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A fundamental question concerning representation of the visual world in our brain

is how a cortical cell responds when presented with more than a single stimulus.

We find supportive evidence that most cells presented with a pair of stimuli respond

predominantly to one stimulus at a time, rather than a weighted average response.

Traditionally, the firing rate is assumed to be a weighted average of the firing rates to

the individual stimuli (response-averaging model) (Bundesen et al., 2005). Here, we also

evaluate a probability-mixing model (Bundesen et al., 2005), where neurons temporally

multiplex the responses to the individual stimuli. This provides a mechanism by which the

representational identity of multiple stimuli in complex visual scenes can be maintained

despite the large receptive fields in higher extrastriate visual cortex in primates. We

compare the two models through analysis of data from single cells in the middle temporal

visual area (MT) of rhesus monkeys when presented with two separate stimuli inside their

receptive field with attention directed to one of the two stimuli or outside the receptive

field. The spike trains were modeled by stochastic point processes, including memory

effects of past spikes and attentional effects, and statistical model selection between the

two models was performed by information theoretic measures as well as the predictive

accuracy of the models. As an auxiliary measure, we also tested for uni- or multimodality

in interspike interval distributions, and performed a correlation analysis of simultaneously

recorded pairs of neurons, to evaluate population behavior.

Keywords: probability-mixing, response-averaging, primate visual cortex, multiple stimuli, point process, model

selection

1. INTRODUCTION

The receptive field (RF) of a neuron in the visual system is the region within the visual field in
which stimulation can affect the neuron’s response. To understand visual information processing,
it is fundamental to understand how the benefits of large RFs (integrating spatial information to
allow encodingmore complex and spatially extensive visual stimuli) are achieved without the loss of
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spatial precision caused by combining the responses to multiple
stimuli in the RF into one response of the neuron.

In primary visual cortex, RFs are small, allowing for a
direct high-resolution representation of stimulus position in
retinotopic coordinates. Moving up the hierarchy of extrastriate
visual areas, both in the temporal and dorsal pathways, RF
sizes grow substantially (Smith et al., 2001; Gattass et al.,
2005). This is generally seen as an adaptation to the functional
specialization of these areas for more complex aspects of the
visual environment, creating a need for integrating information
over larger spatial areas, such as when encoding faces (Kanwisher
and Yovel, 2006) in the ventral pathway or optic flow
patterns (Gilmore et al., 2007) in the dorsal pathway. However,
the benefit of spatial integration comes with the cost of
a loss of information about the individual features when
multiple stimuli fall in the RF, which happens frequently
in mid- or high-level visual cortical areas (Orhan and Ma,
2015).

Most single-cell studies on processing in extrastriate visual
cortex have focused on single stimuli, and most studies of
responses to multiple stimuli have viewed the recorded activities
as an integration of the responses that would have been evoked
by each of the stimuli presented alone. This approach has
led to the observation that the average firing rate to multiple
stimuli is not the sum but rather a weighted average of the
responses evoked by the individual stimuli when these are
presented alone (Recanzone et al., 1997; Britten and Heuer,
1999; Reynolds et al., 1999; Zoccolan et al., 2005; Busse
et al., 2009; Lee and Maunsell, 2009; MacEvoy et al., 2009;
Reynolds and Heeger, 2009; Nandy et al., 2013). Here we
show that looking only at the responses to multiple stimuli
averaged across many trials has obscured the possibility that
neurons multiplex the responses to the individual stimuli in
time, shifting between response states dominated by individual
stimuli (Bundesen et al., 2005; Bundesen and Habekost,
2008).

Reynolds et al. (1999) showed that a typical cell in visual area
V2 or V4 responds to a pair of objects in its classical RF by
adopting a rate of firing which, averaged across trials, equals a
weighted average of the firing rates when objects are presented
alone. We analyzed two opposing models, the two models being
prototypes for how multiple stimuli are being processed on
the single trial level, and both leading to the observed average
behavior over trials. In the response-averaging model (e.g.,
Reynolds et al., 1999), the firing rate of a cell to a pair of stimulus
objects in its classical RF is a weighted average of the firing rates
to the individual objects. By contrast, in the probability-mixing
model (Bundesen et al., 2005), the cell responds to the pair of
objects as if only one of the objects were present in any given trial.
Here we compare the abilities of the two models to account for
spike trains recorded from single cells in area MT in response to
(a) unidirectional moving random dot patterns (RDPs) presented
singly in the RF and (b) nonoverlapping bidirectional pairs of
such patterns in the RF. For unidirectional patterns, the two
models coincide. Results from bidirectional pairs support the
probability-mixing model over the response-averaging model.

2. MATERIALS AND METHODS

2.1. Experimental Procedures
The comparison between the response-averaging model and the
probability-mixing model was performed by analysis of spike
trains recorded from single cells in area MT. The data and
computer code are available at Li et al. (2016). In this study,
two rhesus monkeys were trained to perform visual tasks (see

Figure 1A). Before each trial of the main experiment, a fixation
spot (small red square) appeared in the middle of a computer
screen. The monkey was trained to maintain its gaze on the
fixation spot throughout each trial. It initiated a trial by pressing
a lever. Immediately afterwards a cue was presented, which
specified a target stimulus. The target, which could be either
a RDP (attend-in condition) or the fixation spot (attend-fix

condition), was later presented during the trial shown alone or
together with distracting RDPs. The monkey was rewarded with
a drop of juice for detecting a transient change in the target and
responding by releasing the lever within 150–650 ms after the

change.
In the attend-fix condition, the color of the fixation spot

changed from red to gray when the monkey pressed the lever.
The monkey was supposed to keep attention on the fixation

spot. After 600 ms, two distractor RDPs were presented inside
the RF of the recorded MT neuron and two were presented
outside the RF (see Figure 1A). Each distractor pattern could

change its motion (by increase in speed with 67% or clock-
or counterclockwise change in direction by 45◦) for a period
of 130 ms beginning at a randomly chosen moment between
800 and 2400 ms after the onset of the RDPs. The monkey

was required to detect a luminance change in the fixation spot
which occurred within the same time window. For all cells,
spike trains were recorded when two nonoverlapping patterns
were simultaneously present in their RFs. For the majority of
cells, spike trains were also recorded when only one pattern was
present in the RF (at one of two locations, aperture 1 or 2, used
for the bidirectional stimulation; see the unidirectional conditions
fix1 and fix2 in Figure 1A).

In the attend-in condition, the fixation spot remained red
during the whole trial. The cue was a moving RDP in aperture 1
presented for 600 ms. It had the same location and moved in the
same direction as the target RDP. After the cue, a blank screen
was shown for 800 ms (delay) followed by a display of the target
RDP accompanied by three distractor RDPs. The first change in
motion within the trial took place between 400 and 1200 ms after
the onset of the patterns and could occur in either the target or
one of the distractors. The transient change in speed or direction
of motion was the same as the change used in the attend-fix
condition. The target change took place inside aperture 1 in the
RF of the recorded neuron.

In the bidirectional conditions, direction of motion in
aperture 2 was always 120◦ clockwise relative to that in aperture
1 (see Figure 1A). To determine a direction tuning curve for
a neuron in a given condition (see Figure 2), both motion
components were varied in steps of 30◦. In all cells, full
tuning curves were determined for the attend-fix and attend-in
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FIGURE 1 | Experimental setup and possible results. (A) Visual stimuli and behavioral tasks. The lower left shows an example of the stimulus layout in the RF. The

classical RF of an MT neuron is indicated by dashed ovals (not visible on the screen). Bidirectional motion patterns composed of two adjacent separated RDPs that

moved within two stationary virtual apertures were used both inside and outside the RF. Apertures 1 and 2 were placed within the RF. In the bidirectional-motion

condition attend-in, the monkey was required to detect a transient change in either speed or direction of motion of the cued target RDP. In the bidirectional-motion

condition attend-fix and unidirectional motion conditions fix1 and fix2, the monkey was required to detect a transient change in the luminance of the fixation spot. (B)

Possible results. Illustration of the difference between the probability-mixing model and the response-averaging model by spike trains generated by stimulus pairs and

single stimuli, respectively. The spike trains are taken from two neurons indicated in the scatter plots in Figure 4A as a square (apparent probability-mixing) and a

triangle (apparent response-averaging). (C) Histograms of the empirical firing rates of the data in (B).
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FIGURE 2 | Tuning curves. Gaussian tuning curves (full-drawn lines) fitted to

the average firing rates (dots) at each direction of movement and for each

experimental condition of the 84 neurons that were tested in both bi- and

uni-directional trials. In the analysis, each neuron has its own tuning curve,

here an average curve is shown for illustration. The directions of movements in

apertures 1 and/or 2 are shown by green and yellow arrows, respectively,

along the x-axis. The two vertical dotted lines indicate the stimulus directions

that were closest to the preferred direction, in aperture 1 (right) and aperture 2

(left). An example of the periodic Gaussian function, Equation (7), is shown in

the insert on bottom-right, with parameters A = 15,D = 0, σ = 1.2, r0 = 5.

conditions. Recording of responses to the unidirectional
components of the bidirectional stimuli, when each of the
components was presented alone, provided two additional tuning
curves.

