
u n i ve r s i t y  o f  co pe n h ag e n  

Competence classification of cumulus and granulosa cell transcriptome in embryos
matched by morphology and female age

Borup, Rehannah; Thuesen, Lea Langhoff; Andersen, Claus Yding; Andersen, Anders Nyboe;
Ziebe, Søren; Winther, Ole; Grøndahl, Marie Louise

Published in:
P L o S One

DOI:
10.1371/journal.pone.0153562

Publication date:
2016

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Borup, R., Thuesen, L. L., Andersen, C. Y., Andersen, A. N., Ziebe, S., Winther, O., & Grøndahl, M. L. (2016).
Competence classification of cumulus and granulosa cell transcriptome in embryos matched by morphology and
female age. P L o S One, 11(4), 1-19. [e0153562]. https://doi.org/10.1371/journal.pone.0153562

Download date: 08. Apr. 2020

https://doi.org/10.1371/journal.pone.0153562
https://doi.org/10.1371/journal.pone.0153562


RESEARCH ARTICLE

Competence Classification of Cumulus and
Granulosa Cell Transcriptome in Embryos
Matched by Morphology and Female Age
Rehannah Borup1*, Lea Langhoff Thuesen2, Claus Yding Andersen3, Anders Nyboe-
Andersen2, Søren Ziebe2, Ole Winther4, Marie Louise Grøndahl5

1 Center for Genomic Medicine, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark,
2 Fertility Clinic, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark, 3 Laboratory of
Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark,
4 Bioinformatics Center, Department of Biology and Biotech Research and Innovation Centre, University of
Copenhagen, Copenhagen, Denmark, 5 Fertility Clinic, University Hospital of Copenhagen, Herlev Hospital,
Copenhagen, Denmark

*Rehannah.borup@regionh.dk

Abstract

Objective

By focussing on differences in the mural granulosa cell (MGC) and cumulus cell (CC) tran-

scriptomes from follicles resulting in competent (live birth) and non-competent (no preg-

nancy) oocytes the study aims on defining a competence classifier expression profile in the

two cellular compartments. Design: A case-control study. Setting: University based facilities

for clinical services and research. Patients: MGC and CC samples from 60 women undergo-

ing IVF treatment following the long GnRH-agonist protocol were collected. Samples from

16 oocytes where live birth was achieved and 16 age- and embryo morphology matched

incompetent oocytes were included in the study.

Methods

MGC and CC were isolated immediately after oocyte retrieval. From the 16 competent and

non-competent follicles, mRNA was extracted and expression profile generated on the

Human Gene 1.0 ST Affymetrix array. Live birth prediction analysis using machine learning

algorithms (support vector machines) with performance estimation by leave-one-out cross

validation and independent validation on an external data set.

Results

We defined a signature of 30 genes expressed in CC predictive of live birth. This live birth

prediction model had an accuracy of 81%, a sensitivity of 0.83, a specificity of 0.80, a posi-

tive predictive value of 0.77, and a negative predictive value of 0.86. Receiver operating

characteristic analysis found an area under the curve of 0.86, significantly greater than ran-

dom chance. When applied on 3 external data sets with the end-point outcome measure of

blastocyst formation, the signature resulted in 62%, 75% and 88% accuracy, respectively.
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The genes in the classifier are primarily connected to apoptosis and involvement in forma-

tion of extracellular matrix. We were not able to define a robust MGC classifier signature

that could classify live birth with accuracy above random chance level.

Conclusion

We have developed a cumulus cell classifier, which showed a promising performance on

external data. This suggests that the gene signature at least partly include genes that

relates to competence in the developing blastocyst.

Introduction
In order to improve the efficacy of in vitro fertilisation treatment, there is ongoing research to
define good non-invasive embryo markers to increase the implantation rate from an average of
around 25% achieved with the existing morpho-kinetic markers [1].

The developmental competence of the mammalian oocyte is achieved during folliculogenesis,
where cross-talk between oocyte and somatic cells ensures oocyte growth and maturation and the
subsequent potential to sustain fertilisation and produce viable embryos [2]. Thus, several attempts
have been made to identify oocyte competence markers in the various follicle compartments.

Specific functions of the somatic cells from the pre-ovulatory follicles just prior to ovulation
(e.g. progesterone and oestrogen production from the cumulus-oocyte-complex (COC) [3] and
expression levels of specific genes in the mural granulosa cells (MGC) and cumulus cells (CC)
have been shown to reflect the developmental competence of the corresponding oocyte. Several
authors have used a single gene approach by analyzing few genes by RT-PCR [4–7], while oth-
ers have used global gene expression profiling analysis to find differences in somatic cell gene
expression between cells connected to competent and non-competent oocytes [8–16]. These
studies represent different end-points for competence that vary from oocyte maturational stage
to the cleavage stage embryo morphology, positive hCG, ongoing pregnancy and finally birth
of a healthy child. The difference in competence measures may partly explain the predominant
lack of overlap in suggested competence marker genes, as may the difference in isolation tech-
nique, and the in vitro exposure time before isolation of cells.

