leptin receptor in liver regulates lipid droplet accu-

mulation in the liver [35,36]. LEP has target sites for three miRNAs: MiR-30a, miR-148a and

miR-9-5p which were all downregulated in obese adipose tissue and muscle. MiR-30a and

miR-148 are both involved in adipocyte differentiation, downregulated in obese adipose tissue

in mice and are involved in myogenic differentiation [37–39]. In contrast, MiR-9-5p is upregu-

lated in serum of human diabetic patients and, in another study, upregulated in porcine
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adipose tissue from a mixed breed population [10,40]. LEP also has a target site for miR-125a,

which is downregulated in obese adipose tissue, an observation in agreement with human

studies [41]. MiR-9-5p, miR-148a and miR-125a also have target sites in SCD, which is upregu-

lated in the adipose tissue of the obese minipigs. SCD is a catalyzer of fatty acid conversion and

the transcript is also upregulated in obese rats and in humans where SCD expression in adipose

tissue correlates with BMI [42,43]. SMPDL3A is upregulated by cholesterol loading in human

Table 1. miRNA-target interactions.

Tissue miRNA mRNA Target in pig Target in human

Adipose tissue miR-148a-3p LEP P, M, R P

SCD P, M, R M, Exp

miR-125a-5p LEP P, M, R P, M, T

SCD P, M, R P, M, T, Exp

miR-30a PNPLA3 P, M, R -

LEP P, M, R P,

miR-9-5p LEP P, M, R P, M, T

SCD P, M, R P, M, T

CXCR4 - P, D, M, T, Pi

CXCL14 P, M, R P

Liver miR-34a LCN2 P, M, R Exp

miR-1285 LCN2 P, M, R -

miR-181d-5p ADIPOR2 P, R P, Exp

FAS P, M, R P, M, Exp

PPARA - T, Exp

miR-16 GLUT4 P, R Exp

FAS P, M, R -

NFKB1 P, M, R -

miR-195-5p FAS P, M, R -

Muscle miR-1 RORA P, M, R -

TNF P, M, R -

miR-195-5p RORA P, M, R -

miR-16 CCL2 - Exp

RORA P, M, R -

ELOVL4 P, M, R P, M, S

miR-30a LEP P, M, R P,

UCP3 P, M, R P, M, T

miR-9-5p CEBPA P, M, R -

LEP P, M, R P, M, T

UCP3 P, M, R P, M, T

miR-204 CEBPA P, R Exp

ADIPOR2 P, R P, M, Exp

miR-196b-5p ADIPOR2 P, R Exp

miR-148a LEP P, M, R P

miR-17-5p LEP P, M, R P,M

UCP3 P, M, R P, M, S, T

miRNA and target genes with support for a miRNA-target site by 3 tools in pig or experimental evidence in humans. The full list of interactions is available in

Supplementary file S2 Dataset. P: PITA, M: miRanda, R: RIsearch2 T: TargetScan, D: miRDB, Pi: Pictar, S: STarMiRDB, Exp: Experimental evidence.

miRNA annotation follows the miRBase annotation for porcine miRNAs.

doi:10.1371/journal.pone.0167285.t001
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macrophages and is upregulated in thoracic aorta of obese Ossabaw pigs and in adipose tissue

of obese pigs [19,44,45].

PNPLA3, IL-6, CXCL14 and TLR4 are upregulated in the adipose tissue of obese minipigs.

PNPLA3 has a target site for miR-30a. PNPLA3 is upregulated in adipose tissue of obese mice

and its expression is regulated by changes in the energy balance in humans [46,47]. IL-6 is a

pro-inflammatory cytokine that regulates lipid metabolism in adipose tissue and plasma IL-6

levels correlates with BMI in humans [48,49]. CXCL14 encodes a macrophage chemo-attrac-

tant and is also upregulated in adipose tissue of obese mice [50]. CXCL14 has a target site for

miR-9-5p. TLR4 activates pro-inflammatory responses and is upregulated in adipocytes of

obese mice [51].

ELOVL6, CRP and FAS are all upregulated in the obese liver. ELOVL6 promotes develop-

ment of non-alcoholic steatohepatitis (NASH) and insulin resistance [52,53]. CRP levels in

blood are used to measure inflammation, but is also elevated in liver of obese humans, inde-

pendently if they suffer from metabolic syndrome and NASH [54]. FAS is a cell surface death

receptor involved in apoptosis and it’s expression is increased in patients with NASH [55].

FAS has target sites for miR-195, miR-181d and miR-16 that were all downregulated in the

liver of the obese minipigs. In contrast, miR-195 is upregulated in the liver of type 2 diabetic

rats [56].

CEBPA and UCP3 are upregulated in the obese muscle. C/EBP-α is a transcription factor

involved in macrophage activation [57]. It has target sites for miR-9-5 and miR-204. UCP3

facilitates fatty acid uptake and metabolism and overexpression of UCP3 lowers intramuscular

triglyceride content in mice [58]. If mice are fed a high fat diet UCP3 is upregulated and gene

variants for UCP3 are associated with childhood obesity [59,60]. Furthermore UCP3 has a tar-

get site for miR-17a which is also down regulated in human obesity [61].