2.1.1. Monkey Training and Surgery
Two male rhesus monkeys (Macaca mulatta) were extensively
trained to perform visual attentional tasks. The animals were
implanted with a custom-made titanium implant to prevent
head movements during training and recording, and a recording
chamber (Crist Instruments, Hagerstown, MD, USA) on top of
a craniotomy over the left (monkey C) or the right (monkey H)
parietal lobe. The chamber positions were based on anatomical
MRI scans.

All animal procedures of this study have been approved by
the responsible regional government office [Niedersächsisches
Landesamt für Verbraucherschutz und Lebensmittelsicherheit
(LAVES)] under the permit numbers 33.42502/08-07.02 and
33.14.42502-04-064/07. The animals were group-housed with
other macaque monkeys in facilities of the German Primate
Center in Goettingen, Germany in accordance with all applicable
German and European regulations. The facility provides the
animals with an enriched environment (including a multitude of
toys and wooden structures; Calapai et al., 2016), natural as well
as artificial light, exceeding the size requirements of the European

regulations, including access to outdoor space. Surgeries were
performed aseptically under isoflurane anesthesia using standard
techniques (see Martinez-Trujillo and Treue, 2004), including
appropriate peri-surgical analgesia and monitoring to minimize
potential suffering. The German Primate Center has several staff
veterinarians that regularly monitor and examine the animals
and consult on any procedures. During the study the animals
had unrestricted access to food and fluid, except on the days
where data were collected or the animal was trained on the
behavioral paradigm. On these days the animals were allowed
unlimited access to fluid through their performance in the
behavioral paradigm. Here the animals received fluid rewards
for every correctly performed trial. Throughout the study the
animals’ psychological and medical welfare was monitored by
the veterinarians, the animal facility staff and the lab’s scientists,
all specialized on working with non-human primates. The two
animals were healthy at the conclusion of our study and were
used in follow-up studies.

2.1.2. Experimental Procedure
Single unit action potentials were recorded extracellularly with
single tungsten electrodes (FHC, Inc., Bowdoinham, ME, USA)
after penetration of the dura with a sharp guide tube. The
electrode was advanced using a hydraulic micropositioner (David
Kopf Instruments, Tujunga, CA, USA). Impedances ranged from
0.5 to 2.8 M�. Neuronal activity was amplified and filtered
(bandpass 150–5000 Hz). Action potentials in the majority
of recorded units were sorted online using the Plexon data
acquisition system (Plexon Inc., Dallas, TX, USA). In the first
recording sessions action potentials were isolated using a window
discriminator (BAK Electronics Inc., Mount Airy, MD, USA).
Area MT was identified by its anatomical position, the high
proportion of direction-selective cells, and the typical size-
eccentricity relationship of RFs. Eye positions were monitored
using a video-based eye tracking system (ET-49, Thomas
Recording, Giessen, Germany). Eye positions were sampled at
230 Hz, digitized and stored at 200 Hz. Fixation was controlled
during the recordings to stay within a window of 1.2◦ radius
around the fixation spot.

2.1.3. Visual Stimuli
The experiments were conducted using an Apple Macintosh
computer running custom software and a Sony Trinitron (22′′)
monitor with 75 Hz refresh rate. The monkey viewed the display
binocularly in a dimly lit room from a distance of 57 cm. The
spatial resolution of the display was 40 pixels per degree of visual
angle. The shape of the RF, as well as its preferred direction and
speed were estimated in a separate mapping and tuning session
performed before the main task. The bidirectional stimuli were
two RDPs presented within stationary adjacent virtual apertures
matching the excitatory part of the RF (see Figure 1A). Another
pair of RDPs was presented far outside the RF in the opposite
visual hemifield symmetrically to the first pair with respect to
the fixation point. Each RDP had a density of 10 dots per
square degree. The width of each dot was 6 min of arc. All
dots were white (luminance 85 cd/m2) and were displayed on
a gray background (luminance 15 cd/m2). The basic speed of
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the dots in the RDP was matched to the preferred speed of the
neuron, usually between 4 and 16◦/s. The 12 directions of the
patterns used to recover the tuning curve were chosen such that
one of them was well-aligned with the preferred direction of the
neuron.

See also Kozyrev et al. (under revision) for more details
on monkey training and surgery, experimental procedures, and
visual stimuli.

2.2. Data Used for Analysis
The recorded spike trains covered about the first 3000 ms of each
trial. Figure 3 shows all spike trains from an example neuron.
The periods of fixation, cue, delay, and intervals extracted for
analysis are indicated with different colors. The onset of the target
is indicated by the red dashed lines. Clear delay and burst effects
are seen: When the RDP appears on the screen, the neuron has
after a short delay a period of bursting behavior. We excluded
the first 200 ms because of a large variability in the strength
and length of the initial transient period around 50–200 ms.
The latter was probably dependent on adaptation to the cue and
other factors which are not considered by the relatively simple
models we tested here. Thus, only the time interval from 200
to 700 ms after the onset of the RDPs were analyzed. Excluding
the transient response epoch in the analysis is widely done,
and this time window is also used by Katzner et al. (2009) and
Martınez-Trujillo and Treue (2002) as the period where the MT
neurons show robust attentional modulation. In case the speed
or direction of motion of an RDP changed before 700 ms, the
analysis interval terminated when the change occurred.We chose
this interval for analysis in order to bypass the delay and burst
periods and analyze an approximately constant firing rate.

In total 166 neurons have been recorded. However, we
required at least two spike trains for each condition to include
a neuron into further analysis, which resulted in 109 analyzed
neurons. Summary statistics on number of trials and neurons
can be found in Table 1. In an attend-out condition, the target
always moved in either the preferred or the null direction
of the recorded neuron, and the stimulus in the RF always
moved in the preferred direction. Accordingly, the results from
the attend-out condition could not be analyzed on a par with
results from the other conditions. These data were therefore
discarded. Regarding behavioral performance, we only included
trials where the monkey detected the transient change and
responded correctly (see Experimental procedures).

2.3. Notation
Index d indicates the 12 directions: d ∈ {0, π

6 ,
2π
6 , . . . , 11π6 },

and l ∈ {1, 2} indicates (the location of) the stimulus, which is
either aperture 1 or aperture 2. The index c ∈ C indicates the
experimental condition; C = {attend-fix, attend-in, fix1, fix2}.
In condition fix1, the unidirectional RDP appears in aperture 1,
and in fix2, the RDP appears in aperture 2. Consider the time
interval (0,T] extracted for analysis, where for simplicity we set
the start point 200 ms after onset of the stimulus to be at time
0, and thus T ≤ 500 ms. The interval contains a sequence of N
spikes: 0 < t1 < t2 < · · · < tN < T, where ti is the time of
occurrence of the ith spike. We write τ = (0, t1, t2, . . . , tN ,T),

and N(t) denotes the number of spikes that occurred in the time
interval (0, t] for 0 < t ≤ T.

2.4. Data Analysis
The spike trains were modeled as stochastic point processes
(Truccolo et al., 2005; Kass et al., 2014, chap. 19). The conditional
intensity function (Daley and Vere-Jones, 1988) of a general
point process model is defined by

λ(t|Ht) = lim
1t→0

Pr(N(t + 1t)− N(t) = 1|Ht)

1t
, (1)

where Ht denotes the spike history up to time t. Then λ(t|Ht)1t
approximates the probability of observing a spike in (t, t + 1t]
for 1t small.

