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Introduction: Traumatic brain injury is a major cause of mortality and morbidity. We have

previously shown that the injectable glucagon-like peptide-1 (GLP-1) analog, liraglutide,

significantly improved the outcome in mice after severe traumatic brain injury (TBI). In this

study we are interested in the effects of oral treatment of a different class of GLP-1 based

therapy, dipeptidyl peptidase IV (DPP-IV) inhibition on mice after TBI. DPP-IV inhibitors

reduce the degradation of endogenous GLP-1 and extend circulation of this protective

peptide in the bloodstream. This class has yet to be investigated as a potential therapy

for TBI.

Methods: Mice were administrated once-daily 50mg/kg of sitagliptin in a Nutella® ball or

Nutella® alone throughout the study, beginning 2 days before severe traumawas induced

with a stereotactic cryo-lesion. At 2 days post trauma, lesion size was determined. Brains

were isolated for immunoblotting for assessment of selected biomarkers for pathology

and protection.

Results: Sitagliptin treatment reduced lesion size at day 2 post-injury by ∼28%

(p < 0.05). Calpain-driven necrotic tone was reduced ∼2-fold in sitagliptin-treated

brains (p < 0.001) and activation of the protective cAMP-response element binding

protein (CREB) system was significantly more pronounced (∼1.5-fold, p < 0.05). The

CREB-regulated, mitochondrial antioxidant protein manganese superoxide dismutase

(MnSOD) was increased in sitagliptin-treated mice (p< 0.05). Conversely, apoptotic tone

(alpha-spectrin fragmentation, Bcl-2 levels) and the neuroinflammatory markers IL-6, and

Iba-1 were not affected by treatment.

Conclusions: This study shows, for the first time, that DPP-IV inhibition ameliorates

both anatomical and biochemical consequences of TBI and activates CREB in the

brain. Moreover, this work supports previous studies suggesting that the effect of

GLP-1 analogs in models of brain damage relates to GLP-1 receptor stimulation in a

dose-dependent manner.
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INTRODUCTION

Traumatic brain injury (TBI) is a major cause of mortality and
morbidity across the globe. Severe TBI cases are fatal for over
one third of patients and an estimated 60% are burdened with
unfavorable outcomes (Rosenfeld et al., 2012; DeKosky et al.,
2013). Moreover, secondary inflammation, oxidative stress and
cerebral edema after injury can contribute to an increased lesion
size and potential for neurodegenerative changes in the brain
(Alahmadi et al., 2010; Rosenfeld et al., 2012; DeKosky et al.,
2013). We have previously shown that the injectable glucagon-
like peptide-1 (GLP-1) analog, liraglutide, significantly improved
the outcome in mice after severe brain trauma (DellaValle et al.,
2014). In this study we assess the effect of oral treatment with
a different class of GLP-1-based therapy, sitagliptin- a dipeptyl
peptidase IV (DPP-IV) inhibitor- on mice after brain injury.
This class of compounds has not yet, to our knowledge, been
investigated in a model of TBI.

DPP-IV inhibitors reduce the degradation of endogenous
GLP-1 and extend circulation of this cytoprotective peptide in
the bloodstream (Drucker and Nauck, 2006). In this regard
we investigated prolonged exposure to endogenous GLP-1 as
a therapeutic against severe TBI. In our previous work, GLP-
1 agonism with a DPP-IV-resistant analog, liraglutide, reduced
lesion size and broad-spectrum cell death (DellaValle et al.,
2014), and liraglutide reduced edema in a cortical impact model
of TBI in rats (Hakon et al., 2015). In addition, the GLP-1
receptor agonist exendin-4 has been shown to improve behavior
(Rachmany et al., 2013) after mild TBI in mice. Furthermore,
DPP-IV inhibition prolongs activity of other neuroactive
peptides such as glucose-dependent insulinotrophic polypeptide
(GIP)- a peptide recently shown to improve cognitive deficits
after mild traumatic brain injury in rats (Yu et al., 2016).