Some genes, which have been shown to have a protective function when overexpressed, are

up regulated in the obese minipigs, but are normally down regulated in obesity in humans or

rodents. One example is CXCR4 which is upregulated in liver and adipose tissue. CXCR4 is a

chemokine receptor expressed in adipocytes, macrophages and hepatic stellate cells that pro-

tects against obesity and obesity associated inflammation [62,63]. In humans, CXCR4 is a veri-

fied target gene of miR-9 [64] and there is extensive support for a human target site in Table 1,

but no support for a porcine target site. Another example of protective gene expression is ADI-
POR2which is upregulated in both obese liver and muscle. Overexpression of ADIPOR2 in the

liver of NASH model mice showed that ADIPOR2 expression in liver improves NASH [65].

ADIPOR2 is targeted by the downregulated miRNAs miR-181d, miR-92a, miR-204 and miR-

196b-5p. MiR-181d is downregulated in serum of NAFLD patients [66]. MiR-92a is generally

downregulated in animal models of diabetes [67]. MiR-204 is also downregulated in adipose

tissue of obese mice [68].

Some obesity and/or pro-inflammatory genes are also down regulated in the obese mini-

pigs. An example is LCN2which is downregulated in the obese liver. In a study of human mor-

bidly obese patients, LCN2 is induced by inflammatory cytokines and is shown to be regulated

by TNF-α [69]. LCN2 has target sites for miR-34a and miR-1285, which are both upregulated

in the liver. MiR-34a is also upregulated in the liver of obese mice [70].

An explanation for the reverse expression direction of some obesity relevant genes could be

that the Göttingen minipigs in this study represent a more healthy obese phenotype since they

do not have significant differences in plasma lipids and insulin resistance [6]. The minipigs

had access to ad libitum standard pig chow, with no excess fat and sugar contents as is seen in

many studies of diet-induced obesity, including studies where female minipigs develop differ-

ences in plasma lipids [8]. Moreover, the obese minipigs used in the present study had previ-

ously been subjected to pharmacological studies of therapeutic peptides. Therefore, it cannot
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be ruled out, that the peptides might have permanently altered the gene expression towards a

more healthy obese direction. However, the overall gene expression mimics what has been

observed in other pig, human and rodent studies. Follow-up studies on obese minipigs fed a

high fat diet versus a regular pig diet, on pigs that have not been subjected to previous experi-

mental studies, would be highly relevant.

In conclusion, the expression pattern of a number of obesity-relevant genes and miRNAs in

minipigs is in accordance with the expression pattern seen in comparable humans and rodent

studies. On the other hand, the expression pattern of some of the transcripts investigated in is

discordant with studies in humans and rodents, which could be a consequence of a slightly

healthier obese phenotype of the Göttingen minipigs used in this study. Most importantly,

many of the differentially expressed genes have target sites for miRNAs, and these miRNAs are

expressed in the opposing direction, confirming the importance of miRNA-mediated regula-

tion of genes in obesity.

Supporting Information

S1 Dataset. Raw Cq values and t-test result from qPCR.

(XLSX)

S2 Dataset. miRNA-target analysis.

(XLSX)

S1 Table. Primer sequences for miRNAs and mRNAs.

(XLSX)

S1 Text. List of abbreviations.

(DOCX)

Acknowledgments

We thank SG Moesgaard and BØ Christoffersen for obtaining the minipigs and Maria Stumph

Jensen for assistance in RNA purification. We also thank Vanessa Hall for improving the

grammar in the manuscript.

Author Contributions

Conceptualization: CMJM SC MF JG.

Data curation: CMJM FA.

Formal analysis: CMJM FA MJJ SC.

Funding acquisition: MF JG.

Investigation: CMJM HK FA.

Methodology: CMJM SC MF FA JG.

Project administration: CMJM SC MF.

Resources: JG MF SC.

Supervision: SC MF JG.

Visualization: CMJM.

Writing – original draft: CMJM.

miRNA and mRNA Profiling in Pig Obesity Model

PLOS ONE | DOI:10.1371/journal.pone.0167285 November 30, 2016 12 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0167285.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0167285.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0167285.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0167285.s004


Writing – review & editing: MF SC MJJ FA HK CMJM.

References
1. WHO | Obesity and overweight [Internet]. World Health Organization; 2015 [cited 3 Mar 2016] p. Fact

sheet N˚311. http://www.who.int/mediacentre/factsheets/fs311/en/

2. Goossens GH, Blaak EE. Adipose Tissue Dysfunction and Impaired Metabolic Health in Human Obe-

sity: A Matter of Oxygen? Front Endocrinol (Lausanne). 2015; 6: 55.

3. Vienberg S, Geiger J, Madsen S, Dalgaard LT. MicroRNAs in Metabolism. Acta Physiol (Oxf). 2016;

4. Spurlock ME, Gabler NK. The development of porcine models of obesity and the metabolic syndrome.

J Nutr. 2008; 138: 397–402. PMID: 18203910

5. Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, et al. Analyses of pig

genomes provide insight into porcine demography and evolution. Nature. 2012; 491: 393–398. doi: 10.

1038/nature11622 PMID: 23151582

6. Boonen HCM, Moesgaard SG, Birck MM, Christoffersen BO, Cirera S, Heegaard PMH, et al. Functional

network analysis of obese and lean Göttingen minipigs elucidates changes in oxidative and inflamma-
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