The likelihood of observing spike train τ is (Daley and Vere-
Jones, 1988; Kass et al., 2014)

L(τ ; θ) =

[

N
∏

i= 1

λ(ti|Hti; θ)

]

exp

{

−

∫ T

0
λ(s|Hs; θ)ds

}

(2)

where θ is a vector of model specific parameters, which should be
estimated from data. The parameter vector θ for the two models
will be specified in Section 2.5. In practice the measurements of
the spike times are discrete, indicating whether or not they occur
in time intervals of length 1t = 1 ms, where 1t is so small that it
contains at most one spike and the conditional intensity function
can be assumed constant within each interval. We approximate
the integral in Equation (2) by a discrete sum and obtain

L(τ ; θ) ≈

[

N
∏

i= 1

λ(ti|Hti; θ)

]

exp











−

T
1t

∑

n= 1

λ(n1t|Hn1t; θ)1t











.

(3)

Truccolo et al.‘ modeled the spike train as a discrete sequence
of conditional Bernoulli events, and obtained the same result as
Equation (3) through probability mass functions (Truccolo et al.,
2005).

Spike trains from different trials are assumed independent,
and the likelihood of the entire data set will therefore be the
product of individual likelihoods of the form (equation 2).
Parameters are assumed constant for all trials from a neuron, but
can differ from neuron to neuron. The estimation can therefore
be done individually for each neuron. For each neuron, the
likelihood of the recorded spike trains was computed by use of the
conditional intensity function assuming, in turn, the response-
averaging and the probability-mixing models.

The conditional intensity function is modeled with three
components: (1) a base firing rate, rl, computed using Gaussian
tuning curves (see below), which describes the effect of stimulus
l and its direction of movement; (2) a scaling function depending
on time, a(t); and (3) the effects of the spike history, h(Ht). It is
assumed to be of the following form:
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FIGURE 3 | All recorded spike trains from example neuron. Spikes are shown as points. The extraction intervals indicate the data used for analysis. They varied

in length between trials in the attend-in condition, in which the imperative change in the target RDP could happen <700 ms after the onset of the stimulus. At time 0

the monkey pressed a lever to start a trial. The dashed red lines indicate the onset of the target. To the left are shown the presented RDPs, for readability only every

second stimulus is shown.

λ(t|Ht) = rl exp
{

a(t)+ h(Ht)
}

. (4)

The trend in the firing rate is modeled linearly (Cox and
Lewis, 1966), a(t) = γ0t, where γ0 is a parameter. Since
the firing rate decreases over time, γ0 is expected to be
negative.

For the history component we use linear addition of the spikes
in the pastm time units:

h(Ht) =

m
∑

i= 1

γi1Nt−i1t , (5)
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TABLE 1 | Summary statistics of sample sizes.

Number of Quantiles of number of trials

Condition combinations Min 10% 50% 90% Max

Neurons × stimuli

fix1 84× 12 2 3 4 6 7

fix2 84× 12 2 3 4 6 7

attend-fix 109× 12 2 3 4 7 16

attend-in 109× 12 3 8 12 18 31

Neurons

fix1 84 25 34 48 69 84

fix2 84 25 34 48 70 84

attend-fix 109 25 36 55 85 186

attend-in 109 61 90 138 207 272

The neurons measured in conditions fix1 and fix2 are a subset of the neurons measured

during the other two conditions.

where 1Nt ∈ {0, 1} denotes whether or not there is a spike in the
interval [t, t + 1t). Parameter γi is a spike response weight and
quantifies the effect of having a spike i steps back in time. If it
is negative, the effect is inhibitory, if it is positive it is excitatory.
In the data analysis, m = 10 has been used. We have repeated
the analysis with other memory lengths, but for larger m, the
estimates of γi were close to zero, and the estimates of other
parameters were stable, not changing the conclusions from the
analysis, see Figure 9F.

The final model for the conditional intensity function used in
the analysis is thus:

λ(t|Ht) = rl exp

[

γ0t +

10
∑

i= 1

γi1Nt−i1t

]

. (6)

A Gaussian tuning curve is used to model the firing rate
r as function of direction of motion d, with mean in the
preferred direction,D, of the neuron. The preferred direction was
estimated in a separate mapping and tuning session performed
before the main task. For simplicity, we therefore set D = 0, and
measure the direction of the stimulus RDP in deviation from the
preferred direction. Since the stimulus is a direction (an angle),
the rate function should be periodic with period 2π , and we apply
the method given by Shokhirev et al. (2006), see also Treue S. and
Trujillo J. (1999). For a neuron responding to stimulus l moving
in direction d, the firing rate is given by

rl = f (d|Al, σl, r0) = Al exp

[

−
‖ d − D ‖22π

2σ 2
l

]

+ r0, (7)

where Al denotes the amplitude (directional gain), σl denotes the
standard deviation (selectivity of the preferred direction), and
r0 is the spontaneous firing rate in absence of a stimulus. The
first two depend on the stimulus. The function ‖ d − D ‖2π=

mod(d − D + π , 2π) − π ensures that the firing rate is periodic
and symmetric around D. Figure 2 shows the mean firing rates
fitted by Gaussian tuning curves. The unidirectional cases are

modeled by single Gaussian curves, and the bidirectional cases
are modeled by a mixture of two Gaussian curves. Along the
x-axis, an upward arrow indicates the preferred direction. The
insert illustrates the periodic function.

2.4.1. Stimulus Weights in Bidirectional Conditions
In the attend-fix condition two RDPs are shown in the RF, one
in aperture 1 and one in aperture 2. The neuron may favor
one location over the other, which is modeled by assigning
a weight to each location. These weights will be modified
in the attend-in condition, where the weight to the attended
location is expected to increase. Let wc,l denote the weight of
stimulus l under a bidirectional experimental condition c, such
that wc = wc,1 + wc,2 denotes the sum of the weights. Let
pc = wc,1/wc and 1 − pc = wc,2/wc denote the normalized
weights.

2.4.2. Attentional Scaling Parameters
In the attend-in condition, a prior cue shows a replica of the
stimulus to be attended (stimulus 1) including its location and
direction of movement. The cue causes a multiplicative increase
in the rate of firing in response to the cued stimulus (the
stimulus in aperture 1). Sometimes the cue also changes the
rate of firing in response to the uncued stimulus (stimulus 2).
We use a scaling parameter al multiplying the amplitude Al

to model such attentional effects for stimulus l. The resulting
firing rate is rl = f (d|alAl, σl, r0). Without loss of generality,
the scaling parameter a may be assumed to have a value of 1
in conditions attend-fix, fix1, and fix2, in which directions of
movement are irrelevant to the task to be performed by the
monkeys.

2.5. Models
Let the rates of firing of the recorded cell be r1 and r2, respectively,
when objects 1 and 2 are presented alone in the classical RF of
the cell.

The probability-mixing model assumes a neuron responds to
one and only one of the stimuli within its RF at a time, and the
probability of responding to a particular stimulus depends on
the weight of that stimulus. Hence, the probability that a neuron
under a bidirectional experimental condition c reacts to stimulus
l is given by pc. Thus,

r =

{

r1, with probability pc
r2, with probability 1− pc

, (8)

where rl is given by Equation (7), except that Al is substituted by
alAl in the attend-in condition. The likelihood of all data from
one neuron is then

L(θ) =
∏

c∈C

12
∏

k= 1

mc,k
∏

j= 1

(

pcL(τc,k,j; θ1)+ (1− pc)L(τc,k,j; θ2)
)

, (9)

where pc = 1 in the fix1 condition, pc = 0 in the fix2 condition,
the individual likelihoods L(·; ·) are given by Equation (2), and
θl contains the stimulus specific parameters (Al, σl, al) besides
the common parameters (r0, pattend−in, pattend−fix, γ0, γ1, . . . , γ10).
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Thus, θ contains all 20 parameters. Here τc,k,j denotes the spike
train under the cth condition, kth direction and jth trial, where
mc,k is the number of trials under the specific experimental
condition.

A numeric overflow issue arises when computing the log
likelihood, since it may contain the logarithm of the sum
of two small numbers, log(δ1 + δ2). This happens especially
when the spike train is long, and the current parameters in
the optimization algorithm are far from the optimal ones.
We apply the log-sum-exp formula (Press, 2007): log(δ1 +

δ2) = log∗ δ + log(elog δ1−log∗ δ + elog δ2−log∗ δ), where log∗ δ =

max(log δ1, log δ2).
The response-averaging model assumes the firing rate to be a

weighted average rate over all stimuli,

r = pcr1 + (1− pc)r2. (10)

The likelihood is

L(θ) =
∏

c∈C

12
∏

k= 1

mc,k
∏

j= 1

L(τc,k,j; θ). (11)

The number of parameters in the response-averaging
model is one less than the probability-mixing model,
because in the attend-in case not all three parameters
(pattend−in, a1, a2) can be identified. We define b1 =

pattend−in a1 and b2 = (1 − pattend−in) a2. In Table 2

the parameters entering in θ for the two models are
summarized.

