
u n i ve r s i t y o f co pe n h ag e n

Precomputing method lookup

Jul, Eric

Publication date:
2009

Document version
Peer reviewed version

Citation for published version (APA):
Jul, E. (2009). Precomputing method lookup. Paper presented at 3rd International Workshop on Implementation,
Compilation, Optimization of Object-Oriented Languages, Programs and Systems, Paphos, Cyprus.

Download date: 08. apr.. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Copenhagen University Research Information System

https://core.ac.uk/display/269282559?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://curis.ku.dk/portal/da/publications/precomputing-method-lookup(6e4e9c70-d40a-11dd-9473-000ea68e967b).html

I

Precomputing Method Lookup
Eric Jul

ICOOOLPS 2008

Abstract. This paper looks at Method Lookup and discusses the Emer-
ald approach to making Method Lookup more efficient by precomputing
method lookup as early as possible — even moving it back into the com-
pilation phase, if possible, thus eliminating method lookup entirely for
many simple procedure calls.

1 Introduction

1.1 Original Motivation

Smalltalk has been a very influential language. However, some of its
features designed for flexibility, were also hard to implement efficiently.
We believe that at least some of Smalltalk’s performance problems are
caused by the absence of static typing: If only the compiler had more
information available to it about the set of operations that can be in-
voked on an object, it could surely optimize the process of finding the
right code, i.e., performing method lookup. This inspired the designers
of the programming language Emerald [1] to design a mechanism for
making Method Lookup more efficient. In the following, we describe this
mechanism which was successful in eliminating most Method Lookup in
Emerald. Subsequent advances such as inline caches have largely elimi-
nated the “lookup penalty”.

1.2 Abstract and Concrete Types

From our experience with Eden, we knew that a distributed system was
never complete: it was always open to extension by new applications and
new objects. Today, in the era of the Internet, the fact that the world
is “under construction” has become a cliché, but in the early 1980s the
idea that all systems should be extensible —we called it the “open world
assumption”—was new.
A consequence of this assumption is that an Emerald program needed
to be able to operate on objects that do not exist at the time that the
program was written, and, more significantly, on objects whose type is
not known when the application was written. How could this be? Clearly,
an application must have some expectations about the operations that
could be invoked on a new object, otherwise the application could not
hope to use the object at all. If an existing program P had minimal
expectations of a newly injected object, such as requiring only that the
new object accept the run invocation, many objects would satisfy those
expectations. In contrast, if another program Q required that the new
object understand a larger set of operations, such as redisplay , resize,
move and iconify , fewer objects would be suitable.

II

We derived most of Emerald’s type system from the open world assump-
tion. We coined the term concrete type to describe the set of operations
understood by an actual, concrete object, and the term abstract type to
describe the declared type of a piece of programming language syntax,
such as an expression or an identifier. The basic question that the type
system attempted to answer was whether or not a given object (charac-
terized by a concrete type) supported enough operations to be used in
a particular context (characterized by an abstract type). Whenever an
object was bound to an identifier, which could happen when any of the
various forms of assignment or parameter binding were used, we required
that the concrete type of the object conform to the abstract type declared
for the identifier. In essence, conformity ensured that the concrete type
was “bigger” than the abstract type, that is, the object understood a su-
perset of the required operations, and that the types of the parameters
and results of its operations also conformed appropriately.
Basing Emerald’s type system on conformity distinguished it from con-
temporary systems such as CLU, Russell, Modula-2, and Euclid, all of
which required equality of types. It also distinguished Emerald’s type
system from systems in languages like Simula that were based on sub-
classing, that is, on the ancestry of the object’s implementation. In a
distributed system, the important questions are not about the imple-
mentation of an object (which is what the subclassing relation captures)
but about the operations that it implements.

1.3 Type Checking and Binding of Types

Another consequence of the open world assumption was that sometimes
type checking had to be performed at run time, for the very simple reason
that neither the object to be invoked nor the code that created it existed
until after the invoker was compiled. This requirement was familiar to us
from our experience with the Eden Programming Language [2]. However,
Eden used completely different type systems (and data models) for those
objects that could be created dynamically and those that were known at
compile time.
For Emerald, we wanted to use a single consistent object model and type
system. Herein lies an apparent contradiction. By definition, compile-
time type checking is done at compile time, and an implementation of
a typed language should be able to guarantee at compile time that no
type errors will occur. However, there are situations where an application
must insist on deferring type checking, typically because an object with
which it wishes to communicate will not be available until run time.
Our solution to this dilemma provided for the consistent application
of conformity checking at either compile time or run time. If enough
was known about an object at compile time to guarantee that its type
conformed to that required by its context, the compiler certified the
usage to be type-correct. If not enough was known, the type-check was
deferred to run time. In order to obtain useful diagnostics, we made the
design decision that such a deferral would occur only if the programmer
requested it explicitly, which was done using the view. . .as primitive,
which was partially inspired by qualification in Simula 67 [3,4].

