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Estimator to Parzen Windows for Normalized

Mutual Information
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Universitetsparken 1, DK-2100 Copenhagen, Denmark

{darkner, sporring}@diku.dk

Abstract. Mutual Information (MI) and normalized mutual informa-
tion (NMI) are popular choices as similarity measure for multimodal
image registration. Presently, one of two approaches is often used for
estimating these measures: The Parzen Window (PW) and the Gener-
alized Partial Volume (GPV). Their theoretical relation has so far been
unexplored. We present the direct connection between PW and GPV
for NMI in the case of rigid and non-rigid image registration. Through
step-by-step derivations of PW and GPV we clarify the difference and
show that GPV is algorithmically inferior to PW from a model point
of view as well as w.r.t. computational complexity. Finally, we present
algorithms for both approaches for NMI which is comparable in speed
to Sum of Squared Differences (SSD), and we illustrate the differences
between PW and GPV on a number of registration examples.

Keywords: Similarity measure, registration , normalized mutual information,
density estimation, scale space, locally orderless images.

1 Introduction

Mutual information (MI) and its normalized version (NMI) are considered state
of the art for image registration. MI and NMI are particularly useful for register-
ing Magnetic Resonance Images (MRI) to MRI as well as for multimodal image
registration in general. MI and NMI are entropy based measures and hence rely
on intensity distributions. Intensity distributions are most often approximated
by discrete histograms, which poses a challenge to gradient based methods. To-
day, one of two approaches is often used for estimating these measures: The
Parzen Window (PW) [21] and the Generalized Partial Volume (GPV) [3, 10].
Empirical comparisons have previously been presented, but their theoretical con-
nection has so far been unexplored despite the fact that both are used in the
same context. We present the derivations of both PW and GPV in a joint the-
oretical context. This gives novel insight to the relation between PW and GPV
enabling a theoretical evaluation and comparison of the two. We show that PW
and GPV are special cases of histogram registration using Locally Orderless
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Images (LOI) [7] on NMI. The concept of LOI allow us to treat derivatives in
measurement, integration, and intensity space in a well-posed manner, as well
as offer a scale-space formulation of these spaces. From this we formulate algo-
rithms, analytically compare their speed, and discuss the different approaches.

We evaluate PW and GPV in the setting of LOI by a series of simple exper-
iments with numerically the exact same prerequisites, interpolation, regulariza-
tion, and optimization on publicly available data: 3D cardiac MRI [1], and 3D T1
brain MRI [12] for rigid intra- and inter-patient registration as well as non-rigid
intra patient registration. For each registration we report standard deviation and
mean as a function of method parameters, and we conclude that there are differ-
ences between the proposed algorithms, and differences reported originates from
approximations and smoothing in different spaces: GPV in namely the isophote
domain and in PW the image and intensity domain. This leads us to conclude
that PW is more attractive and in general superior density estimator to GPV
for MI and NMI.

1.1 Previous work

The use of Mutual Information (MI) for image registration was originally pro-
posed by [4, 21]. An extensive overview was given in [17]. Normalized Mutual
Information (NMI) was introduced as a more robust alternative especially de-
signed for multi modal image registration [19]. The first implementations relied
on Powell’s method [10], hill climbing [19], or similar methods without gradi-
ents, which were accurate but slow. A GPU speedup was suggested in [13].
Today, state-of-the-art implementations are gradient based methods and group
in two algorithm types: The first type is based on Parzen Windows (PW) [21]
and relies on the fact that the marginal and the joint histograms are made con-
tinuous by using different kernels, e.g., Gaussian or B-splines [20]. The second
type is based on Generalized Partial Volume (GPV), where the distribution is
sampled from the image directly [10]. Analytical derivatives of this method were
presented in [11] and a generalization using B-splines was presented in [3]. A
variational method relating to LOI [7] for MI (and other measures) was pre-
sented in [6]. GPV and PW was compared numerically in [8] concluding that
PW is precise and GPV has a larger convergence radius. MI and NMI are noto-
rious for their local minima and difficulty of implementation and the choice of
interpolation scheme greatly influence the smoothness of the objective function.
Some investigations into this can be found in [5,16]. An alternative approach is
the Conditional Mutual Information [9].

In this article, we investigate PW and GPV for NMI, using differential cal-
culus in a thorough step-by-step presentation. The derivations may be seen as
an alternative to the variational approach in [6], our’s holds the same generality,
but lead to much faster algorithms, since numerical issues become obvious, and
our derivation lead to a direct comparison between PW and GVP. The remain-
der of this article is organized as follows: In Section 2 the general registration
framework is described. In Section 3 we discuss LOI as a basis for analyzing
GPV and PW as well as demonstrate their similarity and derive fast algorithms.
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In Section 5 we compare the methods experimentally, and finally, in Section 6
we give our conclusions.

2 Image registration

Image registration is the process of transforming one image Ĩ : Ω → Γ , where
Ω ⊆ RN and Γ ⊆ R, w.r.t. a reference image R : Ω → Γ such that some
functional F(Ĩ , R) is minimized. We consider diffeomorphic transformation of
NM parameters, ϕ : Ω × RNM → Ω, and for brevity we write I = Ĩ ◦ ϕ. The
general form of F is,

F = M(I,R) + S(ϕ), (1)

where M is a (dis)similarity measure between the images and S(ϕ) is a regular-
ization term. Regularization is almost always required in order to obtain a unique
solution, since image registration is generally ill-posed [14]. We use Riemannian
Elasticity [15],

S(ϕ) = µ

4

∑
i

log2 ϵi +
λ

8

(∑
i

log ϵi

)2

, (2)

where ϵi is the i’th squared eigenvalue of the Jacobian of the transformation ϕ,
µ and λ are regularization parameters.