In the unidirectional conditions, the response-averaging
model and the probability-mixing model make the same
predictions, and the firing rate is given by Equation (7). In the

TABLE 2 | Parameters entering the parameter vector θ of the two models.

Model Parameter Explanation

Common γ0 Decay constant

(γ1, γ2, . . . , γ10) Spike response weights

(A1,D1, σ1) Parameters for the tuning

curve of stimulus 1

(A2,D2, σ2) Parameters for the tuning

curve of stimulus 2

r0 Spontaneous firing rate

pattend−fix Probability/weight of

stimulus 1 in attend-fix

Probability-mixing pattend−in Probability of stimulus 1 in

attend-in

a1 Attentional scaling of

stimulus 1

a2 Attentional scaling of

stimulus 2

Response-averaging b1 = pattend−in · a1 Identifiable parameter for

stimulus 1

b2 = (1− pattend−in) · a2 Identifiable parameter for

stimulus 2

bidirectional conditions, the predictions of the two models differ
as follows. In the response-averaging model, the firing rate to a
stimulus pair in the attend-fix condition is a weighted average
of the responses (firing rates) obtained to the individual stimuli
in the unidirectional conditions (given by equation 7). However,
the firing rate to a stimulus pair in the attend-in condition
is a weighted average of scaled versions of the responses to
the individual stimuli in the unidirectional conditions, where
the scaling factor (gain factor) for a stimulus varies with the
location of the stimulus (aperture 1, which showed the stimulus
to be attended, vs. aperture 2, which showed a stimulus to be
ignored). In the probability-mixing model, the firing rate to a
stimulus pair in the attend-fix condition is a probability mixture
of the responses (firing rates) to the individual stimuli in the
unidirectional conditions. The firing rate to a stimulus pair in
the attend-in condition is a probability mixture of scaled versions
of the responses to the individual stimuli in the unidirectional
conditions, where the scaling factor (gain factor) for a stimulus
again varies with the location of the stimulus (aperture 1 vs.
aperture 2).

2.5.1. Diagnostic Neurons
Whereas, some neurons are highly diagnostic in distinguishing
between the response-averaging and the probability-mixing
model when a certain pair of stimuli is presented in apertures
1 and 2 (see Figure 1A), responses of other neurons cannot be
used for distinguishing between the two models. One example
of a neuron that fails to distinguish between the models is a
neuron that almost always responds as if only the stimulus in
aperture 1 is present. Such a neuron behaves (to an arbitrarily
good approximation) in accordance with a response-averaging
model in which the response to the stimulus in aperture 1 is
weighted much stronger than the response to the stimulus in
aperture 2. At the same time, the neuron behaves in accordance
with a probability-mixing model in which the probability of
responding to the stimulus in aperture 1 is nearly 1. This,
however, does not mean aperture 2 is not inside the RF, since
the neuron does respond when a single stimulus is present
in either aperture 1 or 2 alone. The above example occurs if
one stimulus has a much stronger attentional weight than the
other.

Another example of a neuron that cannot be used for
distinguishing between the two models is a neuron in which the
rate of firing is nearly the same for the stimulus in aperture 1 as
for the stimulus in aperture 2. Regardless of the distribution of
weights across the two stimuli, the neuron behaves in accordance
with both a response-averaging model (averaging equals single
firing rates) and a probability-mixing model (mixing equals
single firing rates). In our experimental setup this is never the
case, since the bidirectional stimuli always differ with 120 , and
for all neurons there are trials where this difference force firing
rates to be different, as seen from the Gaussian tuning curves in
Figure 2.

Examples of neurons that are highly diagnostic in
distinguishing between the response-averaging and the
probability-mixing model are neurons with close to equal
weighting of stimuli in apertures 1 and 2 but very different
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responses to the two stimuli. Figure 1B exemplifies the expected
behavior of such neurons according to the probability-mixing
model and according to the response-averaging model,
respectively. Figure 1C shows histograms of empirical firing
rates of the corresponding spike trains in Figure 1B. As can be
seen, according to the probability-mixing model, the neuron
responds either to stimulus one or to stimulus two, which
generates a wide variation in firing rates (bimodal distribution).
In contrast, by the response-averaging model, the responses to
stimulus pairs all have similar rates (unimodal distribution). We
defined a diagnostic neuron based on the estimated probabilities
(in the probability-mixing model) or the weights (in the
response-averaging model). These two example neurons are
indicated by a square and a triangle, respectively, in Figure 4.
We call a neuron diagnostic if either the two pattend−fix estimates
from the two models both are between 0.2 and 0.8, or if pattend−in

in the probability-mixing model fulfills the same criterion. This
provides 90 diagnostic neurons, out of the 109 analyzed neurons.

All analyses were performed on the entire data set, but where
relevant, we indicate partial results only including the diagnostic
neurons, and we highlight the type of neuron in the figures.

Note that whether a neuron is diagnostic or not does not
reflect how well the models fit the data of that neuron. It only
indicates that diagnostic neurons behave differently under the
two models, whereas non-diagnostic neurons behave similarly
under the two models, and contain little information for model
selection.

2.5.2. Relation of Probability-Mixing Model to NTVA
The probability-mixing model is closely related to the Neural
Theory of Visual Attention (NTVA) (Bundesen et al., 2005;
Bundesen and Habekost, 2008). Attentional weights and the ways
they are computed and used are the same in the probability-
mixing model as in NTVA. In particular, in both the probability-
mixing model and NTVA, the probability that an MT neuron
represents an object x in its classical receptive field equals

FIGURE 4 | Model selection and model checking. (A) Differences in BIC, AIC, and RMSD values between the probability-mixing model and the

response-averaging model (the former minus the latter). In all three cases, a smaller value means a better fit, so negative differences favor the probability-mixing

model, whereas positive differences favor the response-averaging model. The squared and the triangled points are the example neurons from Figure 1B. The table on

top provides the total saturated AIC, saturated BIC and RMSD values for each model. (B) QQ-plots of uniform residuals on interspike level (top) and on spike count

level (bottom) for both models based on all observed data. The inserts are histograms (top) and density plots (bottom) of the uniform residuals. (C) The same as in (B)

but calculating the uniform residuals on only bidirectional data.
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the attentional weight of object x divided by the sum of the
attentional weights of all objects in the receptive field of the
neuron. Also, the nature of attentional weights is the same in
the two models. Thus, in both models, the attentional weights
may depend on many different features of the objects, including
features computed in areas other than MT.

Consider a trial in which an MT neuron that prefers motion
in direction D represents a stimulus l, moving in direction d.
Given that the neuron represents stimulus l, it responds as though
stimulus l were the only object in its receptive field. By the
rate equation of NTVA, the activation of the neuron, v(l,D),
equals the product of the strength of the sensory evidence that
stimulus l moves in direction D, η(l,D), and the bias in favor
of seeing movement in direction D, βD. In the current article,
among others (Bundesen and Habekost, 2008), a base rate, r0,
is effectively added to the product of η(l,D) and βD. Thus,
according to NTVA,

v(l,D) = η(l,D)βD + r0, (12)

where η(l,D) may be given by

η(l,D) = Al exp

[

−
‖ d − D ‖22π

2σ 2

]

(13)

as suggested by Equation (7). By NTVA, η(l,D) is independent of
attention, but the bias parameter βD depends on the attentional
condition. In conditions attend-fix, fix1, and fix2, directions
of motion are task-irrelevant, whence βd (a measure of the
importance of seeing motion in direction d) is a small number,
say, β0, for all directions d. In condition attend-in, however,
the stimulus in aperture 1 moves in the cued direction, whence
β for its actual motion direction (= the cued direction) has a
large value (say, β1). Thus, the categorization that the stimulus
in aperture 1 moves in the cued direction is supported by both
sensory evidence and perceptual bias. By contrast, in the same
condition, the stimulus in aperture 2 moves in a direction that
diverges from the cued direction by 120◦, whence β for its actual
motion direction has a smaller value (say, β2).

By Equations (12) and (13), the predicted firing rates remain
constant if all β values are multiplied by a positive constant
k while all amplitude parameters Al are divided by the same
constant k. Accordingly, without loss of generality, β0 can be set
to a value of 1 if (i) β1 and β2 are changed in direct proportion
to β0 and (ii) amplitude parameters A1 and A2 are changed in
inverse proportion to β0. After these rescalings, the resulting
values of β1 and β2 can be identified with scaling parameters a1
and a2, respectively. That is, a1 = β1/β0 and a2 = β2/β0.

