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Abstract 20 

In vitro studies of P. aeruginosa and other pathogenic bacteria in biofilm aggregates have yielded 21 

detailed insight to their potential growth modes and metabolic flexibility under exposure to 22 

gradients of substrate and electron acceptor. However, the growth pattern of P. aeruginosa in 23 

chronic lung infections of cystic fibrosis (CF) patients is very different from what is observed in 24 

vitro e.g. in biofilms grown in flow chambers. Dense in vitro biofilms of P. aeruginosa exhibit 25 

rapid O2 depletion within <50-100 µm due to their own aerobic metabolism. In contrast, in vivo 26 

investigations show that P. aeruginosa persists in the chronically infected CF lung as relatively 27 

small cell aggregates that are surrounded by numerous PMNs, where the activity of PMN’s is the 28 

major cause of O2 depletion rendering the P. aeruginosa aggregates anoxic. High levels of nitrate 29 

and nitrite enable P. aeruginosa to persist fueled by denitrification in the PMN-surrounded biofilm 30 

aggregates. This configuration creates a potentially long-term stable ecological niche for P. 31 

aeruginosa in the CF lung, which is largely governed by slow growth and anaerobic metabolism 32 

and enables persistence and resilience of this pathogen even under the recurring aggressive 33 

antimicrobial treatments of CF patients. As similar slow growth of other CF pathogens has recently 34 

been observed in endobronchial secretions, there is now a clear need for better in vitro models that 35 

simulate such in vivo growth patterns and anoxic microenvironments in order to help unraveling the 36 

efficiency of existing or new antimicrobials targeting anaerobic metabolism in P. aeruginosa and 37 

other CF pathogens. We also advocate that host immune responses such as PMN-driven O2 38 

depletion play a central role in the formation of anoxic microniches governing bacterial persistence 39 

in other chronic infections such as chronic wounds.     40 

 41 

 42 

Keywords: microenvironment, growth, chronic infection, biofilm, immune response  43 



 
 

  3 
 

1. Introduction 44 

 45 

The biofilm physiology of pathogenic bacteria has mostly been studied in vitro using flow-chamber 46 

setups, where a continuous flow of media has maintained the external chemical microenvironment 47 

constant (1), (2) resulting in vertically and laterally stratified distributions of nutrients and 48 

metabolites, i. e., the formation of concentration gradients, due to i) mass transfer impedance 49 

between fluid and the exopolymeric biofilm matrix, and ii) heterogeneity in biomass distribution (2-50 

5). In presence of such gradients, the bacteria can adapt their physiology according to the actual 51 

chemical microenvironment in the biofilm resulting in distinct growth zones and modes of 52 

metabolism (2). Thus, the growth of such in vitro biofilms creates internal chemical and 53 

physiological gradients, which are largely governed by solute exchange with the medium and the 54 

diffusive properties and restricted bacterial mobility in the biofilm exopolymeric matrix. In biofilms 55 

associated with chronic infections CF patients, however, direct evidence of physiological gradients 56 

within in vivo biofilms is lacking. In fact, the finding of low and uniformly distributed growth 57 

inside biofilm aggregates of the important pathogenic bacterium Pseudomonas aeruginosa in the 58 

chronically infected lungs of cystic fibrosis (CF) patients (6) points to the absence of physiological 59 

differentiation inside such cell aggregates. In addition, the low in vivo growth rates of pathogens, 60 

the hypoxic or anoxic conditions in infected CF endobronchial mucus (7), and the accumulation of 61 

numerous polymorphonuclear leukocytes (PMNs) around bacterial biofilm aggregates (8) imply 62 

that the majority of O2 is not consumed by the biofilm but rather by the host immune-response 63 

outside the biofilm. In particular, PMNs that accumulate around P. aeruginosa biofilms in vivo (8) 64 

can cause intense O2 depletion during their respiratory burst (9) and the formation of nitric oxide 65 

(NO) (10) in endobronchial secretions from CF patients with chronic P. aeruginosa lung infection. 66 

This PMN-imposed restriction of O2 availability for the pathogens in vivo is unlike most in vitro 67 



 
 

