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1 Introduction

String theory has been extremely useful in providing alternative avenues for representing

amplitudes in quantum field theory. One reason for this is string theory’s totally different

organization of terms in the scattering amplitudes, and the manner in which it is completely

detached from conventional Feynman diagram evaluations. Irrespective of string theory’s

potential as a unified description of nature, the formalism has provided us with novel tools

with which field theory amplitudes can be understood. This was noted early on [1] and the

whole field of string-based rules for scattering amplitudes in field theory [2] illustrates this.

Other examples include the simple and unified proof of field theory identities such as Kleiss-

Kuijf relations [3] and BCJ relations [4] in terms of monodromy in string theory [5, 6]. Much

additional information about field theory amplitudes can indeed be obtained from string

theory in this way [7, 8]. Related ideas continue to provide new insight into amplitude

calculations [9]. Another striking case is the KLT relations [10] between graviton ampli-

tudes and gauge field amplitudes, the field theory momentum kernel of which [11] follows

immediately from the more general momentum kernel at the level of string theory [12].

The CHY formalism [13–15] based on scattering equations provides another interesting

example of how string theory, and modifications thereof [16–21], can provide new insight

into the computation of field theory amplitudes. These more recent examples suggest that

there is still much more to gain from exploring the way string theory(-like) amplitudes can

be computed, even if one is only interested in the field theory limit.

An obvious clue comes from duality. This was evident already from the beginning

of string theory, where the duality of the Veneziano amplitude [22] shows the possibility

of treating different scattering channels in a unified manner. A multitude of field theory

diagrams can correspond to a single string theory diagram. The Koba-Nielsen formula [23]

– 1 –



J
H
E
P
1
2
(
2
0
1
6
)
0
1
9

generalizes this to an n-particle scattering amplitude. From various directions, one is

led towards an interpretation reminiscent of Feynman diagrams in field theory [24–28].

Indeed, in modern language this can be seen as an alternative way of generating ϕ3-theory

amplitudes if one lets the Regge slope α′ approach zero [29]. This unusual way of producing

tree-level amplitudes for scalar ϕ3-theory immediately raises the question of whether other

types of scalar interactions can be generated in a similar way. We wish to answer that

question here.

The original motivation for the present study came from our derivation of how the CHY

formalism of scattering equations could be understood in terms of Feynman diagrams at

both tree level and loop level [30–33]. If a suitable string-theory-like integration measure

could be established for more general scalar field theories, the transcription between string

integrands and CHY integrands [19] would then possibly provide the compact prescrip-

tion for generating general scalar field theories based on scattering equations. As will be

explained below, the situation is slightly more complicated, both from the perspective of

string theory (or, more appropriately, generalized dual models) and scattering equations.

A first step towards understanding scalar field theories beyond ϕ3-theory in the scat-

tering equation formalism has been taken by Cachazo, He and Yuan [34] using an elegant

dimensional reduction argument for Yang-Mills theory and making a corresponding judi-

cious choice of polarization vectors that projects dimensionally reduced Yang-Mills gauge

connections onto just one scalar degree of freedom. The quartic Yang-Mills vertex then

yields the sought-for scalar ϕ4 interaction vertex.1 At its simplest level, this procedure is

therefore obviously limited to scalar interactions of ϕ4 type. To go beyond, one might again

gain insight from string theory and consider the next terms in the α′-expansion. This is

not straightforward, because in order to use the map [19] between string theory integrands

and CHY integrands these integrands must be manifestly tachyon-free, and the leading

α′-correction (which could potentially yield ϕ6-vertices) vanishes for the superstring. An

alternative way of generating higher ϕp-theories using the CHY measure was presented

in ref. [31]. The essential mechanism there was the generation of clusters of vertices with

any number of legs using basic ϕ3 vertices and corresponding summation over propagators.

This is clearly a rather indirect prescription. Here, instead, we return to the question of

generating such theories in the context of (generalized) dual models, leaving a potential

description in terms of CHY integrands as an open problem.