Finally, we can extend NTVA to account for effects of
presentation time t and spike historyHt by letting v(l,D, t|Ht) be
the conditional intensity function for a spike train and assuming
that

v(l,D, t|Ht) = v(l,D) exp

[

γ0t +

10
∑

i= 1

γi1Nt−i1t

]

, (14)

where v(l,D) is given by Equation (12).

In the suggested interpretation, the cue shown in the attend-in
condition cues a particular direction of motion to be attended by
pigeonholing (i.e., by setting β high for this direction) (Bundesen
et al., 2005; Bundesen and Habekost, 2008). In addition to
being used for pigeonholing, the cue can also be used for
filtering (Bundesen et al., 2005; Bundesen and Habekost, 2008),
in particular, filtering by location (by giving high attentional
weight to stimuli that are located in aperture 1) and/or filtering
by direction of motion (giving high attentional weight to stimuli
that are moving in a particular direction).

2.6. Model Selection by Relative Goodness
of Fit and Cross-Validation
The main aim of our article is to compare the abilities of the
probability-mixing and the response-averagingmodels to explain
the data. To select the best-fitting model, we use the Bayesian
Information Criterion (BIC) and the Akaike information
criterion (AIC), which compare likelihood values correcting
for the number of parameters (Burnham and Anderson, 2002).
Since only the difference of AIC (BIC) can be used for model
comparison (Burnham and Anderson, 2002; Claeskens and
Hjort, 2008), we subtract out the null deviance from the AIC
(BIC) values for both models while preserving the difference. The
null deviance is defined by −2 log(L0), where L0 is the likelihood
value of the null model assuming that all spike trains from one
neuron have the same firing rate. Given the two models, the
weight in favor of the model with the lowest AIC (BIC) value
is given by 1/(1 + exp(−1/2)) (Burnham and Anderson, 2002;
Claeskens and Hjort, 2008), where 1 is the difference between
the two AIC (BIC) values, and the weight in favor of the model
with the highest value is given by exp(−1/2)/(1+ exp(−1/2)).
Heuristically, the weight can be interpreted as the probability
of the model to be the best among the considered models, in
the sense of Kullback-Leibler information loss (Burnham and
Anderson, 2002; Claeskens and Hjort, 2008).

This approach of statistical model selection to determine
the most plausible model, each offering opposing biological
explanations, using advanced statistical point process models to
analyze single spike trains instead of trial-averaged responses,
was also employed recently in Latimer et al. (2015). Here they
determine whether firing rates during decision-making in the
macaque lateral intraparietal area are gradually accumulating
evidence toward a decision threshold, or whether decisions are
taken as instantaneous jumps in the firing rates.

Model selection was done on individual neurons. However,
assuming that the neurons we tested accomplished the same
kind of processing but were statistically independent, the overall
likelihood in favor of the probability-mixing and the response-
averaging model, respectively, equals multiplication of the
likelihoods of all of the individual neuron, or equivalently,
summation of log-likelihood values, corresponding to
summation of AIC (and approximately summation of BIC)
values. We therefore also obtained overall AIC (BIC) values for
the two models from the overall likelihoods, the numbers of
parameters summed across all neurons, and the sample sizes of
the data.
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In addition to AIC and BIC criteria, we use the root mean
squared deviation (RMSD) between observed and predicted
firing rates and uniformity tests for general goodness of fit.

Empirical and theoretical firing rates can be compared to judge
the goodness of fit. A quantitative measure is the RMSD between
empirical and predicted rates for all spike trains of a neuron:

RMSD =

√

√

√

√

1

K

K
∑

i= 1

(ri − r̂i)2, (15)

where K is the total number of spike trains. The empirical rate,
r, is given by r = N/T, where N is the number of spikes, and
T is the total time of the spike train. The theoretical rate, r̂, was
estimated by

r̂ =
1

T

∫ T

0
λ(t|Ht , θ̂)dt. (16)

In the probability-mixing model, stimulus decoding is first
applied. Stimulus decoding in a mixture model is finding which
stimulus, l∗, the neuron is most probably responding to given a
spike train and the estimated parameters. This is a classification
problem, and solved by the stimulus that maximizes the posterior
probability of l given the spike train τ and estimated parameters
θ̂ : l∗ = argmaxlP(l|τ , θ̂). Thus, in Equation (16) the classified
stimulus is used.

2.7. Model Control by Uniform Residuals
2.7.1. Uniformity Test
A commonmethod is to apply the time rescaling theorem (Brown
et al., 2002; Haslinger et al., 2010). For a spike train τ , the
transformations

Zi =

∫ ti+ 1

ti

λ(s|Hs)ds (17)

for i = 1, 2, . . . ,N − 1 are exponentially distributed with rate
parameter 1, and thus,

Z =

∫ T

0
λ(s|Hs)ds (18)

is the total time of a Poisson process with rate parameter 1 having
N events. The above is true if and only if λ(s|Hs) represents
the true conditional intensity function. This provides uniformity
tests both on interspike interval level: Fexp(Zi|1) ∼ U(0, 1),
where Fexp(Zi|1) is the exponential distribution function with
rate 1, and on spike count level: Fpois(N|Z) ∼ U(0, 1), where
Fpois(N|Z) is the Poisson distribution function with parameter
Z. In the latter case, the discrete distribution is approximated by
the uniform distribution by taking the average value of Fpois(N|Z)
and Fpois(N − 1|Z).

Intuitively, if and only if the model correctly describes
the observed neuronal behavior, providing the correct spiking
probability at each discretized time step 1t, the transformation
Equation (18) is distributed as a standard Poisson process. We
verify the similarity between the transformation and the standard
Poisson process, by checking the uniform residuals calculated on

the two levels described above against a uniform distribution, by
Quantile-Quantile (QQ) plots and histograms. If QQ-plots fall
close to the indentity line, it indicates that themodel describes the
true neuronal behavior well, as well as if histograms are standard
uniform, i.e., it has approximately equal number of residuals
within each bin in the interval (0, 1).

2.8. Unimodality Tests
The response-averaging model predicts a unimodal distribution
of firing rates, whereas the probability-mixing model predicts
a multimodal distribution when the neuron is exposed to
bidirectional stimuli and firing rates to unidirectional stimuli are
different. The unimodality test is a statistical test for unimodality
of an empirical distribution, i.e., whether the distribution shows
a single mode or multiple modes. The dip test (Hartigan and
Hartigan, 1985) is one method to perform the unimodality test.
A significant p-value of a dip test rejects the hypothesis that there
is a single mode and indicates multiple modes in the empirical
distribution. Thus, we can perform the dip test as an empirical
measure for the probability-mixing or the response-averaging
model. We tried to employ dip tests to test for unimodality of
a distribution on the firing rates, but the data are too sparse
to provide useful information. One particular obstacle is that
when estimating empirical firing rates (by spike counts) on
discretized intervals, if these intervals are too narrow, only a
few spikes or none will be present in most intervals. Then the
empirical firing rates only take a few distinct values, repeated
many times, and the test always turns out positive since the
rates seem to follow a discrete distribution. If intervals are not
narrow, there will only be a few data points, not enough for a test.
Instead, as an auxiliary measure, we tested unimodality of the
distribution of interspike intervals (ISIs). There is no reason to
expect the ISI distribution to be unimodal, even if the distribution
of firing rates is, since memory effects may create complex
behavior in the distribution of ISIs. However, if a particular
neuron does not show a multimodal ISI distribution while being
exposed to a unidirectional stimulus, but the distribution changes
to multimodal when bidirectional stimuli are presented, there
is some indication that this multimodality could be caused
by the bidirectional stimuli, supporting the probability mixing
model.