  4 
 

biofilm studies, where normoxic media are typically supplied continuously. In this review we 68 

discuss current evidence for a new working model of chronic infections in CF patients, proposing 69 

that it mainly is the interaction between PMNs and P. aeruginosa biofilm aggregates that imposes 70 

physiological constraints on the in vivo biofilm, and modulates the biofilm microenvironment in CF 71 

lungs. We also discuss important implications of this revised view on infectious biofilms for the 72 

antibiotic treatment of chronic lung infections. 73 

 74 

The host immune-response changes the chemical microenvironment during chronic lung 75 

infection in CF lungs 76 

Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance 77 

regulator gene affecting apical ion transport (11). The defective ion transport results in the 78 

formation of thick viscous mucus, which makes the lungs susceptible to chronic respiratory 79 

infections by preventing mucociliary clearance (12), (13) and impeding solute mass transfer and 80 

penetration of antibiotics in the mucus (14-16). Chronic lung infection is the most severe 81 

complication in CF and P. aeruginosa is the major bacterial pathogen causing such infection (17), 82 

(18). In the chronic lung infection, P. aeruginosa exists in small biofilm cell aggregates that are 83 

persistently surrounded by PMNs in the endobronchial mucus (8), (19), (20). According to O2 84 

measurements directly in the lungs of CF patients, the infected endobronchial mucus is subject to 85 

severe hypoxia or even anoxia (7). Besides aerobic respiration by the lung epithelium (7), the 86 

depletion of O2 is predominantly caused by host  immune cells, i.e., PMNs that inflict a strong local 87 

O2 consumption for their production of superoxide (O2
-
) (9) and to a lesser extent for production of 88 

nitric oxide (NO) (10). The O2 consumption by microbial aerobic respiration thus appears 89 

diminutive under such in vivo conditions in the CF lung (9).  90 
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Accelerated O2 consumption by activated PMNs has long been recognized (21) and is due to a one-91 

electron step reduction of O2 to O2
-
 (22) by a NADPH-oxidase (23) named NOX-2 (24) that leads to 92 

a process known as the respiratory burst (25). In spite of this name, PMNs are barely engaging in 93 

aerobic respiration for acquiring ATP, and <3% of provided glucose is oxidized through the TCA in 94 

PMNs (26). The PMNs mainly produce ATP via anaerobic glycolysis (27), and inhibition of their 95 

terminal cytochrome C oxidase neither decrease O2 consumption nor production of O2
-
 in PMNs 96 

(28), (9). Thus O2 consumption by PMNs is devoted for the production of reactive oxygen species 97 

(ROS) that are essential for the antimicrobial host response; patients with defective ROS 98 

production, such as patients with chronic granulomatous disease (29) are therefore very susceptible 99 

to bacterial and fungal infections (30). 100 

Most infectious biofilms are characterized by a stimulation of an inflammatory response that is 101 

typically dominated by PMNs (32). Increased ROS production and thus O2 consumption by PMNs 102 

is a stereotypical response that can be activated by both fungal intruders, Gram-positive and Gram-103 

negative planktonic bacteria (32), (9), by bacterial biofilms (33), as well as by sterile tissue damage 104 

(34). Therefore, a variety of stimuli can strongly affect the O2 availability for infectious microbial 105 

biofilms and consequently, we propose that O2 depletion in infected endobronchial CF mucus is 106 

primarily due to O2 consumption by activated PMNs. Sputum samples from CF patients with P. 107 

aeruginosa chronic lung infection generally contain PMNs with ongoing respiratory burst (9), (35) 108 

and NO production (10). In accordance, sputum samples from adult CF patients with P. aeruginosa 109 

chronic lung infection exhibit steep O2 concentration gradients and very thin oxygenated surface 110 

zones (36). Similar O2 gradients have also been measured in fresh sputum from pediatric CF 111 

patients with lung infections involving various bacterial species (37). During biofilm infections, 112 

activated PMNs may thus expand the O2 depleted zones in the lung to an extent that favors 113 
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pathogenic adaptation to anaerobic physiology and such adaptation has actually been confirmed in 114 

vivo by several biomarkers (see below). 115 

Activated PMNs may also decrease extracellular pH (38), (39) and secrete lactate (40), and acidic 116 

conditions of pH<6.2 have been measured in endobronchial mucus (41) and in freshly expectorated 117 

sputum from CF patients with lung infection (37). Additional host responses also affect the 118 

availability of potential alternative electron acceptors for anaerobic microbial metabolism. In CF 119 

sputum, high levels of nitrate (NO3
-
) and nitrite (NO2

-
) of~0.05-1 mM have been measured (42-44), 120 

(36), and increased levels of NO3
-
 and NO2

-
 in the blood have also been observed during 121 

experimental P. aeruginosa lung infection (45) that may be linked to the host response. Activated 122 