This paper is organized as follows. In section 2 we review how amplitudes in scalar ϕ3-

theory can be obtained in the α′→0 limit of string theory, and present the generalized dual

models we have found. The derivation of these new models will be described in section 3,

where we will take care to describe their generalizations. We will conclude with some

forward-looking remarks about the possible interpretation of these models in section 4.

2 String-like, dual models for scalar field theories

The string-like dual models we have found are natural generalizations of the way in which

scalar amplitudes in scalar ϕ3-theory are represented in string theory in the α′→ 0 limit.

1Suggestions for generating ϕ4-theory as a limit of string theory have been considered in [35, 36].
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Therefore, it will be useful to briefly review this well-known story. Color-ordered scat-

tering amplitudes in scalar ϕ3 field theory arise in the α′ → 0 limit of string theory in

following form:

Aϕ3

n = lim
α′→0

(α′)n−3

∫
dΩ Λn(α′, k, z) I3

n(z) with I3
n ≡

n∏
i=1

1

(zi − zi+1)
, (2.1)

where the auxiliary variables zi are cyclically ordered (with zn+1 = z1 understood), Λ

denotes the Koba-Nielsen factor [23],

Λn(α′, k, z) ≡
∏
i<j

(zi − zj)α
′sij where sij ≡ (ki + kj)

2, (2.2)

and dΩ is the integration measure of string theory, which we may define as:

dΩ ≡ δ(za − z0
a)δ(zb − z0

b )δ(zc − z0
c )× (za − zb)(zb − zc)(zc − za)

∏
i

dzi θ(zi − zi+1), (2.3)

where the Heaviside functions, denoted θ(z) above, encode the ranges of integration. As is

well known from string theory, the formula (2.1) is SL(2,R)-invariant, which ensures that

we may choose za, zb, zc as well as their gauge-fixings, z0
a, z

0
b , z

0
c , freely.

In order to illustrate our new string-like formulae, it will be useful to define:

Pjn(z) ≡
n∏
i=1

(zi − zi+j). (2.4)

In terms of this, we can give a formula for any (connected) n-point amplitude in ϕp-

theory as,

Aϕpn ≡ lim
α′→0

(α′)
(n−p)
(p−2)

(
γp,0

) (2−n)
(p−2)

∫
dΩ Λn(α′, k, z) Ip,0n (z), (2.5)

in terms of the integrand Ip,0n (z), defined according to,

Ip,0n (z) ≡ 1

Pqn

⌊
n−2
p−2

/2
⌋∏

j=1

(
P(p−2)j+1
n

)2

P(p−2)j
n P(p−2)j+4−p

n

, q≡

 bn/2c
(n−2)
(p−2) ∈(2Z),

(n−p+ 4)/2 else,

(2.6)

and for which γp,0 is a momentum-independent constant,

γp,0 ≡
∫
dΩ Ip,0p (z) =

πp−
7
2

(p− 2)

Γ
(
p−2

2

)
Γ
(
p−1

2

) . (2.7)

The first few values of this constant are:

γ3,0 = γ4,0 = 1, γ5,0 = π2/6, γ6,0 = π2/3, γ7,0 = 3π4/40 . (2.8)

As the reader may infer, we will later find it possible to generalize the expression (2.5) to

a family parameterized by x, with an integrand Iq,xn (z) and constant γp,xn .

It should be clear that the integrand in (2.6) is SL(2,R)-invariant, has the correct

weights, and the power of α′ provides the correct scaling dimensions. While not completely

obvious, it is a simple exercise to see that when p=3, the representation (2.5) matches the

string-theory expression (2.1) exactly.