The neuroprotective potential of GLP-1 agonism is well-
described in animal models of neurodegeneration, ischemia,
neuroinflammation, and cognitive impairment (Candeias et al.,
2015). Moreover, DPP-IV inhibition has been shown to have
similar neuroprotective effects as GLP-1 agonism in rodent
models of cognitive decline (Pintana et al., 2013; Pipatpiboon
et al., 2013; Gault et al., 2015; Tsai et al., 2015) and cerebral

ischemia (Yang et al., 2013; Ma et al., 2015) possibly, in part due
to suppression of oxidative stress (Pintana et al., 2013; El-Sahar
et al., 2015; Gault et al., 2015; Tsai et al., 2015). However, the
mechanism of this protective effect is still poorly understood.

GLP-1 activates the protective cAMP response element
binding protein (CREB) system (Jhala et al., 2003; Drucker,
2006). In our previous work, we established that the GLP-1
analog liraglutide activates CREB in the brain in vivo and this
activation results in increased production of neuroprotective
proteins regulated by CREB (DellaValle et al., 2014)- many of
which are related to suppression of oxidative stress. This response
in the brain was driven through the GLP-1 receptor (DellaValle

Abbreviations: Bcl-2, B-cell lymphoma protein-2; CREB, cAMP response

element binding protein; DK, Denmark; DPP-IV, Dipeptyl peptidase

IV; GAPDH, Glyceraldehyde 3-phosphate dehydrogenase; GIP, Glucose-

dependent insulinotrophic polypeptide; GLP-1, Glucagon-like peptide-1;

MnSOD, Manganese superoxide dismutase; TBI, Traumatic brain injury; TTC,

2,3,5-triphenyltetrazolium.

et al., 2014). Interestingly, this activation is nevertheless absent
in healthy mice treated with liraglutide despite an increase in
cerebral cAMP levels (DellaValle et al., 2016). These data suggest
a complex and dynamic interaction between GLP-1 signaling and
the activation of CREB in the brain. Indeed, DPP-IV inhibition
has been shown to increase CREB activation in pancreatic islets
(Samikannu et al., 2013) and myocardial tissue (Ye et al., 2010;
Ihara et al., 2015) though it is unclear whether this effect is
present in the brain.We were therefore interested in the potential
for DPP-IV inhibitors to activate this protective pathway.

In this investigation we utilize a severe brain trauma model to
test the hypothesis that oral inhibition of DPP-IV would provide
a protective effect after TBI and activate the CREB system in the
brain.

MATERIALS AND METHODS

Female C57Bl6/j mice (Taconic, Lille Skensved, Denmark) aged
6–8 weeks were kept under standard conditions with food/water
access ad libitum. Studies were conducted to minimize suffering

and, in accordance with predefined humane endpoints, were
approved by the Danish Animal Inspectorate according to the
license 2012-15-2934-00448 and are in accord with the National
Institutes of Health guidelines.

Mice were weighed and randomly separated into vehicle and
sitagliptin groups. Mice were administrated once-daily 50 mg/kg
of sitagliptin in a 0.1 mL Nutella R© ball or Nutella R© alone
throughout the study, beginning 2 days before TBI. This dose in
mice on a once-daily, oral regime has been shown to increase
concentrations of GLP-1 in the brain, have no adverse events
and to have no effect on weight or energy intake (Gault et al.,
2015). TBI was induced blinded to the treatment groups with
a stereotactic cryogenic lesion as described and characterized
in detail in (DellaValle et al., 2014). Two-percent lidocaine
was applied to the scalp 20 min before the procedure. Under
isoflurane anesthesia, a contra-lateral skin incision was made
and a stereotactic lesion was induced with a liquid nitrogen-
acclimatized, flat cryoprobe (thermal conductivity∼ 120 W/mK,
3.0 mm diameter, CryoPro; Cortex, Hadsund, Denmark) applied
to the skull 1.5 mm lateral and 1.5 mm posterior to the bregma
for 90 sec under force of gravity (0.39 N). The incision was
stapled and lidocaine was applied at the incision site. Animals
were under anesthesia for ∼7 min. Treatment continued once-
daily for 2 days post-TBI and signs of distress and complications
were monitored.