Taking the complexity of the preovulatory follicle into account, the aim of identifying single
marker genes seems to be less robust than a marker based on the scenario of multi interacting
genes, which may be identified by the high trough put techniques such as the expression array.
Therefore the present study focus on differences in the MGC and CC transcriptomes between
oocytes from competent and non-competent follicles and the aim is to develop classifier pro-
files in the two cellular compartments in order to be able to select the embryos with the best
potential to result in life offspring. To approach the scenario for selecting a competent embryo
for transfer in a cohort of embryos, a case control design was chosen matching women’s age
and embryo morphology.

Thus, in the present study, gene expression profiling of corresponding CC and MGC of
individual follicles obtained from women undergoing IVF with elective single embryo Day 3
transfer were associated to no pregnancy after IVF or life birth of a healthy baby.

Material and Methods

Study population and treatment protocol
The CC and MGC were collected at the Fertility Clinic, Copenhagen University Hospital, Rig-
shospitalet, Denmark between February 2009 and June 2010 as a part of a prospective,
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randomised study (0 IU hCG; 50 IU hCG, 100 IU hCG and 150 IU hCG daily during controlled
ovarian stimulation (COS)) [17]. The Danish National Committee on Biomedical Research
Ethics (HB-2008-146) and The Danish Medicines Agency (2612–3928, EudraCT number
2008-008355-42) approved the study. All participants provided both written and verbal
informed consent. The consent was documented with participant’s signature and the consent
form was approved by the Ethics Committes.

A total of 60 women, scheduled for IVF, aged 25–37 years and with BMI >18 and < 30
kg/m2, regular menstrual cycle, early follicular phase serum FSH levels within 1–12 IU/l and
early follicular phase total antral follicle (2–10mm) count � 6 donated CC and MGC. The
patients underwent controlled ovarian stimulation in a GnRH agonist protocol as described
in [17]. Oocyte retrieval was performed 36 h (±2 h) after hCG administration. Single embryo
transfer was performed Day 3 and 16 pregnancies resulted in live births. All clinical (week 7)
and ongoing pregnancies (week 10–12) were confirmed with an ultrasound scan and fol-
lowed up to delivery. The sixteen CC and corresponding MGC representing the competent
oocytes and follicles giving rise to the babies were included in the study. The competent
oocytes were evenly distributed in the 4 study groups [17]. To represent incompetent oocytes,
another 16 CC and corresponding MGC were chosen among the samples with follicle cells
connected to the oocytes that gave rise to an embryo that failed to implant. These samples
were chosen to match the competent oocytes in relation to COS treatment, female age and
embryo morphology.

For demographic data t-test and chi-squared tests were used and p<0.05 considered
significant.

Cumulus and granulosa cell isolation
Follicular fluids from all follicles were collected individually in tubes (Nunc Centrifuge 11 ml,
Nunc, Denmark). When an oocyte was obtained, the number of the follicle was recorded and
the oocytes were numbered consecutively. Thus, each oocyte could be linked to an individual
follicle and hence the correspondent MGC. Immediately after isolation of the COC, the MGC
were isolated from the follicular fluid by centrifugation at 400 g in 8 min at room temperature.
The pellet was re-suspended in 1 ml HEPES-buffered solution (Sydney IVF Follicle Flush
Buffer, COOKMedical, Australia) and placed on a density gradient column (Histopaque 1077,
Sigma-Aldirch, St-Louis, USA) and centrifuged at 400 g for 30 minutes. After centrifugation,
the inter-phase containing the MGC was aspirated and the MGC washed twice by mixing
with1 ml of the buffer solution followed by centrifugation at 400 g for 8 minutes at room tem-
perature. After the second wash, pellet was re-suspended in 500 μl in a cryo-vial (CryoVial, 2
ml Greiner bio-one, Germany) and stored at -80°C until RNA extraction.

Within 1 hour after the oocyte retrieval a part of the cumulus mass was mechanically
removed (18G needles) from the COC and transferred to a cryo-vial (CryoVial, 2 ml Greiner
bio-one, Germany) with as little fluid as possible and stored at -80°C until RNA extraction.

Embryo Evaluation
IVF insemination was done with standard IVF procedure at 3 h (±1 h) after oocyte retrieval.
All oocytes were followed individually and zygote and embryo quality assessed at 20 h (±1 h),
28 h (±1 h), 44 h (±1 h) and 68 h (±1 h) after oocyte retrieval. The embryo quality evaluation
consisted of assessment of cell number and three parameters of embryo morphology: degree of
fragmentation, cell stage specific blastomere uniformity and multinucleation (ALPHA and
ESHRE consensus parameters, 2011).
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RNA purification
RNA from individual samples was purified using Arcturus PicoPure RNA Isolation kit
(Applied Biosystems1, Naerum, Denmark) according to manufactures instructions but with
small modifications. In short: 100 μl extraction buffer was used for initial lysis of each sample,
except for samples were sample volume excided 70 μl. For these samples 2 x sample volume of
extraction buffer was added. Following lysis and centrifugation, the supernatant was trans-
ferred to a 2 ml Eppendorf tube from the kit (Arcturus PicoPure RNA Isolation kit, Applied
Biosystems1, Naerum, Denmark) where it was mixed 1:1 with 70% ethanol. For some MGC
samples with large volume, several transfers and spins were needed to collect all the RNA in
the spin tubes. In the end, the RNA was extracted in 12 μl nuclease free water, giving a ~10 μl
end volume. The integrity of the RNA was measured using bioanalyzer pico chip (RNA 6000
Pico Assay for 2100 bioanalyzer, Agilent Technologies) and only samples with a RNA integrity
number (RIN) above 7 as analyzed by the 2100 bioanalyzer (Agilent Technologies, Glostrup,
Denmark) were included in the analysis.