– 3 –
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It is worthwhile to illustrate this formula in a few particular instances. For example,

the 6-particle amplitude in ϕ4-theory would be given by,

I4,0
6 =

P3
6(
P2

6

)2 =
(z1−z4)

2(z2−z5)
2(z3−z6)

2

(z1−z3)2(z2−z4)2(z3−z5)2(z4−z6)2(z5−z1)2(z6−z2)2
, (2.9)

while the 10-particle amplitude would be given by,

I4,0
10 =

(
P3

10

)2 P5
10(

P2
10P4

10

)2 =

10∏
i=1

(zi−zi+3)
2(zi−zi+5)

(zi−zi+2)2(zi−zi+4)2
. (2.10)

In fact, ϕ4-theory is simple enough for us to write down a relatively compact expression

for any multiplicity. Expanding the general expression (2.6), we find:

I4,0
n =

1

Pn/2n

b(n−1)/4c∏
j=1

(
P2j+1
n

P2j
n

)2

,

=



n∏
i=1

(
(zi−zi+3)

2 · · · (zi−zi+n/2−2)
2(zi−zi+n/2)

(zi−zi+2)2(zi−zi+4)2 · · · (zi−zi+n/2−1)2

)
n
2 ∈(2Z+ 1) ;

n∏
i=1

(
(zi−zi+3)

2(zi−zi+5)
2 · · · (zi−zi+n/2−1)

2

(zi−zi+2)2 · · · (zi−zi+n/2−2)2(zi−zi+n/2)

)
n
2 ∈(2Z) .

(2.11)

It is not hard to generate corresponding expressions from (2.6) for any particular case

of interest. Just for the sake of illustration, let us give a few more concrete examples. The

8-point amplitude in ϕ5-theory would be given by,

I5,0
8 =

P4
8

P2
8P3

8

=
8∏
i=1

(zi−zi+4)

(zi−zi+2)(zi−zi+3)
; (2.12)

and the 11-point amplitude by the integrand,

I5,0
11 =

(
P4

11

)2
P2

11P3
11P5

11

=

11∏
i=1

(zi−zi+4)
2

(zi−zi+2)(zi−zi+3)(zi−zi+5)
. (2.13)

Similarly, the 14-particle amplitude in ϕ6-theory would be generated by the following

integrand,

I6,0
14 =

(P5
14)2

P2
14P4

14P6
14

=

14∏
i=1

(zi−zi+5)
2

(zi−zi+2)(zi−zi+4)(zi−zi+6)
; (2.14)

and the 22-point amplitude in ϕ7-theory by

I7,0
22 =

(P6
22)2P11

22

P2
22P5

22P7
22P10

22

=
22∏
i=1

(zi−zi+6)
2(zi−zi+11)

(zi−zi+2)(zi−zi+5)(zi−zi+7)(zi−zi+10)
. (2.15)

In the next section, we derive the formula for Ip,0n (z) in (2.6), discuss the origins of the

constant prefactors γp,0n , show how these dual models arise from basic principles, and can

be generalized in several interesting ways.
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3 Derivation and generalizations

In this section, we derive the formula (2.6), explain the meaning of the prefactor γp,0n , and

see how it can be naturally be generalized in a number of ways. Let us begin with some

general (fairly trivial) considerations that will allow us to define some important notation,

and see how the basic ingredients in (2.6) emerge.

3.1 General considerations and notation

We seek to construct string-theory-like dual models that generalize the representation of

ϕ3-theory according to (2.1). Recall that connected tree amplitudes in ϕp-theory are only

non-zero when n=L(p−2) + 2 for some integer L∈Z, where L−1 provides the number of

propagators of the amplitude. We are interested in expressing such non-zero amplitudes

as integrals of the following form:

(α′)L−1 γ

∫
dΩ Λn(α′, k, z) In(z). (3.1)

We have allowed for a kinematic-independent prefactor γ in part to emphasize that we are

going to be careful about such things (up to an overall sign); but also because, as we will

see later on, that the form of γ required to reproduce scattering amplitudes precisely will

turn out to be quite interesting.