PMNs in infected CF sputum have thus been shown to liberate NO3
-
 and NO2

-
 (46) probably 123 

resulting from the degradation of peroxynitrite generated from the rapid reaction between O2
-
 and 124 

NO produced by activated NOX-2 and nitric oxide synthase (47), (48). 125 

Growth and biofilm structure: In vitro biofilms grown in flow cells and drip-flow reactors, 126 

exhibit formation of step chemical gradients (2), (49). These result in heterogeneous growth 127 

patterns forming a complex structural and chemical landscape (3-5), (49). In such in vitro biofilms. 128 

bacterial growth rate has been estimated to rapidly drop with distance from the biofilm surface 129 

reaching quasi-static growth at 40-50 μm depth (49), (50). As illustrated in Figure 1, such decline of 130 

aerobic growth can be attributed to electron acceptor limitation due to rapid in vitro O2 depletion by 131 

bacterial biomass coupled with mass transfer limitation of the diffusive O2 supply from the 132 

surrounding medium (3), (4), (51), (52). 133 

However, we note that the presence of large surface attached biofilms with pronounced intra-biofilm 134 

gradients as seen in vitro remain to be demonstrated in chronic biofilm infections of CF lungs. In vivo 135 

biofilms in most chronic infections are typically found as small, suspended small cell aggregates that are 136 

surrounded by a high concentration of PMNs (6), (19). A meta-analysis of the size of such biofilm 137 

aggregates in various chronic infections showed a biofilm aggregate diameter range of 4 – 200 μm with a 138 
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median diameter of 50 μm in chronic CF lung infections, chronic wounds, and implant-associated and Otitis 139 

media infections (19) (Figure 2). These in vivo biofilm dimensions are thus  in strong contrast to large area 140 

surface-attached in vitro biofilms typically ranging from ~50 µm to several hundred μm in thickness (53, 54). 141 

Growth rates of P.aeruginosa within different biofilm aggregates in lung tissue from chronically 142 

infected CF patients showed significant variability among individual aggregates throughout the 143 

lungs (6). However, growth across individual biofilm aggregates, i. e.,  a comparison of growth 144 

rates of bacteria in the periphery and more central parts of individual aggregates, showed no 145 

significant differences (6). Thus, the heterogeneous growth patterns driven by chemical gradients in 146 

biofilms grown in vitro could not be demonstrated in vivo in biofilm aggregates characteristic of 147 

chronic CF lung infection. Instead, in vivo growth rate heterogeneity between individual biofilm 148 

aggregates showed a statistically significant correlation to the local concentration of PMNs 149 

surrounding the bacterial biofilm aggregates, where a higher concentration of PMNs lead to slower 150 

growth within the biofilms (6). High consumption of O2 by the PMNs can thus have a bacteriostatic 151 

effect on cells within the biofilms as a whole. In this way, the surrounding inflammation can be 152 

viewed as a secondary matrix through which chemical gradients may build towards the periphery of 153 

the biofilm and not through the biofilm itself (6). Several studies have investigated the growth 154 

pattern of bacteria in the lungs of patients with CF. It is interesting that these studies have shown 155 

that species frequently classified as obligate aerobes such as Staphylococcus aureus, 156 

Stenotrophomonas maltophilia and Achromobacter xylosoxidans  exhibit virtually zero growth, 157 

which is in line with depletion of O2 in infected parts of the CFs lungs, whereas the facultative 158 

anaerobe P.aeruginosa exhibits slow growth under these conditions (6), (55-58). We conclude that 159 

PMNs apparently play a major role in modifying the chemical microenvironment thereby imposing 160 

growth restriction upon pathogens in biofilm aggregates associated with chronic lung infections of 161 