III

Consider the example

var unknownFile: File
. . .

r ← (view unknownFile as Directory).Lookup ["README "]

Without the view. . .as Directory clause, the compiler would have in-
dicated a type error, because unknownFile, as a File, would not un-
derstand the Lookup operation. With the clause, the compiler treated
unknownFile as a Directory object, which would understand Lookup. In
consequence, view . . . as required a dynamic check that the type of the
object bound to unknownFile did indeed conform to Directory . Thus,
successfully type-checking an Emerald program at compile time did not
imply that no type errors would occur at run time; instead it guaranteed
that any type errors that did occur at run time would do so at a place
where the programmer had explicitly requested a dynamic type check.
The view. . .as primitive later appeared in C++.
Note that view. . .as is similar to casting in Java in that the interface
view changes. However, in terms of type system and implementation,
there is a substantial difference: Java does not check the types when
casting but merely that the class of the casted object implements the
specified interface (or an interface that inherets the specified interface).
In Emerald, the implements relationship is not defined by a syntatic
construct but rather implicitly by conformity: Any object that has the
operations specified by the interface (Abstract Type) implements the
interface.
Partially inspired by the inspect statement of Simula 67 [3,4], we also
introduced a Boolean operator that returned the result of a type check.
This allowed a programmer to check for conformity before attempting a
view. . .as.

1.4 Operation Invocation

A performance problem plaguing object systems, e.g., Smalltalk, that
were contemporary with Emerald was the cost of finding the code to
execute when an operation was invoked on an object. This process was
then generally known by the name “method lookup”; indeed it still is, in
Emerald it is called operation invocation. In Smalltalk, method lookup
involved searching method dictionaries starting at the class of the target
object and continuing up the inheritance class hierarchy until the code
was located. We thought that if Emerald didn’t do static type checking,
each operation invocation would require searching for an implementation
of an operation with the correct name, which would be expensive —
although, because we did not provide inheritance, not as expensive as in
Smalltalk. In a language like Simula in which each expression had a static
type that uniquely identified its implementation, each legal message could
be assigned a small integer and these integers could be used as indices into
a table of pointers to the code of the various methods. In this way, Simula
was able to use table lookup rather than search to find a method (and
C++ still does so). We though that static typing would give Emerald

IV

the same advantage, and this was one of the motivations for Emerald’s
static type system.
However, even with static typing, there is still a problem in Emerald:
except for the above-mentioned primitive types, knowing the type of an
identifier at compile time tells us nothing about the implementation of
the object to which it will be bound at run time. This is true even if
the program submitted to the compiler contains only a single implemen-
tation that conforms to the declared type, because it is always possible
for another implementation to arrive over the network from some other
compiler. Thus, the Emerald implementation would still have to search
for the appropriate method: the advantage that static typing would give
us would be a guarantee that such a method existed.

1.5 More Efficient Method Lookup using The AbCon
Mechanism

The most dynamic form of Method Lookup is to, for a given invocation,
search the concrete type for the operation that is to be invoked. Consider
the example from above:

var unknownFile: File
. . .

r ← (view unknownFile as Directory).Lookup ["README "]
result ← r.Lookup(something)

When invoking the method Lookup file object assigned to r, the imple-
mentation can merely access the object, find its reference to its own
concrete type, and then search the concrete type for the method.
The Emerald implementation used several techniques to avoid this ex-
pensive dynamic search process.
First, it is often the case that dataflow analysis can be used to ascertain
that an object has a specific concrete type, and the Emerald compiler
used dataflow analysis quite extensively to avoid method lookup alto-
gether, by compiling a direct subroutine call to the appropriate method.
Second, in those cases where dataflow analysis could not assign a unique
concrete type to the target expression, we avoided the cost of searching
for the correct method by inventing a data structure that took advantage
of Emerald’s abstract typing. This data structure was called an AbCon,
because it mapped Abstract operations to Concrete implementations.
AbCons are the responsibility of the run-time system: it constructs an
AbCon for each 〈type, implementation〉 pair that it encountered. An
object reference consists not of a single pointer, but of a pair of pointers:
a pointer to the object itself, and a pointer to the appropriate AbCon,
as shown in Figure 1.
The AbCon is basically a vector containing pointers to some of the op-
erations in the concrete representation of the object. The number and
order of the operations in the vector are determined by the abstract type
of the variable; operations on the object that are not in the variable’s ab-
stract type cannot be invoked, and so they do not need to be represented
in the AbCon. In Figure 1, the abstract type InputFile supports just the
two operations Read and Seek , so the vector is of size two, even though