The possible integrands I(z) appearing in (3.1) should be required to be SL(2,R)-

invariant. This implies that it must be constructed out of products of differences (zi−zj),

In(z) =
∏
i<j

(zi−zj)
cij , (3.2)

for some numbers cij (which we do not assume to be integers). Moreover, upon including

the integration measure dΩ, SL(2,R)-invariance requires that the weight of any zi must

be −2: ∑
j 6=i

cij = −2 ∀i, where cij ≡ cji . (3.3)

In order for I(z)’s constructed in this way to give rise to color-ordered amplitudes, it

is necessary that the factors be cyclically-invariant. This requires that

ci,i+q = ci−q,i ∀ i, q. (3.4)

As a consequence we see that we may in fact define cyclic exponents,

ej ≡ ci,i+j . (3.5)

Notice that (3.4) immediately implies that ej = en−j for all j. Because of this, we can

always without loss of generality restrict our attention to ej with j≤bn/2c.
Using the exponents {ei}, we can rewrite the integrand (3.2) as,

In(z) ≡
bn/2c∏
j=1

(
Pjn
)ej , (3.6)

– 5 –
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where the constraint (3.3) implies
n−1∑
j=1

ej = −2. (3.7)

In order to reproduce scattering amplitudes in the α′→ 0 limit of (3.1), it must be

that divergences arise in order to cancel the vanishing power of α′. The regions where

the integrand develops divergences sufficient to contribute something non-vanishing in this

limit are quite combinatorial in nature, and give rise to poles involving propagators. Thus,

in order to reproduce scattering amplitudes, the exponents ej must be chosen carefully.

Let us describe how this can be done presently.

3.2 Analysis of divergences in the limit α′→0

The way string theory reproduces the correct (dimensionful) poles of field theory amplitudes

in the α′→0 limit must necessarily be associated with a corresponding divergence in inverse

powers of α′ since only the dimensionless quantities α′sij appear in the initial expression.

The prefactor of the integral provides the canceling powers of α′. This means that we need

to understand the rate at which the integral itself (e.g., the integral without its prefactor)

diverges in the α′→0 limit. It is this degree of divergence together with regions within the

integration region where divergences occurs that will tell us how we can generate general

scalar tree-level amplitudes in the α′→0 limit.

Because the measure dΩ enforces an ordering of the variables in (3.1)—that is, zi<zi−1

—a divergence in inverse powers of α′ in the integral can only come about in regions of

the domain where subsets of consecutive variables zi, zi+1, . . . , zi+m tend to the same

value. We can check whether an integral of the form (3.1) has such a divergence, by letting

τ≡{i, i+ 1, . . . , i+m}, defining, yj≡zi−zj and ỹj ≡ yj/yi+m for j∈τ , and then considering

the ε≡ yi+m→ 0 region of the integral over yi+m. In changing variables from zi, i∈ τ , to

variables zi, ỹi+1, . . . , ỹi+m−1, ε:

• from the measure dΩ, we pick up a factor of εm−1;

• from Λn(α′, k, z), we pick up a factor of εα
′sτ where sτ ≡

(∑
j∈τ kj

)2
;

• from In(z), we pick up a factor of εel for each factor of (zj −zj+l)
el with j, j + l∈τ .

The variables zi to zi+m contain m pairs of neighboring variables, (m − 1) pairs of

next-nearest neighbors, and so forth, down to one pair of variables m steps away.

Consequently, the total factor we pick up from In(z) is εΣm where

Σm ≡ me1 + (m− 1)e2 + · · ·+ 2em−1 + em . (3.8)

In total then, the integral over ε reduces to:∫ zi

0
dε εm−1+α′sτ+Σm

(
1 +O(ε)

)
. (3.9)

From this expression it is evident that there is a 1/α′ divergence when

Σm = −m, (3.10)

– 6 –
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in which case the integral evaluates to

1

α′

(
1

sτ
+O(α′)

)
. (3.11)

So a divergence arising from variables {zj |j ∈ τ}, tending to the same value, results in the

propagator carrying the external momenta {kj |j ∈ τ}.
The remaining integrals factor in two: integrals over zj with j /∈τ\{i} and integrals

over ỹj with j∈{i+ 1, i+ 2, . . . , i+m−1}. Iteratively repeating the above reasoning to the

remaining integrations, one can determine the overall degree of divergence in inverse powers

of α′. In general an integral of the form (3.1) can have several distinct divergent regions of

the integration domain, and it is necessary to sum over all of them to get the leading term

in α′. We refer the reader to ref. [30] for more details.