CF patients. As susceptibility to several types of antibiotics may be decrease by low availability of 162 
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O2 (59-61) and slow growth (62-66), PMNs may also play a major role in rendering in vivo biofilms 163 

resistant to antibiotics (Figure 1E,F; Figure 3).  In the following, we discuss how P. aeruginosa 164 

might operate and adapt to biofilm life in an ecological niche in CF lungs, where O2 is largely 165 

absent due to PMN activity.  166 

Metabolic flexibility in P. aeruginosa: The ability of microorganisms to exploit a wide range of 167 

electron acceptors for ATP generation provides metabolic flexibility in transient environments 168 

enabling the population of a variety of terrestrial and aquatic habitats (67). Such metabolic 169 

flexibility may also be an important trait in pathogens causing chronic infections. The opportunistic 170 

pathogen P. aeruginosa can grow under anoxic conditions by denitrification (68) or arginine 171 

fermentation (69), (70), while anaerobic pyruvate fermentation can support long-term survival of P. 172 

aeruginosa, but does not enable growth (71), (72). The intensive depletion of O2 caused by 173 

activated PMNs in infected endobronchial secretions (9) may thus impose a necessary shift from 174 

aerobic to anaerobic life-styles of microorganisms in biofilm aggregates. Accordingly, anoxic zones 175 

in freshly expectorated sputum from CF patients with P. aeruginosa lung infections exhibit 176 

production of nitrous oxide (N2O) (Figure 4) (36), (37), which is a signature of denitrification (68). 177 

This metabolic shift to anaerobic respiration may reflect adaptation as a consequence of O2 178 

restriction since several genes involved in denitrification in P. aeruginosa are upregulated by O2 179 

depletion as a result of O2 sensing by Anr (73), (74). Complete bacterial denitrification is performed 180 

by the four enzymes nitrate reductase (NAR), nitrite reductase (NIR), nitric oxide reductase (NOR) 181 

and nitrous oxide reductase (N2OR) that catalyzes the four step reduction of NO3
-
 to N2 (68):                                            182 

NO3
-
 (NAR) → NO2

-
 (NIR) → NO (NOR) → N2O (N2OR) → N2  (1) 183 

The CF pathogens P. aeruginosa, A. xylosoxidans, B. multivorans and S. maltophilia all exhibit 184 

biofilm growth associated with chronic lung infections (75-77). During anoxia, clinical isolates of 185 
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these four pathogens responded to supplemental NO3
-
 by increased growth and were apparently 186 

capable of NO3
-
 depletion, while only P. aeruginosa and A. xylosoxidans displayed the formation of 187 

N2O (56). The genetic set-up for complete denitrification from NO3
-
 to N2 is found in P. aeruginosa 188 

(78), (79) as well as in A. xylosoxidans (79). However, formation of N2 from NO3
-
 via 189 

denitrification has so far only been demonstrated in cultures of P. aeruginosa (68) and remains to 190 

be firmly verified in cultures of A. xylosoxidans.  191 

 192 

Response of P. aeruginosa to hypoxia: 193 

Aerobic respiration in P. aeruginosa involves a four-electron reduction of O2 to H2O via five 194 

terminal oxidases (80-85). The cbb3-1 oxidase, the ccb3-2 oxidase and the aa3 oxidase, are all 195 

cytochrome c oxidases, while the bo3 oxidase and the cyanide-insensitive oxidase (CIO) are quinol 196 

oxidases. Each oxidase has a specific affinity for O2, efficiency of proton translocation and 197 

tolerance to stress imposed by e.g. reactive nitrogen species and cyanide (86). While the cbb3 are 198 

oxidases with high affinity for O2 (87) the aa3, bo3 and CIO oxidases have low affinity to O2 (86-199 

88). 200 

The four reductase enzymes involved in denitrification are induced by low O2 tension and the 201 

presence of NO3
-
 (89). The anaerobic regulator of arginine and nitrate reductase (Anr) (belonging to 202 

the Fnr-Crp regulator family) is on top of the regulatory network controlling the activity of the four 203 

central denitrification enzymes and thereby anaerobic energy metabolism (90-93). However, the 204 

additional transcriptional regulators Dnr and NarX-NarL are also needed for denitrification. NarX 205 

detects NO3
-
 and activates NarL, that down-regulates arginine fermentation (94-96), while Dnr is 206 

highly dependent on the activation of Anr to activate the cascade of genes enconding the Nar, Nir, 207 

Nor and Nos reductases (95). In addition, Dnr responds to the presence of NO (97-99). 208 
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Furthermore, the P. aeruginosa quorum sensing regulator RhlR can repress the expression of the 209 

four reductase-coding genes (100) together with the quinolone signal (PQS) (101). 210 