Microarray analysis
RNA was amplified and labeled using a pico amplification kit according to manufactures instruc-
tions. In short, approximately half of the total RNA from each sample (5 μl of 10 μl) was amplified
using the Ovation PicoWTA v.2 RNA Amplification System from NuGEN1 Inc. (NuGEN1,
San Carlos, CA, USA) and biotin labeling was performed with the Encore BiotinModule
(NuGEN1). The labeled samples were hybridized to the Human Gene 1.0 ST GeneChip array
(Affymetrix, Santa Clara, CA, USA). The arrays were washed and stained with phycoerytrin con-
jugated streptavidin (SAPE) using the Affymetrix Fluidics Station1 450, and the arrays were
scanned in the Affymetrix GeneArray1 3000 7G scanner to generate fluorescent images, as
described in the Affymetrix GeneChip1 protocol. Cell intensity files (CEL files) were generated
in the GeneChip1 Command Console1 Software (AGCC) (Affymetrix, Santa Clara, CA, USA).

All samples are MIAME compliant and were handled according to SOP in the Microarray
Center. A total of 27 CC and 19 MGC samples were amplified and hybridized to arrays. The 46
samples were submitted to ArrayExpress at EMBL using MIAMExpress. The experiment acces-
sion number is E-MTAB-4012.

Formulation of Classifiers
Classifiers were constructed based on expression matrices obtained by Plier normalization
[18]. Following the normalization, the data was initially filtered to include only probe sets with
functional annotation (both protein coding and non-protein coding); reducing the number of
probe sets included in the analysis to 28,054. The formulation and performance assessment of
the classifier models was performed on this data set, with and without, an additional pre-filter-
ing step to exclude probe sets expressed below back-ground level (average expression above
10). Back-ground filtering resulted in the inclusion of 17,279 probe sets in the CC data set and
15,146 probe sets in the GC data set, respectively.

Based on these data sets, three different classification algorithms (diagonal linear discrimi-
nant analysis (dLDA) [19,20], k-nearest neighbors (K-NN) [20,21] and support vector
machines (SVM) with linear kernel [22,23] were generated and tested. In order to formulate
and select the best model for classification of LB, the misclassification rate for each classifier
was estimated using leave-one-out cross-validation (LOOCV), during which we applied uni-
variate t-tests with a grit of p-values (p< 0.001, p< 0.005, p< 0.01, p< 0.05) for selection of
the optimal number of probe sets to include in each model. The overall accuracy, as well as
PPV and NPV were derived for both the cumulus and granulosa data separately. The output of
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these analyses is presented for the optimal classification models and model parameters (S2 and
S3 Tables). The overall best performing SVM classifier, based on the back-ground filtered data
set with a p-value cut-off of 0.01, resulting in a gene signature of 34 probe sets, representing 30
unique genes, was selected as the final model for further validation (Table 1, Cumulus and
granulosa Classifiers: PLIER annot and PLIER annot above bg).

Relative weight of the genes in the CC signature
Following the cross validation procedure, we calculated the cross-validation support for each
gene showing the percentage of the cross-validation training sets in which each particular gene
was selected. The cross-validation support shows the percentage of the cross-validation train-
ing sets in which each particular gene was selected, giving the relative strength (weight) of each
gene in the signature.

Predictive probability of LB classification
For the optimal CC classifier, the predictive probability (estimate of the probability of getting a
particular class label) of each samples, was derived from the trained SVMmodel. This was
achieved by transforming the SMV classifier into a probabilistic classifier by calculating the
predictive probability of a sample being one or the other type using logit estimates as imple-
mented in the e1071 R library [24]. The predictive probabilities of the final and optimal classi-
fier are visualized in a scatter plot of the function, p(LB), live birth, by plotting the predictive
probability on the y-axis for each consecutive sample shown on the x-axis.

Statistical significance of the Error rate
A permutation test was performed in order to determine if the cross-validated misclassification
rate of the final CC classification model was lower than expected by chance (Tusher et al. 2001;

Table 1. Performance of cumulus and granulosa cell support vector machine (SVM).

Cumulus Classifier PLIER
annot

Classifier Model # PS in
signature

Accuray
(%)

Accuracy
class (%)

Sensitivity Specificity PPV NPV # PS

LB SVM linear 82 81 83 (10/ 12) 0.833 0.8 0.769 0.857 28054

NP SVM linear 82 81 80 (12/15) 0.8 0.833 0.857 0.769 28054

Cumulus Classifier PLIER
annot above bg

Classifier Model # PS in
signature

Accuray
(%)

Accuracy
class (%)

Sensitivity Specificity PPV NPV # PS

LB SVM linear 34 81 83 (10/ 12) 0.833 0.8 0.769 0.857 17279

NP SVM linear 34 81 80 (12/15) 0.8 0.833 0.857 0.769 17279

Granulosa Classifier PLIER
annot

Classifier Model # PS in
signature

Accuray
(%)

Accuracy
class (%)