3.3 Matching divergences to Feynman diagrams

Turning our attention to ϕp-theory, recall that the number of particles involved in any

(connected) amplitude must be a multiple of (p−2). In order to construct an integral

expression for the full amplitude, there has to be a divergent region of the integration

domain for each such possible propagator. In other words, equation (3.10) must be satisfied

for m equal to (p−2), 2(p−2), . . . , and (L−1)(p−2). (Recall thatL ≡ (n−2)/(p−2).) At

the same time, we must ensure that equation (3.10) is not satisfied for values of m that are

not divisible by p−2. Given these conditions, the requirement (3.7) of SL(2,R)-invariance

is equivalent to equation (3.10) with m ≡ L(p−2). The conditions on the set {ei} can

therefore be summarized by the following set of (not all independent) equations

Σl(p−2) = −l(p− 2), for l ∈ {1, 2, . . . , L}. (3.12)

For ϕ3-theory, these equations read

−1 = e1

−2 = 2e1 + e2

−3 = 3e1 + 2e2 + e3

...

n− 2 = (n− 2)e1 + (n− 3)e2 + · · ·+ en−2,

(3.13)

and have the unique solution e1 = −1 and ei = 0 for i 6= 1. We recognize these as the

standard dual model exponents (2.1) that lead to ϕ3-theory.

For p>3, the conditions (3.12) provide an under-determined set of equations. We can

parametrize the solution space by introducing parameters {xm} and demanding

Σm = −m+ 1 + xm (3.14)

when m is not a multiple of p − 2. As long as each xm is greater than minus one, the

integral (3.9) converges, and we get no incorrect propagators.2

2One could also consider the case xm<−1, in which case the integral (3.9), after analytically continuing,

remains finite in the α′→ 0 limit. However, it will no longer be possible to take the α′→ 0 limit before

evaluating the integral, and the residual integrations discussed in the next section will no longer yield

momentum independent-factors.

– 7 –
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In summary, we impose the following conditions on the exponents ei:

Σi =

{
−i 0 = i mod (p−2) ,

xi − i+ 1 else .
(3.15)

These equations are fairly straightforward to solve. If we adopt the convention that Σi = 0

for i<0, then, for ϕ4-theory:

ei = Σi − 2Σi−1 + Σi−2 =


x1 i = 1

−2− 2xi−1 i ∈ (2Z)

2 + xi + xi−2 else,

(3.16)

and for ϕp-theory with p>4:

ei = Σi − 2Σi−1 + Σi−2 =



x1 i = 1

xi − 2xi−1 − 1 2 = i mod (p− 2) ,

xi−2 − 2xi−1 − 1 0 = i mod (p− 2) ,

xi + xi−2 + 2 i > 1, 1 = i mod (p− 2) ,

xi − 2xi−1 + xi−2 else .

(3.17)

The solutions (3.16) and (3.17) apply only to the first bn/2c exponents ei, but as

explained above, this suffices. The remaining exponents can be found from the relation

en−i=ei.

3.4 Residual integrations

As long as the exponents ei satisfy (3.16) or (3.17), the integral (3.1) will contain divergences

corresponding to all the factorization channels of the ϕp tree-amplitude. But in order to

identify a full amplitude with the corresponding integral in the α′ → 0 limit, we must

ensure that all Feynman diagrams obtained from that integral come dressed with the same

numerical prefactor, which we can then cancel with the overall normalization factor γ.