The Anr regulator is also a main regulatory factor controlling the five terminal oxidases involved in 211 

aerobic respiration by P. aeruginosa as it monitors the O2 concentration, and at low O2 212 

concentrations activates the expression of the cbb3-1 and the ccb3-2 oxidase as well as represses the 213 

expression of CIO (86). Regulation of aa3 and bo3 appears to depend on nutrient and iron 214 

starvation (86). 215 

Even though the citric acid cycle is fully operative in bacteria under denitrifying conditions (102) 216 

more energy is preserved during aerobic respiration (103). Recently, the NOx reductases has been 217 

proposed to contribute to the proton motive force by only six protons per 2 electrons from one 218 

molecule of NADH, and considering that half of the generated ATP during denitrification is 219 

available for growth, this suggests that the growth yield per oxidized NADH by denitrification is 220 

only 30 % of the growth yield during aerobic respiration (103). Accordingly, the growth of P. 221 

aeruginosa is expected to be lower with nitrogen oxides as electron acceptors than under aerobic 222 

conditions, and the observation of slow growth in P. aeruginosa biofilm in the lungs (6) along with 223 

the N2O formation in expectorated sputum supports the hypothesis that denitrification is an 224 

important metabolic pathway for P. aeruginosa biofilms during lung infection in CF patients.  225 

 226 

Bacterial response to O2 depletion during chronic CF lung infection 227 

First evidence for anaerobic growth of P. aeruginosa in CF lungs was provided by the 228 

demonstration of O2 depletion and presence of OprF, a biomarker of denitrification in the 229 

endobronchial mucus from chronically infected CF patients (7), (104). Denitrification by P. 230 

aeruginosa has been further confirmed by the production of N2O in anoxic parts of sputum samples 231 

from CF patients with chronic P. aeruginosa lung infection (36), (Figure 4). The absence of O2 in 232 
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parts of the CF airways has been further confirmed by the isolation of obligate anaerobes from CF 233 

sputum and bronchoalveolar lavage fluids (105), by the demonstration of anoxic zones in CF 234 

sinuses (106), as well as by the presence of anoxic zones in CF sputum (36), (37). Several other 235 

biomarkers of P. aeruginosa engaged in anaerobiosis during chronic lung infection in CF have been 236 

isolated from sputum. These include; antibodies against OprF and Nar in sera (104), (107), the 237 

upregulation of the denitrification reductases in CF sputum (108) and CF isolates (109), (110), and 238 

the increased transcription of the anaerobic regulator gene anr and up-regulation of Anr-dependent 239 

genes (109). Additionally, after antimicrobial treatment the infected sputum content of NO3
−
 240 

increases (42) indicating a reduction in the activity of denitrifying cells.  241 

The effect of anaerobiosis on the pathogenicity of P. aeruginosa may be highly relevant since 242 

production of the viscous matrix component alginate is increased when O2 is absent (111), (7). 243 

Alginate is linked with decreased lung function (112), possibly due to the ability of alginate to 244 

provide protection against antibiotics (113), (114) and phagocytic killing (115). Additionally, 245 

components of the anaerobic respiration pathway are immunogenic as evidenced by the presence in 246 

sera of antibodies against OprF and Nar (104), (107), and the activity of the nitrite reductase is 247 

required for type III secretion resulting in prolonged survival in human monocytes (116) and 248 

enhanced virulence (117).  Moreover, the N2O production in infected CF sputum (36) indicates that 249 

NOR is active in P. aeruginosa, which is associated with higher tolerance against NO produced by 250 

macrophages (118) and has been shown to cause increased virulence during infection in silkworms 251 

(119). 252 

In CF patients with chronic P. aeruginosa lung infection, the existence of pulmonary niches with 253 

low O2 levels has been demonstrated directly in the bronchial mucus (7) and in sputum samples 254 

(36), (37), and evidence for growth in such niches comes  from observation of the increased 255 

expression of genes involved in microaerobic respiration such as the high affinity oxidase cbb3 256 
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(109). Furthermore, P. aeruginosa CF PAO1 cultures kept at O2 levels resembling the hypoxic 257 

pulmonary niches exhibit slow growth corresponding to in vivo pulmonary growth rates of P. 258 

aeruginosa reported in CF lungs  (6), (88). 259 

 260 

Effects of the chemical microenvironment on bacterial susceptibility to antimicrobials: 261 