Sensitivity Specificity PPV NPV # PS

LB SVM linear 376 11 20 (2/10) 0.2 0 0.182 0 28054

NP SVM linear 376 11 0 (0/9) 0 0.2 0 0.182 28054

Granulosa Classifier PLIER
annot above bg

Classifier Model # PS in
signature

Accuray
(%)

Accuracy
class (%)

Sensitivity Specificity PPV NPV # PS

LB SVM linear 108 11 20 (2/10) 0.2 0 0.182 0 15146

NP SVM linear 108 11 0 (0/9) 0 0.2 0 0.182 15146

The classifiers were trained to classify live birth (LB) versus no pregnancy (NP). The table shows the performance with and without pre-filtering for probe

sets expressed above background level. The models CC and MGC PLIER annot were formulated using only annotated probe sets (both protein coding

and non-protein coding) and the models PLIER annot above bg were based on only annotated probe sets with an average expression above 10

(unlogged.)

doi:10.1371/journal.pone.0153562.t001
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Simon et al. 2007). In 1000 random permutations of the class label, the entire cross-validation
was repeated for classifying the random grouping of the samples. The proportion of the 1000
random permutations that resulted in a smaller or similar cross-validation misclassification
rate as obtained with the real data determine the permutation p-value. The statistical signifi-
cance of the error rate was determined both for the linear SVM, 1-NN, 3-NN and dLDA
classifier.

Gene function enrichment and Biological Networks
The cumulus gene signature was subjected to Ingenuity pathway analysis using IPA Ingenuity
software Ingenuity1Systems (www.ingenuity.com). The list of the signature probe sets with p
value and fold change was imported into Ingenuity. By application of the Ingenuity Pathway
Knowledge Base each gene identifier was overlaid onto a global molecular network linking
their functionality to the function of other genes and biological enriched functionality and
mechanistic networks of these genes were then generated based on their connectivity and
enrichment statistics. A network score was calculated based on the hyper-geometric distribu-
tion and calculated with the right-tailed Fisher’s exact test. The score is the negative log of this
p-value. The score takes into account, the number of network eligible molecules in the network
and its size, as well as the total number of network eligible molecules analyzed and the total
number of molecules in the knowledge base that could potentially be included in the network.
The score represents the chance of getting a network containing at least the same number of
network eligible molecules by chance when randomly picking the number of genes that can be
in networks from the knowledge base. The top molecular and cellular functions and networks
are shown.

Downstream effect analysis was performed to predict the effect of directional gene expres-
sion change on biological processes based on the expected causal effects derived from the litera-
ture. The predicted effect is based on a value calculated by the IPA z-score algorithm. The z-
score predicts the direction of change for the function. An absolute z-score of� 2 is considered
significant. A biological function is predicted to be Increased if the z-score is� 2 and decreased
if the z-score� -2.

External validation data set
The optimal CC classifier-signature of 34 probe sets (30 unique gene) was validated on an
external data set generated on the Agilent platform using the Whole Human Genome Microar-
ray 4x44K microarray [9]. The full data set comprising three subseries of CC microarray
expression profiles was downloaded from the GEO repository at NCBI. The three samples sets
used were part 1: GEO accession GSE37110, including 10 embryos of poor quality (EP) and 11
blastocyst (B); part 2: GEO accession GSE37117, including 18 EP and 18 blastocyst B, and
part3: GEO accession GSE37116, including 13 EP and 11 B.

The microarray expression profiles were generated in a two-color array with dye-swap of
replicate samples to avoid systematic noise in the data related to the choice of dye (cye-5 or
cye-3). We downloaded the preprocessed data of normalized unlogged expression values repre-
senting one-color channel intensities. The data was used for validation of the gene signature
after applying a log2 transformation. Gene symbols were used to select the probes on the
4x44K array that overlap with the unique genes in the 30-gene signature. Due to redundant
representation of some of the genes on the Agilent array, the gene signature was represented by
68 redundant mRNA transcripts (representing 25 unique genes) on the Agilent 4x44 platform.
For assessing the performance of this gene signature, represented by 25 unique genes, the
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probe with the intermediate expression value for each of the genes with redundant probes was
used to define the 25-gene signature in the external data sets.

Performance of signature on external data
The external data sub sets (GSE37110, GSE37116 and GSE37117) were tested one by one. For
each sub set, a test set data object was constructed and the overlapping gene signature was
tested using SVM classification with linear kernels. The predictive probabilities were derived
and visualized along with the predictive probability of the training set samples.

Receiver operating characteristic (ROC) curves
ROC curve characteristics analysis was performed on all data set (training and validation data)
with the end point LB or NP in the training data, and blastocyst or embryo of poor quality used
in the validation data set. A ROC curve was generated for each partition of the validation data
set. The ROC curve was created by plotting the true positive rate (TPR, or sensitivity) versus
the false positive rate (FPR, or 1—specificity). The area under the curve (AUC) indicates the
degree of predictive ability of the gene expression, where 0.5 is random chance and 1.0 is per-
fect predictive ability. The ROC and AUC were produced using the functionality of the R
library ROCR.