3. RESULTS

Our basic observations were sequences of action potentials
(spike trains) emitted by individual MT neurons in the
different conditions of the experiment in response to visual
movement in different directions. Models were fitted to the
spike train data by maximum likelihood estimation using
numerical optimization algorithms. A global optimization
with the dividing rectangles algorithm (Jones et al., 1993)
was first performed, and the resulting estimates were then
used as initial values for a local optimization with the
Nelder-Mead simplex algorithm (Nelder and Mead, 1965),
providing the final estimates. All parameters were estimated
simultaneously.
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3.1. Results from Model Selection by
Relative Goodness of Fit and
Cross-Validation
To select one of the two models, we calculated the RMSD,
AIC, and BIC values. The lower plots in Figure 4A shows, for
each individual neuron, the difference between the AIC (BIC)
value given the best-fitting probability-mixing model and the
AIC (BIC) value given the best-fitting response-averaging model,
with the color indicating neurons with many observed spikes
(more than 2400 spikes, cyan) or few observed spikes (<2400
spikes, magenta; the spike counts include all spikes from the given
neuron inside the observation windows in the four experimental
conditions). Diagnostic neurons are indicated with dots, non-
diagnostic neurons are indicated with crosses. Values below 0
favor the probability-mixing model, values above 0 favor the
response-averaging model. The difference in AIC (BIC) values
is plotted against the sum of the negative log-likelihood values
from the two models normalized by number of spikes, such
that data points to the left are more trustworthy (approximately
coinciding with those with larger sample sizes). Two dotted
lines are drawn at ±10, representing the difference value of
10. This is the value suggested in Burnham and Anderson
(2002) as the critical value for the less plausible model to
have essentially no support in the data compared with the
better model. A few neurons (depicted near the bottom of
the plot) seemed highly diagnostic in distinguishing between
the response-averaging and the probability-mixing model. Many
other neurons failed to distinguish between the two models
(neurons with values near zero). This could be due to limited
sample sizes, since the cyan neurons are more trustworthy with
larger sample sizes, and indeed tend to fall below 0. Furthermore,
as expected, the non-diagnostic neurons typically have values
around 0.

The values resulting from analyzing all neurons together are
shown as AIC0 (BIC0) in the table at the top of Figure 4A.
These values can be interpreted as the explanatory evidence in
the models compared to the null model (Harrell, 2001), see
Section 2.5 for definition of the null model. Furthermore, the
differences between the two AIC (BIC) values, 1AIC (1BIC),
are indicated in the same table, both for all neurons, and
for diagnostic neurons only. The overall AIC and BIC values,
aggregating all the information from individual neurons, are
much smaller for the probability-mixing model than for the
response-averaging model, so both the AIC and the BIC strongly
favor the probability-mixing model. Indeed, both (absolute)
differences are greater than 1 = 1000. Thus, given the two
models, according to both the AIC and the BIC criteria, the
weight in favor of the probability-mixing model is 1/(1 +

exp(−1/2)) ≈ 1, and the weight in favor of the response-
averaging model is exp(−1/2)/(1 + exp(−1/2)) ≈ 0, see
Section 2.6.

The upper plot in Figure 4A shows the difference between
the RMSD between observed and predicted firing rates for
the best-fitting probability-mixing model and the RMSD for
the best-fitting response-averaging model. The RMSD values
were calculated using 10-fold cross-validation on spike trains

of each neuron. For most of the neurons, the RMSD for
the best-fitting probability-mixing model was smaller than the
RMSD for the best-fitting response-averaging model, and this
is particularly obvious for more trustworthy neurons, and for
diagnostic neurons. The RMSD for all data for both models
are shown in the top table. As the AIC and the BIC, the
RMSD criterion also favors the probability-mixing model. The
RMSD results are more consistently in favor of the probability-
mixing model for all diagnostic neurons compared with the AIC
and BIC results. Note the different perspectives of these model
selection methods: RMSD measures the predictive accuracy
while AIC (BIC) measures the information loss of the proposed
model from the truth. We conclude that the probability-
mixing model predicts behavior of independent trials better
or at least as well as the response-averaging model on all
neurons.

The overall conclusion is that the analysis supports
the probability-mixing over the response-averaging
model.

3.2. Results from Model Control by Uniform
Residuals
The computations of AIC and BIC values show that the
probability-mixing model fits the data better than does the
response-averaging model, but neither information criterion tells
us the absolute (as distinct from the relative) goodness of fit. For
either model, goodness of fit to the spike trains of the neurons
was evaluated by uniformity tests, both on interspike level and
on spike count level (see Section 2). We merged all results based
on Equation (17) from all spike trains of all neurons, to obtain
uniform residuals on the interspike interval level, and all results
based on Equation (18) to obtain uniform residuals on the spike
count level. The uniform residuals were checked graphically in
Figure 4B by histograms and QQ plots against the standard
Uniform distribution. The histograms and plots of events at
the interspike interval level show nearly the same goodness of
fit for the probability-mixing model and the response-averaging
model, but the histograms and plots of events at the spike
count level show better fits for the probability-mixing model
compared with the response-averaging model, as can be seen
from the cyan QQ-plot being closer to the identity line, and
cyan histograms being more uniform than the magenta ones in
the lower plots. However, neither model is perfect. If a model
is correct we expect the uniform residuals to lie on the identity
line, which is not strictly the case for either one of the two
models. We conjecture that this was partly caused by boundary
effects inducing bias because the observation intervals were never
longer than 500 ms. To check this, we conducted a simulation
study, first simulating from both models using the estimated
parameters, with observation intervals of both 500 and 2000 ms,
and then estimating with both models (Figure 5). The interval
of 2000 ms was chosen to be large enough for boundary effects
to be negligible. The results suggested that the misfits could
be explained, in part, by finite sample effects. Another feature
not accounted for in the model is overdispersion, i.e., that the
data show a larger variance than predicted by the model. This
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FIGURE 5 | Simulations. The same as Figure 4B, but on simulated data, using the estimated parameters, and simulating from either of the two models, with

observation windows of 500 ms (left panel with four figures) and of 2000 ms (right panel with the other four figures), respectively. Upper and lower panels show results

at interspike and spike count levels, respectively. Panels in columns 1 and 3 show results for the data simulated from the probability-mixing model, panels in columns

2 and 4 show results for the data simulated from the response-averaging model.

occurs for example if parameter values fluctuate from trial to
trial, whereas the model assumes these constant. We therefore
also plotted the uniform residuals using only the bidirectional
data (Figure 4C), and the fit clearly improved, suggesting
overdispersion.

In the analysis it is implicitly assumed that under the
probability-mixing model, the represented object does not
change during the course of a trial of 500 ms. This is done
to obtain more statistical validity, but might be questionable
from a biological point of view. For example, Fiebelkorn et al.
(2013) found that sustained attention naturally fluctuates with
a periodicity of 4–8 Hz, with reweighting between different
objects occuring at 4 Hz. To check the validity of using the
full length of the 500 ms interval, we also tried splitting the
data, reanalyzing separately on the first (0–250ms) and on the
second (250–500 ms) halves. The analysis was conducted the
same way as for the full 500 ms interval. The results on RMSD,
AIC, and BIC are shown in Figure 6 for the first half (Figure 6A)
and the second half (Figure 6B). There are only small and not
relevant differences between the two halves for each criterion.
At both halves, the RMSD favors the probability-mixing model,
particularly for neurons with a large number of observations. The
AIC and BIC also show similar distribution patterns between
the two halves. A paired Wilcoxon signed-rank test was done
for the differences 1AIC at the first half against the second
half with the null hypothesis being that 1AIC does not change
between halves. The obtained p-value is 0.858, implying no
evidence of changes in 1AIC. The test on 1BIC gives p = 0.830,

FIGURE 6 | Model selection on first and second halves of the observed

time intervals. Differences in BIC, AIC, and RMSD values between the

probability-mixing model and the response-averaging model (the former minus

the latter). (A) Analysis on first 250 ms of the observed time intervals (first half

of the data). (B) Analysis on next 250 ms of the observed time intervals

(second half of the data). Compare to Figure 4A for analysis of the full interval.
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leading to the same conclusion. To summarize, the conclusions
are essentially the same as for the full interval, and model
fitting on the shorter intervals provide no extra information.
Thus, we analyze the full 500 ms interval exploiting the entire
data.