Most studies of antimicrobial tolerance have not focussed on the hypoxic or anoxic conditions 262 

experienced in vivo by P. aeruginosa in their biofilm micro-niche surrounded by PMNs in the 263 

chronically infected CF lung. Yet, tolerance toward antibiotics in biofilm is recognized as a major 264 

cause of therapeutic failure during chronic infection and the mechanisms of antimicrobial tolerance 265 

in vivo are not completely understood (120). 266 

Physiological stratification in biofilms grown in vitro confers tolerance to several commonly used 267 

antibiotics due to limited O2 availability and nutrient supply to deeper biofilm layers (120), (121). 268 

Several bactericidal antibiotics such as ciprofloxacin target aerobic respiration and induce lethal 269 

cellular damage by redox-related physiological modifications resulting in formation of ROS (60), 270 

(61), (123-125). In fact, several common types of antibiotics such as aminoglycosides, beta-lactams 271 

and quinolones target processes linked to the TCA cycle in metabolically active bacteria leading to 272 

formation of toxic ROS that contribute to the bactericidal activity of the antibiotic during aerobic 273 

respiration (60), (123). Accordingly, the bactericidal activity of ciprofloxacin and tobramycin was 274 

decreased when the availability of O2 was reduced (59), (60). The slow growth associated with low 275 

levels of O2 (88) may also contribute to tolerance against tobramycin and ciprofloxacin in biofilm 276 

as well as in planktonic cultures (62), (63), (65). 277 

To overcome antibiotic tolerance in biofilms, alleviation of O2 limitation may activate aerobic 278 

respiration and thus increase the susceptibility of pathogens to several antibiotics targeting 279 

metabolic active bacteria. As an example, hyperbaric O2 treatment (HBOT) may significantly 280 
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enhance the efficacy of antibiotic treatment in vitro (126-128) and HBOT has the potential to 281 

enhance the antibiotic activity during experimental in vivo biofilm infections (129-132).  Enhanced 282 

antibiotic activity against in vitro biofilm may also be achieved by supplying pure O2 at 283 

normobarric levels (133).   284 

In contrast, the bactericidal activity of colistin on P. aeruginosa does not require the formation of 285 

toxic levels of ROS from O2 (60), and the bactericidal activity of colistin is actually enhanced in the 286 

absence of O2 (134). The bactericidal activity of colistin mainly depends on its interaction with 287 

lipopolysaccharide (LPS) within the outer bacterial membrane (135), (136). Decreased tolerance of 288 

anaerobic biofilm against colistin may thus be due to limited ability to establish tolerance by 289 

actively modifying LPS (137-139) due to the reduced production of ATP during anaerobic 290 

respiration as discussed above. A better understanding of the effects of anoxia and re-oxygenation 291 

on the susceptibility of biofilms to various antimicrobials may facilitate optimized selection of 292 

antimicrobials against biofilm during chronic infections. There is thus a strong need for further 293 

studies focusing on relating the in vivo susceptibility of biofilms to antibiotics to the chemical 294 

microenvironment in chronic infections, and how it is shaped by the host immune response. 295 

   296 

Chemical microenvironment during biofilm infection in non-CF patients: 297 

Albeit this review focusses on how immune-responses change the growth landscape for pathogenic 298 

bacteria causing chronic lung infections in CF patients, we also advocate that similar effects could 299 

be relevant in other chronic infections. The involvement of bacterial biofilms in the poor healing of 300 

chronic wounds has lately received increased attention (140), (141), and it has been demonstrated in 301 

experimental wounds that infection with P. aeruginosa biofilms impairs wound closure rates (142), 302 

(143). It was also shown that steep O2 gradients are present in the wound scab of diabetic mice with 303 

P. aeruginosa biofilm infection in their dorsal wound (144). Such hypoxic conditions may 304 
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contribute significantly to delayed wound healing (145-147). The source of O2 depletion in infected 305 

wounds is far from clarified, but the finding of enhanced expression of bacterial genes associated 306 

with O2 limitation and anaerobic growth in infected wounds of diabetic mice (144) indicate a 307 

significant consumption of O2 outside the biofilm. Increased accumulation of PMNs in human and 308 

mouse wounds with biofilm infection (148), (149) also indicate that PMNs may dominate local O2 309 

consumption around bacterial aggregates in wounds similar to patterns observed in the infected CF 310 

lung, but this proposal awaits further experimental investigation.  311 

 312 

Conclusion and outlook. 313 

In vitro studies of P. aeruginosa and other pathogenic bacteria have yielded detailed insight to their 314 

potential growth modes and metabolic flexibility when switching between planktonic and biofilm 315 

habitats, and under exposure to gradients of substrate and electron acceptor. However, in chronic 316 

lung infections of CF patients the growth pattern of P. aeruginosa is very different from what is 317 

observed in vitro. Dense in vitro biofilms of P. aeruginosa exhibit rapid O2 depletion within <50-318 