V

the concrete objects assigned to f might support many more operations.
An important point is that the size of the vector and the indexes to it
can be determined at compile time.
For example, using Figure 1, when calling f.Seek, the compiler knows the
Abstract type (InputFile), and can thus find the index of the Seek oper-
ation and generate an indirect jump via the AbCon vector. In situation
(a) in Figure 1, the call would end up at Distfile.Seek. Doing the method
lookup with an AbCon is thus reduced to a load of the AbCon vector
Address, an indexing, and a load of the appropriate slot.
AbCon vectors are, in principle, created upon assignment of a variable.
In the example above, the view expression returns an object reference
including a pointer to an appropriate AbCon, which is dynamically cre-
ated, if necessary.
It appears that we have to generate new AbCons on EVERY assignment,
but in practise this is not the case. In a simple assignment between two
variable of the same Abstract Type, the AbCon will be the same as both
Abstract Type and Concrete Type are the same. Thus the assignment is
merely copying the two pointer. This covers many assignment.
In an assignment, if the Abstract Types differ, then a new AbCon needs
to be generated. However, this needs only be done once for each (Ab-
stract Type, Concrete Type) pair. AbCons increased the cost of each
assignment slightly, but made operation invocation as efficient as using a
virtual function table. In practice it was almost never necessary to gener-
ate them during an assignment, because the number of different concrete
types that an expression would take on was limited, often to one, or just
a handful.
Many of the AbCons that the compiler can see are needed are generated
at load time. If the compiler can deduce the concrete type of the assigned
object, then it would merely insert a store of the address of the relevant
AbCon and the AbCon address would be inserted into the code at load
time. In this case, an assignment would be a copy of the object pointer
and a store of a constant address.
Furthermore, in many cases the compiler could figure out, using data
flow analysis, the single concrete type of an assigned object; the compiler
was therefore able to generate a direct subroutine call to the concrete
operation, or even in-line the operation, if it were small. In addition, if
the variable used can hold reference to one single concrete type, then
the entire AbCon scheme can be elided. In such a case, the variable is
implemented just like a pointer variable in C and the call is as efficient
as a procedure call in C.
In the case of an object of a new concrete type that arrives over the
network at run time, it is necessary to generate a new AbCon dynami-
cally, but this would typically occur in connection with the arrival of the
object.

1.6 Indexing AbCons

The compiler uses the following scheme to index AbCons: First, each of
the operation names is mapped to a unique id which is fetched from a
shared database. Second, the operations are sorted using their unique

VI

ids. Third, each operations is assigned a sequential index based on the
sort. Thus the AbCon vector is dense and efficiently indexed by a small
integer.

1.7 Single and Multiple Inheritance

Emerald does not have inheritance in the Smalltalk or C++ sense of
the word. However, the AbCon mechanism is suitable for languages with
traditional single or multiple inheritance: The AbCons are generated for
each pair of (interface, class). Essentially, the method lookup is done
at the time that the AbCon is generated rather than upon every call.
Because the interface is fixed, a call can still be executed in constant
time regardless of inheritance.

1.8 Caching AbCons

Each time an AbCon is to be generated, the run time system first does a
double key hash lookup of the AbCon (using the unique id of the Abstract
and of the Concrete Type as a double key). If the AbCon already exists,
the pointer to it is returned. If it does not, a new AbCon is generated for
the pair and inserted into the hash table. Thus, except for the first time
an AbCon is generated, the time to find an AbCon is constant (assuming
that a suitable hashing algorithm is used). Any AbCon that the compiler
can see is needed, is generated at load time as the necessary is present
at that time.

1.9 Performance Summary for AbCons

AbCons incur overhead as follows:
On assignment, some assignments are a double pointer load and store
instead of one.
On method calls: in the worst case, the call can be performed using a
load (of the AbCon vector), a load of the content of the indexed element,
and a jump to it. For calls where the compiler can deduce the Concrete
Type, the call is the same as a procedure call in C.
The potentially most damaging overhead is the extra storage incurred by
the AbCon pointers in those variables requiring them — their storage size
is doubled. This can be signficant for large arrays. However, in practice,
it seems that most large arrays are not used for storing polymorphic
data.

1.10 Comparison with Other Schemes

Compared to a contemporary language such as Smalltalk, method lookup
in Emerald is much more efficient. Indeed, we achieved execution times
comparable to similar C programs for a number of benchmarks ([6]).
Some years later, the Self project invented the Polymorphic Inline Cache [7],
which is successful at eliminating message lookup for precisely the same

VII

reason that AbCons rarely need to be generated at assignment time: the
number of concrete types that an expression can take is is usually small,
and after the program has run for a while, the cache always hits.