Results

Clinical presentation of patients in the study
A total of 46 expression profiles were generated, encompassing 27 CC samples and 19 MGC
samples, of which 12 CC sample and 9 MGC samples, respectively, were obtained from follicles
where the oocyte after implantation gave rise to a live birth of a healthy baby (LB) and 15 CC
and 10 MGC samples, respectively, which did not lead to pregnancy (NP). The expression pro-
files of the CC and MGC samples were analyzed separately. The basic demographic parameters
for the women which CC and MGC were analyzed are presented in S1 Table. No differences
were present between the two groups.

Construction of classifier for oocyte viability
We constructed a classifier to discriminate between patients where IVF treatment lead to live
birth compared with no pregnancy, based on expression profiles on CC or MGC from the pre-
ovulatory follicles.

We examined different methods for the construction of an optimal classifier of oocyte com-
petence and tested several cut-off values of the test statistics with or with-out fold change and
expression above back-ground filtering. Three different classifier models (diagonal linear dis-
criminant analysis (dLDA), k-nearest neighbors and SVM with linear kernel function were
generated and tested by LOOCV. Overall accuracy, as well as PPV and NPV were derived for
both the cumulus and granulosa data separately, as shown in Table 1, S2 Table and S3 Table. A
grit of p-values (p< 0.001, p< 0.005, p< 0.01, p< 0.05) was tested on all algorithms with
LOOCV and the p-value cut-off (p< 0.01), which lead to the optimal performance was used to
generate the gene signature of 34 probe sets, representing 30 unique genes which were used in
the final classifier (S4 Table).

The overall best performance of the classifier models applied on the CC was achieved with
PLIER normalized unlogged expression values by the linear SVMmodel and 3-NN and
resulted in a LOOCV accuracy of 0.81 and 0.85, respectively (Table 1 and S2 Table). On the
contrary, the dLDA algorithm showed low cross validation accuracy of 57% (S2 Table).
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The performance range of the classifier models applied on PLIER normalized MGC with a
p-value cut-off of 0.01 was 11% - 37% for dLDA, 3-NN (k = 3) linear SVM (S3 Table). Evalua-
tion of the signature obtained using RMA normalized data showed slightly better results,
although all analyses resulted in overall high error level and poor performance with no signa-
ture showing significant discriminative power to distinguish LB samples from NP (data not
shown), showing that the low performance is probably independent of normalization strategy.

The CC data show high levels of variance between the samples within each group and rela-
tively small overall expression differences between the LB and NP groups. To increase the
power of the analysis we applied a filter to firstly exclude un-annotated probe sets and further
exclude genes with an average expression below back-ground level (average expression below
10 across all CC samples) [25]. Training of the linear SVM classifier after the annotation filter-
ing step, resulted in a signature of 82 probe sets with unambiguous annotation, 60 of which
were annotated with gene symbol (protein coding) and 22 were annotated as other non-coding
RNAs, hence excluding probe sets with unclear function or lacking annotation.

Rerunning the training of the of the linear SVM after filtering for genes expressed above
background, the overall accuracy of the SVM with radial kernel was unchanged (81%), when
using a signature representing 30 unique genes (Table 1). The full list of the 30 gene signature
with p-value cut-off and fold-change is shown in S4 Table.

ROC curve analysis to distinguish between true positive rate and false positive rate of the
final linear SVM classifier (annotated probes filtered to exclude probes expressed below back-
ground level) resulted in an AUC value of 0.86 indicating a good performance of the CC classi-
fier (Fig 1).

We furthermore assessed the strength of each of the 30 genes in the signature by the cross-
validation support, which shows the percentage of the cross-validation training sets in which
each particular gene was selected (S4 Table). Analysis of the cross-validation support revealed
that 12 genes had CV support of 100 percent; and more than half of the genes in the CC signa-
ture were included in 89 percent or more of the cross validation runs, hence receiving high
weight in the classifier (see S4 Table). Visualization of the 30 gene signature by hierarchical
clustering showed that samples with low expression of the top 100 percent CV support genes
were the samples, which received low predictive probabilities of LB (Fig 2, S2 Fig).

In order to assess whether the misclassification rate was lower than what would be expected
by chance we performed 1000 random permutation of the samples. For each permutation the
entire LOOCV process was repeated and the proportion of the 1000 random permutations
resulting in smaller misclassification rates determined the statistical significance of the classifi-
ers error rate. The significance of the misclassification rate after 1000 permutations was 0.284,
0.002, 0.009, for the diagonal linear discriminant analysis classifier, the 3-nearest neighbors’
classifier and the linear SVM classifier, respectively. All but the d-LDA classifier was statisti-
cally significant compared to the random setting.

Predictive probabilities of the cumulus classifier. We used the trained SVM classifier to
derive the predictive probability of a sample belonging to one class or the other by the use of
logit estimates [24]. The predictive probability provides a likelihood estimate to the certainty of
a sample to be classified as belonging to the predicted class of samples given the values of the
genes in the signature. A sample is classified as being predictive of pregnancy and live birth if
the predictive probability is above 0.5 and resulting in no ongoing pregnancy if the predictive
probability is below 0.5 (Fig 2). A predictive probability of 0.5 reflects total uncertainty,
whereas a probability of 1.0 is interpreted as complete certainty about the prediction. The accu-
racy of the 30 gene classifier estimated by LOOCV loops was 0.81 with 8/12 samples correctly
predicted as LB and 14/15 samples classified as NP. Aside of the four LB sample, which
received a wrong prediction by LOOCV, one other sample received a predictive probability
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below 0.5 showing five LB samples with low predictive probabilities compared to four being
misclassified during LOOCV.