The prefactors arise due to the fact that after carrying out all the integrations that lead

to divergences in inverse powers of α′, following the reasoning of section 3.2, what remains

is the product of L residual integrals that are finite as α′ tend to zero. To leading order

in α′, we can therefore set Λn(α′, k, z) = 1 for those integrals so that all momentum-

dependence disappears.

Feynman diagrams related by cyclic interchanges of the external momenta will nec-

essarily carry the same numerical prefactor. The same may not be true in general for

Feynman diagrams of different topologies (corresponding to the polygon graphs in table 1

of [31]). To ensure that the prefactors match, we must impose additional conditions on the

exponents ei.

Consider the factorization mentioned in the end of section 3.2. After performing

the ε-integral, the integral over zj , j ∈ Zn, has factored into an integral over zj , j ∈
{1, 2, . . . , i, i+m+ 1, . . . , n} and an integral over ỹj , j∈{i+ 1, i+ 2, . . . , i+m−1}. So in the

– 8 –
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z-integral, the variables zi−1 and zi+m+1 are now next-nearest neighbors. In order for

the z- and ỹ-integrals to match, we must therefore require that e2 = em+2. Because all

the original variables zi to zi+m have all merged to the same value zi, which is now the

nearest-neighbor of zi−1, we must also demand that e1 =
∑m+1

l=1 el.

Extending the above considerations beyond nearest and next-nearest neighbors, we

find that the full list of (not-independent) requirements of these two types can be stated

thus: for any multiple m of (p−2) we require that:

ej =


m+j∑
l=j

el j = 1, 2, . . . , p− 3,

ej+m j = 2, . . . , p− 3 .

(3.18)

These conditions will be satisfied if we equate all the parameters xi in the expressions (3.16)

and (3.17) for the exponents. This being done, the L residual integrations all evaluate to

the same momentum-independent value. The overall normalization constant must therefore

be chosen as:

γ ≡
(∫

dΩ Ip(z)

)−L
. (3.19)

3.5 Generalized dual models for all scalar field theories

We see that the requirement that all the correct poles arise results in a family of solutions for

ei, each of which have extra free parameters xi. The requirement that all terms arise from

integrations with identical coefficients implies that all these parameters must be identical:

x≡ xi for all i. Thus, we arrive at a one-parameter family of dual models for any scalar

tree-amplitude with p>3.

For ϕ4-theory the exponents are given by,

ej ≡


x j = 1;

−2(1 +x) j∈(2Z);

2(1 + x) else.

(3.20)

When p>4 we have the following exponents:

ej ≡


x j = 1;

−(1 +x) jmod (p−2) = 0, 2 ;

2(1 +x) j>1 , 1 =j mod (p−2);

0 else.

(3.21)

By using these exponents together with equations (3.1) and (3.6), we arrive at the following

generalized dual model for all n-point amplitudes in ϕp field theory:

Aϕpn ≡ lim
α′→0

(α′)L−1 (γp,x)−L
∫
dΩ Λn(α′, k, z) Ip,xn (z), (3.22)

where the generalized integrand Ip,xn (z) is given by,

Ip,xn (z) ≡
(
P1
n

)x (Ip,0n )1+x
, (3.23)

and the integration constants γp,xn are given by

γp,xn ≡
∫
dΩ Ip,xp (z) . (3.24)
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4 Conclusions and discussion

The well-known relationship between string theory and cubic graphs in its field theory

limit immediately leads to the question: can we construct scalar field theories based on

quartic or quintic or higher-order vertices that similarly follow from one single integral

representation? To deviate as little as possible from the original string theory setting we

have here considered a scenario as similar to open string theory as possible. We have

introduced an ordered set of n real parameters zi integrated on the real line. We have

insisted that the integrand be SL(2,R)-invariant, and we have defined the integration

measure with the conventional Koba-Nielsen term times SL(2,R)-invariant factors that, if

successful, should define for us the different kinds of scalar field theories in the α′→0 limit.