At day 2 post-lesion, animals were anesthetized with
Hypnorm/Dormicum, weighed, and transcardially perfused with
heparinized saline (0.9%). Brains for immunoblotting (Veh, n =

9, sitagliptin, n = 10) were isolated, the brainstem, cerebellum,
and olfactory bulbs removed and the remaining cerebrum split
into ipsilateral and contralateral hemispheres and the ipsilateral
hemisphere was snap frozen in liquid nitrogen and stored at
−80◦C for immunoblotting.

Lesion Size Determination
Brains for lesion size determination (veh = 15, sitagliptin = 11)
were sectioned (1 mm) in a coronal matrix (BSMAS001-1; Zivic
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Instruments, Pittsburgh, PA, USA), and incubated in 1% 2,3,5-
triphenyltetrazolium (TTC, in saline; Sigma-Aldrich, Brøndby,
Denmark) for 30 min at 37◦C. TTC is a functional mitochondrial
stain. Planimetry was performed with ImageJ software (National
Institutes of Health, Bethesda, MD, USA) blinded to treatment
groups comparing ipsilateral and contralateral hemispheres.
Sections where lesions extended into adjacent sections but did
not pass entirely through the 1 mm were excluded due to
imprecision of the depth dimension.

Immunoblotting
The ipsilateral hemisphere of the cerebrum was homogenized
with protease+phosphatase inhibitors (Roche, complete mini,
DK Phosphosafe; Millipore), protein content quantified,
aliquoted, and stored at −22◦C. Immunoblotting was optimized
and performed with standard Western blot principles on
the ipsilateral hemisphere encompassing the lesion site.
Homogenates were reduced, heated, and loaded at 25–50 µg
into precast polyacrylamide gels [12% or 4–12% (α-spectrin)
(NuPAGE; Life Technologies, Naerum, Denmark)] and gels
run in MES buffer and transferred to polyvinylidene difluoride
membrane. Membranes were washed in tris-buffered saline
(TBS), and blocked in 5% skim milk powder or bovine serum
albumin + TBS-(0.01% Tween) for 1 h at room temperature.
Primary antibodies were applied in appropriate blocking
solution overnight at 4◦C and are listed in detail in Table 1.
Secondary antibodies were applied in appropriate blocking
solution: Horseradish peroxidase-conjugated-conjugated anti-
rabbit/anti-mouse (Dako, Glostrup, Denmark) at 1:2000 and
1:3000, respectively, for 1 h at room temperature. Membranes
were incubated in SuperSignal Femto substrate (34095; Thermo
Scientific) and exposed with a CCD camera (Bio-Rad Chemidoc
XRS imager, Copenhagen, Denmark). Images were quantified
with ImageJ and reported relative to housekeeping protein,
glyceraldehyde 3-phosphate dehydrogenase (GAPDH).

Immunoblotting of Homogenates from
Previous Study
Ipsilateral brain homogenates from a previous study (DellaValle
et al., 2014) were analyzed with an identical protocol. Brains were
prepared from the same time point post-lesion (day 2), from
the same TBI model, and the same immunoblotting protocol for

determining manganese superoxide dismutase (MnSOD) levels.
Mice in the previous study were treated with GLP-1 analog,
liraglutide, or vehicle (PBS) twice-daily beginning directly after
TBI induction.

Data Analysis
Data sets were tested for normality (Shapiro–Wilk) and equal
variance before statistical analyses were performed. Non-normal
data was log transformed. If data remained non-normal and/or
variances were unequal after transformation, non-parametric
rank statistics were applied. Student’s t-test: Lesion size,
weight change, and immunoblotting (Mann-Whitney: α-spectrin
fragment data). A P-value of <0.05 was reported as statistically
significantly different. Data are presented as mean ± S.E.M for
normal data and median ± interquartile range for non-normal
data.

RESULTS

The weight of mice before and after the investigation
did not change with sitagliptin treatment: Mean weight
difference±S.E.M: Vehicle: −0.51±0.19g vs. −0.71±0.17g;
p= 0.4).

We predetermined that lesion volume 2 days after TBI would
be the primary outcome. Sitagliptin treatment resulted in a∼28%
decrease in lesion size volume (6.04±0.63 mm3 vs. 8.41±0.86
mm3; p < 0.05; n= 11, 15; Figures 1A–C).