Validation of the cumulus gene signature on cross-platform external data. We tested
the cumulus classifier on an external data set published by Feuerstein et al, 2012 downloaded
from the public expression profile repository, gene expression omnibus (GEO) at NCBI [9].
The data set consisted of expression profiles of CCs originating from oocytes of IVF treated
patients, which developed into blastocysts after 5/6 days of in-vitro culture or oocytes which
were arrested at the embryo state. Three sub-sets of data were available as part of the study
(part 1: GSE37110, part 2: GSE37116 and part 3: GSE37117) consisting of 21, 36 and 24 sam-
ples, respectively. Since these data were analyzed on the whole human genome oligo

Fig 1. ROC curve of the training set. Receiver operating characteristic (ROC) curve for the binary classifier built to distinguish
between live birth (LB) and no pregnancy (NP). The curve shows the true positive rate versus false positive rate, i.e. the tradeoff
between sensitivity and specificity. The area under the curve (AUC), which captures the ability of the classifier to correctly group
the patients with follicular adenoma and those with follicular carcinoma, is equal to 0.86. A perfect classifier will have an AUC of
1.0, whereas an AUC value of 0.5 indicates that the classification is random.

doi:10.1371/journal.pone.0153562.g001
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microarray 4x44K Agilent platform, the data sets were not directly comparable to the Affyme-
trix format. In order to test the CC signature of 30 unique genes, the gene signature was trans-
lated to the probe id of the Agilent platform using gene symbols, which resulted in a signature
of 25 unique genes. The performance of this 25 gene signature was evaluated by linear SVM on
pre-processed expression values downloaded from the GEO data base. Testing of the gene sig-
nature resulted in varying performance across the three parts of the data set, with part 3 data
showing superior accuracy of 0.88 compared to 0.6 and 0.75 respectively for part 1 and part 2
(Table 2).

The SVM predictions were translated into predictive probabilities and visualized alongside
the predictive probabilities of the training data for comparison (Fig 2). In agreement with these
results, ROC analysis resulted in AUC of 0.57, 0.65 and 0.88, respectively for the three sub data
sets (S1 Fig).

Ingenuity pathway analysis. Despite the fact that gene classification signatures often can
be difficult to interpret with respect to the biology of the underlying disease; and missing bio-
logic interpretation does not warrant poor clinical usefulness of well-established biomarkers

Fig 2. Predictive probability of cumulus training set samples and validation set samples. The predictive probability of the 30-gene signature is shown
for the training set and after translation to the validation data set, part 1, 2 and 3, respectively. Each dot represents a sample and the color indicates the true
(blinded) class. If a sample has a predictive value above 0.5 (p(LB) > 0.5), it is classified as predictive of leading to Live birth (LB) in the training set or
reaching blastocyst (B) stage in the validation sub sets, validation-part1, validation-part2 and validation-part3, respectively. Samples with p(LB) below 0.5 are
classified as predictive of no pregnancy (NP) in the training set and embryos of poor quality (EP) in the validation set. Samples which received an erroneously
prediction according to their true class are indicated with a black circle and sample name.

doi:10.1371/journal.pone.0153562.g002
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[26], the probe sets list including p-value, false discovery rate (FDR) q-value, and fold change
of the comparison of LB versus NP, was imported into the Ingenuity Pathway Analysis (IPA)
software to investigate biological functionality. Based on the relatively short gene signature list,
no upstream activator molecules were detected. However, downstream effect analysis to predict
the effect of directional gene expression change on biological processes based on the expected
causal effects derived from the literature, resulted in two biological functions with significant
activation z-scores. Down-regulation of 10 genes in the LB group collectively pointed to the
activation of apoptosis with a z-score of 3.032 and an enrichment p-value of 0.018 (Fig 3). Four
related bio functions in the categories of Cell Death and Survival, and Organismal Injury and
Abnormalities were predicted to be activated in the LB group, although with non-significant z-
scores below 2 (S5 Table). Six of the 10 genes were furthermore overlapping with a set of eight
genes, which were predictive of decreased activity of cell migration (Fig 3, S5 Table). Additional
four functional categories showed z-scores indicative of decreased activity although with low
significance. These were microtubule dynamics, organization of cytoplasm, quantity of neu-
rons and growth of neurites, all part of the biological categories Cellular Assembly and Organi-
zation, and Tissue Morphology (S5 Table).

Table 2. Performance of the gene signature obtained during the formulation and training of the cumulus cell support vector machine on the exter-
nal validation data set.