3.3. Results for Unimodality Tests
In Figure 7, dip tests of unimodality of the ISI distribution are
illustrated for each neuron in each of the 12 direction-of-motion
stimulus pairs. Each lattice point in the mesh figure represents
one test, and blue lattice points (upper panels) show results that
are statistically significant (p < 0.05) against unimodality (i.e.,
indicating at least two modes). In the upper left panel, data
from the unidirectional stimulus conditions fix1 and fix2 are
combined for the 84 neurons tested in these conditions. They
were combined after normalizing by multiplying the ISIs by the
average firing rate of the corresponding neuron and condition, so
that the average firing rate of any neuron in any condition was
1. This was done in order not to observe an artificial bimodal
distribution, caused by different response properties in aperture
1 and 2. Similar results are obtained by splitting in the two
aperture conditions without normalization (results not shown).
The bidirectional stimulus conditions were not normalized. Of
the 1008 tests on unidirectional stimulus data, 6.05% were
positive. This is close to the expected 5% from the coverage
properties of the test, so it appears that under unidirectional
stimulus, the ISI distributions are not multimodal. In the two
upper panels to the right, data from the bidirectional stimulus
attend-fix and attend-in are shown for the same 84 neurons
(below the black line) and for the remaining 25 neurons (above
the black line), which were not tested during unidirectional
stimulus. Of the 1008 tests on bidirectional stimulus data from
those neurons that were also tested in the unidirectional stimulus
conditions, 6.8% (attend-fix) and 14.3% (attend-in) were positive.
Including also the 25 neurons only tested in the bidirectional
stimulus conditions, these numbers were 10.6 and 19.6% out
of 1308 tests, respectively. Note that fewer significant lattice
points appear in the attend-fix condition than in the attend-in
condition, which is probably due to smaller sample sizes; see
Table 2. The yellow lattice points are those corresponding to
condition 5, where the stimulus in aperture 1 is 120◦ from the
preferred direction, and the stimulus in aperture 2 is −120◦

from the preferred direction. This is the only condition where on
average the firing rates for the two stimuli are equal, see the green
and orange tuning curves on Figure 2, and thus, no bimodality
is expected for most of the neurons in this condition. Indeed,
in this case only 7.3 and 9.2% were significant. Condition 11,
where the stimulus directions are ±60◦, could also be expected
to have equal firing rates for the two stimuli, and thus no
multimodality, but since the firing rates are higher here, small
differences in tuning curves for the two apertures result in
large differences in firing rates, and thus, multimodality can
still occur. In all three upper panels, most p-values are non-
significant. However, compared with unidirectional stimulus
conditions, more significant p-values appear in bidirectional
stimulus conditions, mainly in condition attend-in, suggesting
that stimulus plurality caused multimodality. This is illustrated

in the lower panels, where changes from either significant to non-
significant (red, 2.6% for attend-fix, 1.4% for attend-in) or from
non-significant to significant (green, 3.4% for attend-fix, 9.6% for
attend-in) p-values are indicated.

3.4. Population Behavior of
Probability-Mixing
In the probability-mixing model, a neuron attends to only one
of a plurality of stimuli. A natural question is then whether in
any given trial, individual neurons within a critical population
behave consistently or independently. We therefore investigated
correlations of nearby neurons. In the data, at most two neurons
were recorded simultaneously, and there are 25 such neuron
pairs. The two neurons do not necessarily have the same
preferred direction of motion, but they differ at most 60◦ in
their preferred direction. If neurons act consistently, we expect
higher correlations for those pairs with the same preferred
direction. We calculated the correlation of the firing rates of
each neuron pair at different RDP-motion stimulus pairs using
Spearman’s correlation coefficient and Spearman’s correlation
test. Conditions attend-in and attend-fix are combined to make
the sample size larger. The idea is that if two neurons have
highly correlated attended stimuli, the correlation coefficient of
rates will be large; otherwise, the coefficient will be near 0: Let
two vectors X = (X1,X2, . . . ,Xn) and Y = (Y1,Y2, . . . ,Yn)
denote the firing rates of two neurons from n trials at a given
stimulus pair. The corresponding Xi and Yi are the firing rates
of two neurons in the same trial i. Since there are two stimuli,
Xi and Yi could represent either stimulus. If the firing rates of
the two neurons are positively correlated, then Xi and Yi likely
represent the same stimulus. If the firing rates are negatively
correlated, then Xi and Yi likely represent opposite stimuli.
In both situations, non-zero correlation between X and Y is
expected, assuming two stimuli generate sufficiently different
firing rates. On the other hand, if the attended stimuli are not
correlated, nor will the firing rates X and Y be correlated.

The top left panel in Figure 8 shows the heat map of
Spearman’s correlation coefficients, and the top right panel
shows the stronger positive correlations in red and stronger
negative correlations in blue. The bottom left shows p-values
from Spearman’s correlation test for correlation being 0. The
bottom right shows significant p-values in blue. The ratio of
significant p-values over all 12× 25 cells is 11.7%.

Most correlations are weak. However, we find a few stronger
correlations in some neuron pairs, with a slight trend toward
higher positive correlations for those with the same preferred
direction, and negative correlations for those with differing
preferred directions. The conclusions have to be interpreted with
caution, though, since data on simultaneously recorded neurons
are scarce.

3.5. Parameter Estimates from Maximum
Likelihood
Parameter estimates, see Table 2 for a summary of model
parameters, are illustrated in Figure 9 comparing the probability-
mixingmodel with the response-averagingmodel and comparing
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aperture 1 with aperture 2. The upper panels, Figures 9A,B,
provide the sum ofA (directional gain) and r0 (firing rate without
stimulus) from the Gaussian tuning curve, i.e., the maximal
firing rate. The estimates from the probability-mixingmodel tend
to be smaller than the estimates from the response-averaging
model. Figures 9C,D cover only the probability-mixing model,
because the weights and attentional scaling parameters are
not identifiable in the response-averaging model. In Figure 9C

the probabilities of responding to aperture 1 in the attend-fix
condition (pattend−fix) are plotted against the probabilities of
responding to aperture 1 in the attend-in condition (pattend−in).
As expected, the probability of responding to aperture 1 is
increased when attention is directed toward it, i.e., pattend−in

tends to be larger than pattend−fix and also larger than 0.5. In
Figure 9D attentional effects for aperture 2 (a2) are plotted
against effects for aperture 1 (a1) in the attend-in condition.
The effect of the cue is clearly detected: a1 tends to be larger
than a2, and also larger than 1, i.e., attention increases the firing
rate. In Figure 9E the identifiable parameters b1 and b2 in the
response-averaging model are plotted against the corresponding
values calculated from estimates in the probability-mixingmodel.
Again, aperture 1 (b1) yields larger values than aperture 2 (b2),
which is expected because of the cue. In Figure 9F the 10
spike response weight parameter estimates from the conditional

intensity function are plotted. We use median values and
quantiles. The first value γ1 is much more negative than the
others, implying that a spike suppresses a spike in the next
instance, corresponding to the refractory period. The spike
response weight values decay to zero, illustrating the length of
the memory of the spike history.

4. DISCUSSION

Responses of sensory neurons to multiple presentations of
identical stimuli can be highly variable (“cortical variability”;
Goris et al., 2014; Cui et al., 2016). In this article we focus
on one possible source of such cortical variability, namely,
variation in which stimulus a sensory neuron responds to
at a given time in a certain trial. Specifically, we aimed
to determine if neurons in extrastriate visual cortex encode
the presence of more than one distinct stimulus in their
receptive field by alternating between response states, each
predominantly representing one of the stimuli in the receptive
field (Bundesen et al., 2005). We found evidence in support
of such a multiplexing behavior by analyzing spike trains
of individual trials (rather than average responses across
trials) from neurons in visual cortical area MT of rhesus

FIGURE 7 | Results of dip tests. (Upper panels) Dip tests of each neuron at each condition for single stimulus trials (left panel) and stimulus mixture trials (middle

and right panels) are illustrated. Each lattice point represents one test, and blue lattices are statistically significant (p < 0.05) against unimodality for the corresponding

neuron and condition. The yellow lattice points are those corresponding to condition 5, where the stimulus in aperture 1 is 120◦ from the preferred direction, and the

stimulus in aperture 2 is −120◦ from the preferred direction. This is the only condition where on average the firing rates for the two stimuli are equal, see the green and

orange tuning curves on Figure 2, and thus, no bimodality is expected. (Lower panels) Changes from either significant to non-significant (red) or from non-significant

to significant (green) p-values.

Frontiers in Computational Neuroscience | www.frontiersin.org 15 December 2016 | Volume 10 | Article 141

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Li et al. Neurons Alternate between Multiple Responses

FIGURE 8 | Correlation of firing rates between neuron pairs. The x-axes represent the 12 conditions and the left y-axes represent the 25 neuron pairs that are

simultaneously recorded. Each lattice point in the mesh corresponds to one neuron pair at one condition. The 25 neuron pairs are ordered by the difference in degrees

between the pair’s preferred directions (0, 30, or 60◦) shown in the right y-axes. If they differ in their preferred direction, then when one of the neurons is presented

with its preferred direction, the other is not, and vice versa. So we expect less correlation in that case, whereas if they share the same preferred direction, there is more

reason to believe they might be correlated. (Left panel) shows correlation coefficients. (Right panel) shows in blue significant p-values at a 5% level for the

two-sided test of zero correlation.

monkeys. Our approach is based on recent advances in statistics
(chap. 19, Kass et al., 2014) that allowed us to distinguish
responses from trial to trial. Employing statistical model selection
using AIC, BIC, and RMSD, and model control using time
rescaling and uniformity tests we find support for probability-
mixing, i.e., serial switches between response states, distinct
from the response-averaging suggested by pooling responses
across multiple trials. Unimodality tests provide further support
for multiplexing behavior by showing that stimulus plurality
increases the probability of statistically significant multimodality
of the interspike interval distribution.