We have found that cubic graphs play a special role in that the conditions that need

to be fulfilled for the integral to generate ϕ3-theory in the α′ → 0 limit have a unique

solution, the one already known. This sheds some new light on the observations of Scherk

in the classic paper on dual models [29]. Surprisingly, we have found that all other scalar

field theories based on ϕp vertices can be generated as well. These theories require a

bit more care, and the conditions needed to determine their integrands do not lead to

unique solutions. Nevertheless, special solutions can be found in which, for given n and

given p, we can write down the corresponding n-point amplitude as the α′→ 0 limit of a

single string-like integral. The succinct expressions automatically generate the sum over

all color-ordered Feynman diagrams of ϕp-theory for that n-point amplitude.

Our original motivation for this study was an aim towards establishing a CHY-type

prescription for arbitrary scalar field theories. Let us therefore include some comments on

this program. First, for ϕ3-theory the string-like construction is unique, and the integrand

is just in the form for which the transcription between string theory integrands and CHY

integrands is well established [19, 30]: ending up as the product of two ‘cycles’. Interest-

ingly, even Yang-Mills theory can in CHY form be described entirely in terms of integrands

composed of products of such cycles [37], again indicating the fundamental nature of cubic

graphs underneath the formalism. Higher-order scalar field theories, as constructed in this

paper, are not provided in that form. There are numerator factors that spoil an immediate

transcription into CHY language. Since the specific case of ϕ4-theory, for which there does

exist a CHY construction [34], appears as intractable as any other ϕp-theory with p > 4

there is still hope that it may be possible to rewrite our integrands suitably (perhaps by

partial fractioning) so as to end up with expressions that can transcribed to CHY form.

This we leave as an open problem. A constructive solution can always be provided by

brute-force expressions of arbitrary scalar graphs in terms of underlying cubic graphs and

correspondingly canceling numerator factors that eliminate unwanted propagators. This

program can be carried through systematically in the CHY formalism, as described in

detail in ref. [31].

String-like dual models and the CHY formalism bear a close resemblance. As a matter

of fact, the scattering equations, which constitute the cornerstone of the CHY formalism,

made their first appearance in the literature as a modified version of the Virasoro conditions

as an attempt to derive a tachyon-free Veneziano model. In the CHY formalism, amplitudes

– 10 –
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are computed via integrals completely localized by δ-functions supported on the scattering

equations. This is very much similar to stringy dual models, where integrals are localized

by taking a limit that makes the integral blow up while its pre-factor tends to zero such that

the non-divergent parts of the integration domain are killed off. But despite the analogous

mechanisms by which the two formalism ensure the correct factorization properties, their

mathematical frameworks are entirely distinct: the CHY formalism relies on multivariate

complex residues, while everything in the stringy formalism is couched in terms of purely

real integrals. And the analogy starts to fade when considering expressions that cannot

straightforwardly be reduced to trivalent graphs, and which involve higher order poles

in the CHY formalism and integrals not converging (in the sense of Riemann-Stieltjes)

but requiring analytical extension. Furthermore, since the δ-functions supported on the

scattering equations always carry a fixed mass dimension, the CHY formalism does not

readily lend itself to theories with amplitudes of any dimension, unlike the string-like case

where a single prefactor can be tuned to match the mass dimension of any ϕp amplitude.

It seems unlikely that the integral constructions of this paper can be related to some

sort of open string theory: how could they be produced by a world-sheet path integral

on the disc with vertex operator insertions? This question is especially interesting in the

context of e.g. ref. [38]. It is intriguing that dual models of this kind can be constructed so

that tree-level amplitudes of arbitrary ϕp-theories fall out in the α′→0 limit. What kind

of deformation parameter could this α′ correspond to? Only its ‘point-like’ α′→ 0 limit

plays any role here. We leave these questions for future work.
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