Accuracy (%) of
validation set, part 1

Accuracy (%) of
validation set, part 2

Accuracy (%) of
validation set, part 3

Training set # genes Classification Model Overall LB NP Overall LB NP Overall LB NP

PLIER above bg 25 SVM Linear, cost1 57 64 50 67 61 72 96 85 100

PLIER above bg 25 SVM linear, cost 2 62 64 60 75 67 83 88 91 85

PLIER above bg 25 SVM linear, cost 10 57 64 50 58 61 56 92 100 85

The table shows the classification accuracy of the binary classifier built to distinguish between live birth (LB) and no pregnancy (NP) on the three parts of

the external cumulus expression data set (GEO accession: GSE37110, GSE37116 and GSE37117) using the linear support vector machine classifier with

three settings of the cost parameter. Cost = 2 shows the best ability to classify the external data correctly.

doi:10.1371/journal.pone.0153562.t002

Fig 3. Predicted activation states. Ingenuity downstream effect analysis to predict the effect of directional gene expression resulted in two biological
functions with significant activation z-scores indicative of predicted activation of apoptosis and decreased activity of cell migration. The mechanistic network
of the implicated genes is shown along with the predicted relationship indicated by the color of the edges.

doi:10.1371/journal.pone.0153562.g003
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Mechanistic networks were generated based on sets of connected upstream regulators that
in conjunction would result in the gene expression changes observed in the dataset. Two mech-
anistic networks were generated with network scores above 6. The first network was enriched
in functions related to Cellular Movement, Nervous System Development and Function, Cellu-
lar Growth and Proliferation with a network score of 24 (Fig 4A). Eleven of the 30 genes in the
classifier gene signature are represented in the mechanistic network, all of which are down reg-
ulated in the LB group compared to NP. The second mechanistic network represents genes
involved in Cell Death and Survival, Cell-To-Cell Signaling and Interaction, Hematological
System Development and Function. Although only four of the 35 genes in the network are rep-
resented in the gene signature, they are part of the functional network involved in cell death,
which is in line with the increased predicted activity of apoptosis (Fig 4B).

Discussion
The study demonstrated that is possible to develop a classifier based on selection of 30 genes
from whole genome microarray data from CC that predict the chance of pregnancy in an IVF
setting with 81%. This classifier proved its value by prediction of the ability of embryos to
reach the blastocyst stage in vitro from an independent data set. Therefore this classifier has
the potential to be developed into a clinical useful tool if larger studies can confirm the results
obtained in this study.

In contrast, we were not able to define a robust MGC classifier signature that could classify
live birth with accuracy above random chance level.

The aim of this study was to use machine learning techniques to build CC and MGC tran-
scriptomic classifiers to predict oocyte competence. Several combinations of microarray data
pre-processing (RMA normalization) and feature selection were tested during cross validation
rounds to derive the best performing algorithm and classifier gene signature [27–30].

Aside from the inherent heterogeneity of the data, we were able to correctly classify LB
patients by leave one cross validation based on a 30 gene cumulus cell signature, and the cross
validation support data showed that more than half of the genes in the signature were included
in 89 percent or more of the cross validation runs, indicating that these genes have a stronger
impact on the outcome and hence have a high relative weight in the classifier. We furthermore
proved the classifier and the signature to be statistic significant compared to random classifica-
tion of LB versus NP in 1000 random permutations of the samples as described [31].

The signature was furthermore tested for its ability to predict developmental competence as
defined by the ability to reach the blastocyst stage in an external validation data set. The data
represented 3 sets of transcriptomes from CC corresponding to oocytes that gave rise to 4-cell
embryos on day 2 after fertilisation that either failed (incompetent) or succeeded to develop to
full blastocysts (competent) after 5 days in vitro culture [9]. Our classifier gene signature suc-
ceeded in classifying these sets into competent and incompetent with 0.62, 0.75 and 0.88 accu-
racy (Table 2). The predictive power of the signature is increasing from part 1 through 3 of the
data set, showing not only better performance (accuracy), but also more significant predictive
power as assessed by increase in the significance of the predictive probability measure. It is
unclear what the differences are between the three parts of the external data.

Whereas we observed a varying performance of the different CC classifiers depending on
the choice of normalization and classification algorithm applied, all tested combinations of
MGC classifiers showed poor performance in discriminating oocytes leading to live birth from
oocytes which failed to establish a pregnancy. These data indicate that that gene expression in
MGC does not reflect competence. However, the high degree of variability across samples, the
small fold differences between the two end-points (NP and LB), combined with the lower
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number of samples in the MGC data set (19 MGC compared to 27 CC), with the resulting
reduced power of the analysis may influence the ability to detect a set of discriminating signa-
ture genes during cross validation.

Further, explanation for the small expression changes observed in both cell types may be
that the true signal of competence is blurred by the massive changes in the follicle originating
from the ovulation trigger 34–36 hours before oocyte retrieval and isolation of cells [32–34].
Furthermore, it is possible that the true expression changes related to full developmental com-
petence are masked due to the end-point of the analysis. The group of samples leading to no
ongoing pregnancy may contain samples, which were obtained from oocytes which never
passed the 8-cell stage nor reached the blastocyst stage, or reached the blastocyst stage, but
failed to implant due to incompetence or a none receptive endometrium. Hence, they may
express a transcriptome profile, which is more similar or different to the profile of the samples
from the live birth group, depending on the time of which the development failed. Also, it has
been established that the end-point in a classification study has a great impact on the perfor-
mance of, and feasibility of formulating a classifier metric, which can in fact classify or predict
a certain factor in a data set [35,36].

Since the overall aim of the project was to define predictors (genes) of LB and not to detect
differentially expressed genes, a significance level of p< 0.01 in a univariate t-test was used for
feature inclusion. This significance level is not sufficient significant to exclude false discoveries
since no genes were significant after multiple testing correction (data not shown). This is in
agreement with a recent study, where no genes were significantly expressed with FDR below
0.05 in CC and MGC of oocytes leading to pregnancy or not [13]. In some cases, better predic-
tion is achieved by being more liberal about the gene sets included in the model although a bio-
logically interpretation may not be meaningful [37].