For decades responses of sensory neurons in primate visual
cortex have been investigated with single stimuli and their
parametric variation. This has resulted in a very detailed
understanding of the input-output-relationship of neurons in
well-studied areas like primary visual cortex V1, area V4 along
the temporal processing pathway and, most relevant for the
current study, the middle-temporal area MT in the dorsal
pathway.

More recently, particularly in MT, studies have focused
on neuronal responses when multiple moving stimuli are
present (spatially separated or in spatially coincident motion as
transparent random dot patterns or sine wave gratings) in a
given receptive field. Such studies have investigated “sensory”
conditions, i.e., when none of the stimuli were behaviorally
relevant (Snowden et al., 1991; Recanzone et al., 1997; Britten
and Heuer, 1999; Treue et al., 2000; Majaj et al., 2007), as well
as “attentional” conditions, i.e., task designs where one of the
stimuli were behaviorally relevant (Seidemann and Newsome,
1999; Treue and Trujillo, 1999; Patzwahl and Treue, 2009;
Niebergall et al., 2011a,b; Ni et al., 2012). All of these studies
implicitly or explicitly assume that neurons always respond to
multiple stimuli in their receptive field with a single response
state that represents an integration (averaging with or without
scaling or gain control) of the individual stimulus responses.

Here we successfully challenge this assumption by providing
evidence for the ability of neurons to maintain distinct
representations of the stimuli inside a given receptive field.

This ability to encode multiple stimuli by separate response
states of individual neurons endows the visual system with a
powerful feature, not present if the neurons combine themultiple
stimulus responses into a common response. Indeed, once the
responses have been averaged over all stimuli, reconstructing
single stimuli from average responses at later stages of processing
seems difficult if not impossible (Orhan and Ma, 2015). This is a
core issue in understanding cortical representations of complex
scenes, since they often have multiple stimuli placed in the
same receptive field, particularly in the large receptive fields
common in higher extrastriate cortical areas. If such neurons
would integrate all stimuli inside their receptive field such
“stimulus mixing” would severely compromise the brain’s ability
to maintain spatially detailed representations in natural vision
(Orhan and Ma, 2015). The multiplexing we observe instead
allows the information about which stimulus caused a particular
neuronal response to be preserved and maintained across a series
of processing stages from primary visual cortex through areas in
extrastriate cortex.

Beyond this benefit, the temporal multiplexing of information
provides a unique opportunity to selectively modulate the
individual representations of the various stimuli contributing to
a neuron’s response. Such a reweighing has been suggested by
models of attention since the perceptual effect of visual attention
can often be described as an increase in the perceptual strength
of attended stimuli at the expense of the perceptual strength of
unattended stimuli.

One of these attention models, the Neural Theory of Visual
Attention (NTVA; Bundesen et al., 2005), a neural interpretation
of the mathematical Theory of Visual Attention (TVA; Bundesen,
1990), explicitly proposes that a neuron, when presented with
a plurality of stimuli in its RF, responds to only one of them
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FIGURE 9 | Parameter estimates. The plots compare the probability-mixing model with the response-averaging model and aperture 1 with aperture 2. (A) The sum

of A and r0 from the response-averaging model is plotted against the probability-mixing model, using cyan for aperture 1 and magenta for aperture 2. The data

densities are plotted on the top and on the right side, with dashed lines indicating the means. (B) We use the same estimates as in (A), but plot aperture 2 against

aperture 1, and use cyan for the probability-mixing model and magenta for the response-averaging model. (C,D) are only for the probability-mixing model, since these

parameters are not all identifiable in the response-averaging model. (C) The probabilities of responding to aperture 1 in the attend-fix condition (pattend−fix ) are plotted

against attend-in condition (pattend−in). (D) Attentional effects for aperture 2 (a2) are plotted against aperture 1 (a1). (E) The identified parameters b1 and b2 in the

response-averaging model are plotted against the corresponding values calculated from estimates in the probability-mixing model. (F) The medians of 10 spike

response weight parameters from the conditional intensity function are plotted, together with the central 50 and 80% of the empirical distributions. We also fitted

models with a memory of 20 ms, and the resulting estimates are plotted in the insert figure.

at a time. This hypothesis has not been tested before but
was suggested by Bundesen et al. (2005) for computational
and biological reasons (survival value), and it fits in with the
way in which attentional modulations of sensory processing

(in particular, so-called “filtering”) are explained in NTVA.
In TVA stimulus representations race (compete) to become
encoded into visual short-term memory (VSTM) before it is
filled up. This race is influenced (biased) by attentional weights
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and perceptual biases, so that certain objects and features
have higher probabilities of being perceived (encoded into
VSTM). Thus the TVA presaged what later became known
as the biased competition model of attention (Desimone and
Duncan, 1995; Reynolds et al., 2000). Our data suggest that
biased competition accounts of attentional responses need to
be extended to allow for an alternation between response
states rather than a single response state representing the
outcome of the biased competition between the different stimulus
representations.

The TVA is also compatible with the feature similarity
gain model (Treue and Trujillo, 1999; Martinez-Trujillo and
Treue, 2004). This model proposes that attention modulates
brain activity by multiplicatively scaling neuronal responses with
gain factors. The magnitude of a given gain factor represents
the similarity between the stimulus preferences of the neuron
and the currently attended features. In this model a selective
enhancement or suppression of individual stimuli (based either
on the stimulus’ spatial location or its features Xue et al., 2016)
is achieved on the population level because attention to a given
feature increases the responses of all neurons preferring the same
or similar features. In the TVA, the gain factor in question is
the multiplicative perceptual bias toward feature i (βi), which
is applied to neurons that are coding feature i. Incorporating
the observed multiplexing into the feature similarity gain model
would further elaborate the approach of the model to selective
enhancement of attended features and locations.

Our observation that neuronal responses alternate between
response states is reminiscent of the hypothesis that stimulus
sampling under continuous attentional allocation follows a
periodic process (Busch and VanRullen, 2010). While this
potential link is intriguing, our data did not allow us to
test the duration of individual response states to see whether
they match the 7 Hz oscillations observed in the Busch
and VanRullen study. On the other hand, the analysis of
our small set of recordings from neuronal pairs suggests
that neurons that share sensory preferences (with respect to
motion direction in our case) tend to encode the same of
two stimuli at a given time while neurons with different
preferences tend to anti-correlate in their response states.
This supports the hypothesis that the whole population of
neurons responding to a given stimulus configuration tends
to alternate their individual response states in a coordinated
fashion.

The serial multiplexing we observe also allows us to account
for other observations when multiple stimuli are combined
within the same receptive field. This is most apparent for the
case in which two RDPs moving in different directions are
spatially superimposed, creating the percept of two surfaces
sliding across each other. As documented in Treue et al.
(2000), combining two directions with an angular separation
of 30–60◦ creates a stimulus in which the two component
motions are easily distinguishable perceptually, but causes a
neural population response (averaged across trials) that is

single-lobed, suggestive of a single direction in the receptive
field. While the perception of two directions under such
conditions can be explained by assuming a particular decoding
mechanism, our observed multiplexing of the individual
stimulus representations provides other types of explanation
for the apparent discrepancy between neural responses and
perception. Additionally, the distinct encoding of the twomotion
surfaces through separate response states might also allow the
visual system to separately manipulate the individual stimulus
representations as apparent in the perceptual (Marshak and
Sekuler, 1979) and physiological (Helmer et al., 2016) repulsion
of the perceived angular separation in such transparent motion
patterns.

In summary, this study suggests and documents a neuronal
coding scheme that temporally multiplexes information from
multiple stimuli within the receptive fields of neurons in
extrastriate visual cortex. This allows nervous systems to enjoy
the benefits of large receptive fields (spatial integration of
information to achieve more complex selectivities) without
suffering from the disadvantage that large receptive fields pool the
responses to multiple stimuli and thus lose critical information
about their individual contribution to the cell’s overall response.
Such a system could also reconcile the observation of perceptual
separability of multiple stimuli (such as surfaces in transparent
motion) with the apparent pooling of information within
the spatial extent of receptive fields in extrastriate visual
cortex.
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