Thereafter, we assessed cell death signaling in the brain
via α-spectrin fragmentation (Figures 1D–F). α-Spectrin, a 260
kDa protein, is cleaved into different fragments by activation
of necrotic (primarily calpain-driven) and apoptotic (primarily
caspase-driven) pathways at the cellular level. As seen in Figure 1,
necrotic signaling in the ipsilateral hemisphere of sitagliptin-
treatedmice was significantly reduced∼2-fold relative to vehicle-
treated mice after TBI (p = 0.043, Mann-Whitney). Conversely,
apoptotic signaling was not significantly reduced (p = 0.16).
With this observed reduction in lesion size and broad reduction
in necrotic signaling, we were interested if the neuroprotective
CREB system was significantly activated in animals receiving
sitagliptin treatment. We predefined “activation” as the ratio
of phosphorylation of CREB to unphosphorylated CREB
(pCREB/CREB). Indeed, the CREB system in the ipsilateral

TABLE 1 | Antibody origin and protocol.

Antigen Company, product # Molecular mass (kDa) Blocking solution Dilution

α-Spectrin Millipore, MAB 1622 150/145/120 5% SMP TBS-T 1 to 1000

CREB Cell signaling, 9197 43 5% SMP TBS-T 1 to 1000

pCREB Millipore, 06-519 43 5% BSA TBS-T 1 to 1000

MnSOD Millipore, 06-984 24 5% SMP TBS-T 1 to 1000

Bcl-2 Cell signaling, 2876S 28 5% BSA TBS-T 1 to 1000

IL-6 Abcam, ab6672 22 5% BSA TBS-T 1 to 500

Iba-1 WAKO, 016-20001 17 5% BSA TBS-T 1 to 1000

GAPDH Millipore, MAB 374 39 5% BSA or SMP TBS-T 1 to 10000

Detailed description of antibodies, origin of purchase, molecular weight quantified, blocking solution, and dilutions used for immunoblotting.
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FIGURE 1 | Lesion size determination and cell death signaling. Mice were treated once-daily with vehicle (Veh) or sitagliptin (Sita) for 2 days. Traumatic brain

injury (TBI) was induced blinded to the treatment arms and thereafter treatment continued once-daily for a subsequent 2 days post-TBI. Brains were sliced (1 mm),

stained with 1% 2,3,5-triphenyltetrazolium, and quantified with planimetry (A–C) or the cerebrum of ipsilateral hemisphere was isolated for immunoblotting (D–F).

Representative (A) Veh- and (B) Sita-treated injury volume after staining. (C) Box-whisker plot presenting lesion volume (mm3 ) at day 2 for Veh- (white) and Sita-

(black) treatment arms. Adjacent sections with lesioned tissue that did not pass entirely through the 1 mm section were not quantified. Sita treatment significantly

(Continued)
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FIGURE 1 | Continued

reduced lesion size volume. All data points are presented with box (25 to 75th percentile; line = median) and whiskers: min and max; Veh, n = 15, Sita, n = 11.

Alpha-spectrin fragmentation was quantified with immunoblotting of the ipsilateral hemisphere (representative blotting lane: D) where bands at 150+145 kDa (E) and

120 kDa (F) were analyzed separately representing necrotic and apoptotic signaling, respectively. Signals are reported relative to the housekeeping signal of GAPDH.

All data points are reported with box (25 to 75th percentile; line = median) and whiskers (min and max). Data in (E,F) is non-parametric and is presented with a log10

y-axis. Necrotic signaling was reduced by Sita treatment whereas apoptotic signaling was not significantly reduced. Veh, n = 9, Sita, n = 10. * p < 0.05.

hemisphere of sitagliptin-treated mice were ∼1.5-fold higher
than vehicle–treated mice (p = 0.029; Figures 2A,B). Our
previous work suggested GLP-1 receptor agonism provides
antioxidant support after TBI. In this regard we assessed the
protein levels of the CREB-regulated mitochondrial antioxidant
MnSOD. We detected a small but significant (p = 0.042)
increase in MnSOD in sitagliptin-treated animals (Figure 2C).
From this finding, we endeavored to assess MnSOD levels in
ipsilateral brain homogenates from mice at day 2 post-lesion
from our previous study treated with liraglutide (DellaValle
et al., 2014). Indeed, similar to our findings in lesion size and
CREB, we found a more pronounced effect with liraglutide: A
∼1.6–fold increase in MnSOD at day 2 post lesion (p < 0.001;
Supplemental Figure 1).