Alpern et al [8] give an excellent overview of previous techniques for in-
terface dispatch. They describe an itable which is a virtual method table
for a class, restricted to those methods that match a particular interface,
i.e., essentially an AbCon, but indexed by method rather than an in-
dex. The problem is that for a given method lookup, the implementation
first must lookup the appropriate itable that matches the interface in
question, and thereafter search the itable for the method in question.

Alpern et al [8] propose a new interface dispatch mechanism, called the
interface method table (IMT). They propose an IMT for each class. The
IMT is essentially a hash table that contains the id of interface methods
and the method’s address. The IMT is populated dynamically as the
virtual machine discovers that a class implements an interface; it then
adds that interface’s method to the class’s IMT. As long as there is no
conflict, the call sequence can merely load the appropriate address right
out of the IMT and jump to the method. Because the IMT is a hash
table, there is the possibility of conflict. Such a conflict is detected when
a new entry into the IMT is made that conflicts with a previous entry. In
such a case, the virtual machine generats a conflict resolution stub that
picks the correct interface method and jumps to the correct method in
the appropriate class.

This scheme thus tries to combine a fast lookup while reducing the size
of the IMT. However, compared to Emerald’s AbCons, even the shortest
sequence for interface dispatch contains an extra load (of the id of the
interface method called). And AbCons are dense (because the compiler
knows the interface) and therefore shorter than the IMT hash tables,
and there is no possibility of conflict (because it is not a hash table).

Zendra et al [9] describe a different approach where tables are eliminated
and replaced by a simple static binary branch code using a type inference
algorithm.

2 Summary

We describe the Emerald mechanism for precomputing method lookup
to make method calls more efficient. The mechanism is made possible by
having a strong type system requiring a type of all expressions and vari-
ables. Method calls can, in general, be performed quite efficiently (using
only two memory loads) in constant, low time. The cost is that some
variables need to have an extra pointer thus increasing space overhead
and increasing the cost of assignment. And in cases where the compiler
can determine the concerte type of an object, the compiler can elide the
extra overhead and call the operation directly. This extra overhead can
also be avoid in cases as the AbCon reference can be removed entirely.

Parts of this paper has appeared in earlier Emerald articles [5,10].

VIII

References

1. Raj, R.K., Tempero, E., Levy, H.M., Black, A.P., Hutchinson, N.C.,
Jul, E.: Emerald: a general-purpose programming language. Soft-
ware—Practice and Experience 21(1) (1991) 91–118

2. Black, A.P.: The Eden programming language. Technical Report TR
85-09–01, Department of Computer Science, University of Washing-
ton (September 1985)

3. Birtwistle, G.M., Dahl, O.J., Myhrtag, B., Nygaard, K.: Simula
BEGIN. Auerbach Press, Philadelphia (1973)

4. Dahl, O.J., Myhrhaug, B., Nygaard, K.: Common base language.
Technical Report S-22, Norwegian Computing Center (October
1970)

5. Black, A., Hutchinson, N., Jul, E., Levy, H., Carter, L.: Distribution
and abstract data types in Emerald. IEEE Transactions on Software
Engineering SE-13(1) (January 1987) 65–76

6. Hutchinson, N.: Emerald: An Object-Oriented Language for Dis-
tributed Programming. PhD thesis, Department of Computer Sci-
ence, University of Washington (January 1987)

7. Hölzle, U., Chambers, C., Ungar, D.: Optimizing dynamically-typed
object-oriented languages with polymorphic inline caches. In Amer-
ica, P., ed.: Proceedings ECOOP ’91. Volume 512 of Lecture Notes
in Computer Science., Geneva, Switzerland, Springer-Verlag (July
1991) 21–38

8. Alpern, B., Cocchi, A., Fink, S., Grove, D.: Efficient implementation
of java interfaces: Invokeinterface considered harmless. SIGPLAN
Not. 36(11) (2001) 108–124

9. Zendra, O., Colnet, D., Collin, S.: Efficient dynamic dispatch with-
out virtual function tables: the smalleiffel compiler. SIGPLAN Not.
32(10) (1997) 125–141

10. : Hopl iii: Proceedings of the third acm sigplan conference on history
of programming languages (2007) Conference Chair-Barbara Ryder
and Program Chair-Brent Hailpern.

IX

Fig. 1: This figure, taken from reference [5], shows a variable f of abstract type InputFle.
At the top of the figure (part a), f references an object of concrete type DiskFile,
and f ’s AbCon (called an Operation vector in the legend) is a two-element vector
containing references to two DiskFile methods. At the bottom of the figure (part b), f
references an object of concrete type InCoreFile, and f ’s AbCon has been changed to a
two-element vector that references the correspondingly named methods of InCoreFile.
(Figure c©1987 IEEE; reproduced by permission.)