Although many of the signature genes showed modest level of expression changes in the
training data set and do not overlap with other studies [10–13,38,39]; they may indeed repre-
sent a biological blueprint of functionality related to competence [40,41]. This is one of the
conclusions of a recent survey of hundreds of classification studies which showed that, despite
of large dissimilarities between gene signatures depending on the choice of sample pre-process-
ing and high level data analysis, the underlying biology of the different signatures in various
classifiers which originated from the same data or examined the same biological question, was
the similar [36,42].

The 30 annotated genes in the CC classifier signature were subjected to Ingenuity Pathway
analysis. Downstream effect analysis suggests increased activity of apoptosis in the CC sur-
rounding oocytes with developmental competence to develop, implant and succeed in birth of
a healthy baby. None of the classifier signature genes have previously been shown to be regu-
lated in CC of oocytes determined to be of good quality, mature or developmentally competent
by different measures and standards [6,10–13,38,43]. Nonetheless, the underlying apoptotic
activity has been investigated in follicular cells and it has been shown that a number of apopto-
tic follicular cells exist even in healthy follicles [44–46]. Studies using classical apoptotic mark-
ers (BCL2 and BAX expression, caspase activation, annexin V labeling and DNA
fragmentation (TUNEL)) techniques to detect early and late stages of apoptosis, respectively,
have shown a correlation between acquired developmental competence and a certain level of
apoptosis [46–49] whereas several studies have suggested no or inverse correlation between

Fig 4. Mechanistic network.Mechanistic network based on the 30 probe set signature used to predict live birth in cumulus
cells. (A) Top predicted functions represented by the network are Cellular Movement, Nervous System Development and
Function, Cellular Growth and Proliferation. (B). Top predicted functions represented by the network are Cell Death and
Survival, Cell-To-Cell Signaling and Interaction, Hematological System Development and Function.

doi:10.1371/journal.pone.0153562.g004
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apoptosis in CC and oocyte maturity and in vitro development after IVF/ICSI [47,50–53].
However evidence for correlation to pregnancy and birth has not been provided previously. An
increase in apoptotic activity in CC connected to mature oocytes in MII as compared to GV
stage has been suggested based on transcriptome comparisons [9]. Recent studies [51,52] show
that increasing age of the women correlates to increased degree of apoptosis in CC. We have in
the present study by the case control design aimed for minimizing a potential age induced bias
in the results. The genes in the classifier which significantly enriches ‘increase activity of apo-
ptosis’ in competent CC as compared to incompetent, are all reported in the literature to pro-
tect against apoptosis. If the level of apoptosis is related to competence remains to be answered,
however, the expression level of central genes in apoptosis regulation, P53, BAX, BCL-2 were
not related to competence in our data.

Of the 30 genes in the classifier, 10 (NR2F1, COL4A1, GAL, DCLK1,MRC2, FLNA, SOCS6,
RAB33A, FN1, BGN) showed an overlap with genes that previously have been shown to be dif-
ferentially expressed between corresponding CC and MGC in the preovulatory follicle [54].
Interestingly, of these all but one (COL4A1) was 2–10 fold higher expressed in CC as compared
to MGC indicating a specific function of the gene products in the CC compartment in the ovu-
latory follicle [54].

FN1, BGN, COL4A1 are all constituents of extracellular matrix and cell to cell adhesion
involved in cumulus cell expansion in response to final maturation of the follicle [55–57]. A
recent study of FSH induced superovulation in mice showed that increased amount of collagen
type 4 (col4a1) in the cumulus of fully grown follicles after ovulation correlated with oocytes of
lower developmental competence, as the superovulation conditions resulted in changed follicle
morphology with delayed mucification and maturation [56]. Interestingly, we observed a
higher expression of COL4A1 in the CC of oocytes which did not result in an ongoing preg-
nancy, which might indicate a delay in maturation, which influence the developmental compe-
tence and promotes a delay in maturation that might lead to an asynchrony with downstream
competence effects and early luteinization [56,58]. Furthermore, we observed that FN1 was
down regulated in CC of oocytes leading to ongoing pregnancy and live birth. FN1 expression
has been inversely linked to follicle maturation. Down regulation of this gene may indicate that
matrix modelling is inactive, due to terminated follicular growth as a consequence of com-
pleted oocyte maturation [59].

In conclusion, we have analyzed the transcriptional profile of MGC and CC originating
from individual follicles and developed a CC classifier, which showed a promising performance
on external data on blastocyst development. This suggests that the gene signature at least partly
include genes that relates to competence in developing to blastocyst. Further validation is
needed on data representing implantation and birth to evaluate if the gene signature extends to
classify not only blastocyst development as a major relevant marker of competence in IVF and
ICSI, but ongoing pregnancy and live birth.

After completion of a large independent validation by a prospective randomized study com-
paring standard morphological evaluation with non-invasive classification of LB probability
using CC expression profiling for embryo selection, we are aiming at establishing a web-server
application allowing the public to perform CC expression profile classification (as exemplified
in [23,60]).
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