Although the CREB system is significantly activated in
sitagliptin-treated animals, we did not detect a significant
difference the apoptotic tone. We therefore expanded on this
finding by assessing the levels of the CREB-regulated anti-
apoptotic protein, Bcl-2 (Figure 2D). In line with this- and our
previous work with TBI and liraglutide (DellaValle et al., 2014),
there was no difference in Bcl-2 levels between treatment groups
(p= 0.48).

In this previous work, IL-6 was significantly reduced by
liraglutide treatment. Moreover, DPP-IV-inhibitors may have
effect on the peripheral and endothelial inflammatory response.
On this basis, we probed for IL-6 content in the brain and
the activated microglial marker Iba-1 (Glushakov et al., 2016).
Sitagliptin did not have an effect on the protein levels of IL-6 or
Iba-1 (Figures 2E,F).

DISCUSSION

In this study, we exploit the therapeutic potential of modulating
endogenous GLP-1 responses using DPP-IV inhibition, a
GLP-1 degradation inhibitor with the additional benefits of
neuroprotective activity of other neuroactive peptides such
as GIP (Drucker and Nauck, 2006). We found that oral
administration of sitagliptin resulted in similar effects as the
GLP-1 analog, liraglutide, albeit to a lesser extent. This is to be
expected as the concentration of GLP-1 in the brain is likely
to be considerably lower than with liraglutide treatment (Holst
et al., 2008) and moreover, the production of GLP-1 itself is
regulated by the endogenous production cycle of each individual
animal. However, the oral administration of DPP-IV inhibitors
is an attractive feature in comparison to other GLP-1 agonists
(often delivered subcutaneously); a feature that is presently being
explored by developers of oral GLP-1 receptor agonists.

This study further confirms the ability of GLP-1-based
therapies to reduce lesion size after TBI and activate the

neuroprotective CREB system in the brain. Necrotic tone in
the damaged hemisphere was reduced by sitagliptin treatment
and apoptotic tone was not- although it tended to be reduced.
This reduction in tissue damage may be associated with CREB-
regulated protective proteins that we previously described to be
involved in GLP-1 analog treatment (DellaValle et al., 2014):
Brain-derived neurotrophic factor, peroxisome proliferator-
activated receptor alpha, and neuroglobin- however, other CREB-
regulated proteins are also protective. MnSOD is a mitochondrial
antioxidant (Galeotti et al., 2005) involved in mitigating
secondary tissue damage. This protein was slightly increased by
sitagliptin treatment, and upon further analysis of tissue from our
previous study, was increased to a larger extent with liraglutide
treatment. This antioxidant is a major detoxifying protein against
reactive oxygen species in the mitochondria, suggesting that
mitochondrial health is improved with GLP-1 receptor agonism.
This is further supported by the increased TTC staining in the
lesion size determination- effectively a mitochondrial vitality
stain. This supports previous work where reactive oxygen species
were reduced after TBI and two previously mentioned proteins
involved in mitochondrial health, peroxisome proliferator-
activated receptor alpha, and neuroglobin, were increased by
GLP-1 analog treatment (DellaValle et al., 2014). Moreover,
in addition to the CREB system, GLP-1 receptor activation is
also thought to be cytoprotective in the brain through the Akt
pathway (Kimura et al., 2009; Pipatpiboon et al., 2013; Sharma
et al., 2014).

Recently, we investigated GLP-1 analog treatment in a cerebral
complication of malaria, where cell death and inflammation

is present but frank oxidative stress is not directly implicated
(DellaValle et al., 2016). In this model, GLP-1 agonism with
liraglutide did not activate the CREB system and was not
protective. Moreover, despite increasing intracellular cAMP in
healthy animals, liraglutide did not activate CREB. These data
suggest that CREB activation is an important mechanism for
GLP-1 protection in the brain, especially in diseases where
oxidative stress is a clear component of the pathogenesis.