100 µm due to their own aerobic metabolism. In contrast, in vivo investigations show that P. 319 

aeruginosa persists in the chronically infected CF lung as relatively small cell aggregates that are 320 

surrounded by many PMNs, where the activity of PMN’s is the major cause of O2 depletion 321 

rendering the P. aeruginosa aggregates anoxic. High levels of nitrate and nitrite enable P. 322 

aeruginosa to persist fueled by denitrification in the PMN-surrounded biofilm aggregates. This 323 

configuration creates a potentially long-term stable ecological niche for P. aeruginosa in the CF 324 

lung, which is largely governed by slow growth and anaerobic metabolism and enables persistence 325 

and resilience of this pathogen even under the recurring aggressive antimicrobial treatments of CF 326 

patients. There is now a clear need for better in vitro models that simulate such in vivo growth 327 

patterns and anoxic microenvironments and that can help unravel e.g. the efficiency of existing or 328 
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new antimicrobials targeting anaerobic metabolism in P. aeruginosa. Host immune responses such 329 

as PMN-driven O2 depletion may also play a central role in the formation of anoxic microniches 330 

governing bacterial persistence in other chronic infections such as chronic wounds.    331 

  332 
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Figure legends 703 

 704 

Figure 1: Model of growth and activity in a surface-attached in vitro biofilm. (A) Cross-section of 705 

structured biofilm consisting of bacterial cells embedded in an exopolymeric matrix. (B) The 706 

chemical conditions in an in vitro biofilm, going from high concentration of substrate/nutrients/O2 707 

in the bulk medium surrounding the biofilm and depletion with depth in the biofilm. (C) Spatial 708 

heterogeneity in growth rate as a result of chemical gradients. Cells close to the surface of the 709 

biofilm grow fast, while cell growth becomes increasingly limited with depth in the biofilm. (E) 710 

Hypothetical result of treatment with colistin. The outer layer of actively growing cells survives the 711 

treatment, while the slow-growing cells deeper in the biofilm are killed. (F) Hypothetical result of 712 

treatment with ciprofloxacin. Actively growing cells in the outer biofilm layer are killed, while the 713 

slow-growing cells in deeper biofilm layers survive ciprofloxacin treatment.  714 

 715 

Figure 2:  Fluorescence microscopy (A – B) images (x 170 magnification) of mucosal P. 716 

aeruginosa biofilm stained with PNA-FISH (red) and PMNs stained with DAPI (blue) in lungs 717 

from CF patient with chronical P. aeruginosa biofilm (Kragh et al., 2014). 718 

 719 

Figure 3: Proposed effect of PMN accumulation on the in vivo susceptibility of biofilm aggregates 720 

to antibiotics in the CF lung. (A) The bronchial lumen with two non-attached biofilm aggregates 721 

surrounded by PMN-infiltrated mucus. (B) Oxygen concentration gradient in the mucus towards the 722 

biofilm aggregates. High concentration of PMNs results in stronger local O2 depletion and thus 723 

steeper concentration gradients due to the PMN respiratory burst. (C) High concentration of PMNs 724 

around a biofilm results in local anoxia with no or very slow aerobic growth of bacteria in the 725 

biofilm aggregate, while absence or lower abundance of PMNs enables higher growth due to better 726 
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O2 availability. (D) Differences in apparent growth rate of pathogenic bacteria in biofilm aggregates 727 

as modulated by PMN activity could also lead to different susceptibility to antibiotic treatment. 728 

 729 

Figure 4: Figure 4: A) Close up of a sputum sample from a cystic fibrosis patient with chronic P. 730 

aeruginosa lung infection with an inserted microsensor. (B) Representative microprofiles of N2O 731 

and O2 in a CF sputum sample. O2 profiles are shown as the mean and SD of three microprofiles 732 

recorded in the beginning of the experiment and did not change significantly throughout the 733 

experimental period, while the N2O profile represents the maximal N2O levels measured about 6-7 734 

h after beginning. (C)  A schematic model of the involved PMN and biofilm processes in CF 735 

sputum explaining the microprofiles. With permission from (36).  736 
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Fig 2 740 
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