Recent work by Knudsen et al. (2016) with a fluorescent-
linked liraglutide compound showed the distribution of
internalized liraglutide in the healthy mouse brain after drug
delivery and thus, represents a surrogate for the distribution of
GLP-1 receptor activation from the periphery. Although there is
little accumulation of liraglutide in the cortical tissue associated
with this work in that study in the healthy brain, it should be
stressed that access of GLP-1 into the brain parenchyma is likely
improved after trauma due to a disrupted blood-brain barrier
and, more importantly, receptor density, and cell expression
profiles may be altered in response to pathology. We suggest
that a possible target of GLP-1 agonism after TBI may be, in
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FIGURE 2 | Activation of CREB, downstream effector proteins and marker of microglial activation. Traumatic brain injury (TBI) animal brains were excised at

day 2 post-lesion, cerebrum isolated, and the ipsilateral hemisphere processed for immunoblotting. Brains were thereafter probed for CREB and phosphorylated

CREBSer133 (A,B), (C) MnSOD, (D) Bcl-2, (E) IL-6 and Iba-1 (F) and are reported relative to the housekeeping signal of GAPDH. Representative blotting lanes are

provided in (A–F) for respective targets. Molecular weights of quantified bands are provided in Table 1. All data points are reported with box (25 to 75th percentile; line

= median) and whiskers (min and max). Sita treatment significantly activates the CREB system and slightly increases the levels of CREB-regulated MnSOD. Bcl-2 and

IL-6 levels were not affected by Sita treatment and activated microglial marker Iba-1 did not change with treatment. Veh, n = 9, Sita n = 10. * p < 0.05.
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part, through astrocytic up-regulation of GLP-1 receptor at the
lesion border. This has been suggested in 1999 by work from
Chowen et al. after a penetrating cortical lesion (Chowen et al.,
1999). We have also previously reported that neuroglobin- a
GLP-1-promoting (DellaValle et al., 2014), CREB-regulated
(De Marinis et al., 2013) protein- is up-regulated in a similar
population of astrocytes at the border region of a cortical lesion
(DellaValle et al., 2010). Indeed, astrocytes have an important
role in protection after injury in the brain (Sofroniew, 2009)
and liraglutide activates CREB in cultured astrocytes and
protects them from oxidative damage (Bao et al., 2015). Other
possible mechanisms for the effects of GLP-1 in the brain
remain to be explored. Finally, the activation of antioxidants
may suggest an increased fuel combustion and we have recently
demonstrated in human studies that a perturbed cerebral glucose
metabolism can be corrected by GLP-1 in both health and
neurodegenerative disease (Lerche et al., 2008; Gejl et al., 2012,
2014, 2016).

A growing body of evidence suggests that GLP-1-based
therapies may have potential as therapeutics after TBI and in
other neurodegenerative diseases. In this study we demonstrate,
for the first time, that DPP-IV inhibitors can be considered-
in addition to direct GLP-1 receptor agonists- in this emerging
treatment strategy for TBI.
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Supplemental Figure 1 | Immunoblotting for MnSOD levels from an

independent study involving treatment with GLP-1 analog, liraglutide.

Upon detecting a similar pattern in traumatic brain injury (TBI) mice treated with

sitagliptin, we endeavored to analyze brain homogenates prepared in an identical

manner from a previous study in the same TBI model for MnSOD levels. The

treatment groups were: vehicle (PBS) and the long-lasting glucagon-like peptide-1

(GLP-1) analog, liraglutide. TBI was induced in the same manner. Directly after TBI

induction, mice were randomly selected for twice-daily subcutaneous injections of

either PBS or liraglutide. At day 2 post-lesion, the cerebrum was isolated and

ipsilateral hemisphere processed for immunoblotting in the same manner. Brain

homogenates were then probed for MnSOD levels and are reported relative to the

housekeeping signal of GAPDH. Representative blotting lanes are provided and all

data points are reported with box (25 to 75th percentile; line = median) and

whiskers (min and max). Similar to mice treated with sitagliptin, MnSOD levels

were increased in mice treated with liraglutide. ∗∗∗p < 0.001.
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