The focus of this paper is the similarity measure, and we consider NMI for
M [19],

MNMI =
HI +HR

HI,R
, (3)

where H denotes the marginal and the joint entropy of the intensity distribution
[18], specifically,

HI = −
∫
Γ

pI(i) log pI(i) di, HR = −
∫
Γ

pR(i) log pR(i) di, (4)

HI,R = −
∫
Γ 2

pI,R(i, j) log pI,R(i, j) di ∧ dj, (5)

using the natural logarithm for convenience, and the intensity and joint intensity
distributions, p(·) : Γ → R+ and p(·, ·) : Γ 2 → R+, are estimated by the
histogram and joint histogram of the intensity values. NMI has proven to be
very powerful for registration of medical images in general.

Finally, we consider Uniform B-splines [2] for coordinate transformation,

x = ϕ(x̃,Φ) =
M∑

m=0

ϕm

N∏
n=1

fm,t(x̃n), (6)
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where Φ = [ϕ(x̃1), . . . ,ϕ(x̃M )] ∈ ΩM is a matrix of values of the transformation
at regular grid coordinates x̃m, x̃ = [x̃1, . . . , x̃N ]T is the evaluation point, and
where the coordinate wise interpolation function, fm,t : R → R, is given by the
Cox-de Boor recursion formula [2].

In the following, we will study the implication of the 3 independent scales
of the local histogram on the registration problem, and we derive the PW and
GPV for NMI in the context of LOI for usage in a quasi-Newton method.

3 Locally orderless images (LOI)

To fully understand the connection between PW and GPV we first shortly re-
view the concept of locally orderless images (LOI), the theoretical foundation of
histogram generation.

The critical element for NMI based registration methods is the generation of
the density distribution and efficiently calculating the gradient of (1), especially
the gradient of (3), and in parts the gradient of ϕ. We study NMI registration
through LOI [7], which extends the concept of histograms with the 3 fundamen-
tal scales, the amount of spatial smoothing of the images (image smoothing),
the amount of histogram smoothing (intensity smoothing), and the size of the
window (the partial volume) for calculating local histograms. Thus, a local his-
togram is written as,

hI(i,x,Φ, α, β, σ) = P (I(x,Φ, σ)− i, β) ∗W (x, α), (7)

I(ψ,Φ, σ) = I(x) ∗K(x, σ), (8)

where dψN , i ∈ Γ , P is a Parzen window of intensity or tonal scale β ∈ R+, K
is a spatial measurement kernel of scale σ ∈ R+, W is an integration window
of scale α ∈ R+ and located at x, · ∗ · is the convolution operator taken w.r.t.
the variable x, and Φ denotes the parameters for the transformation. The his-
togram hR is defined similarly independently of Φ. In [7] it is proposed to use

P (i, β) = e−i2/(2β2), and K(x, σ) =W (x, σ) = e−xTx/(2σ2)/(2πσ2)N/2, and this
structure is called the Locally Orderless Image. The distributions are obtained
by normalizing to unity,

pI(i|x,Φ, α, β, σ) ≃
hI(i,x,Φ, α, β, σ)∫

Γ
hI(j,x,Φ, α, β, σ)dj

, (9)

pI(i|Φ, α, β, σ) =
1

|Ω|

∫
Ω

pI(i|x,Φ, α, β, σ) dx, (10)

where we have assumed (conditional) independence and uniformity such that
pI(i,x|Φ, α, β, σ) = pI(i|x,Φ, α, β, σ)/|Ω|. The density pR is defined in a similar
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manner. As [6], we extend the concept to the joint distributions as follows,

hI,R(i, j,x,Φ, α, β, σ) = (P (I(x,Φ, σ)− i, β)P (J(x, σ)− j, β)) ∗W (x, α),

(11)

pI,R(i, j|x,Φ, α, β, σ) ≃
hI,R(i, j,Φ,x, α, β, σ)∫

Γ 2 hI,R(k, l,x, α, β, σ) dk ∧ dl
, (12)

pI,R(i, j|Φ, α, β, σ) =
1

|Ω|

∫
Ω

pI,R(i, j|Φ,x, α, β, σ) dx, (13)

where we also have assumed (conditional) independence and uniformity such
that pI,R(i, j,x|Φ, α, β, σ) = pI,R(i, j|x,Φ, α, β, σ)/|Ω|.

3.1 First Order Structure

In order to use quasi-Newton methods for optimization, we need to derive the
gradient of (1) w.r.t. the parameters of the uniform cubic b-spline, Φ. We use
the notation of differentials, dg(x) = Dg(x) dx, where D is the partial derivative
operator. Note that dx is a vector of differentials, not the wedge product of its
elements, when used in relation to differentiation. Further, we will only write up
non-zero terms that depend on dΦ. The differential of (1) is,

dF = dM+ dS, (14)

where arguments have been omitted for brevity. Ignoring the regularization term
we focus on the differential of the similarity measure. The differential of (3) is,

dMNMI =
(dHI + dHR)HI,R − (HI +HR)dHI,R

H2
I,R

. (15)

The entropy, HR, is independent of ϕ, hence dHR = 0. Further,

dHI = −
∫
Γ

dpI (log pI + 1) di, (16)

dHI,R = −
∫
Γ 2

dpI,R(log pI,R + 1) di ∧ dj. (17)

Using Leibniz integration rule, the differentials of the distributions are given as

dpI(i,Φ) =
1

|Ω|

∫
Ω

dpI(i|x,Φ) dx, (18)

dpI(i|x,Φ) ≃
dhI(i,x,Φ)∫

Γ
hI(j,x,Φ)dj

−
hI(i,x,Φ)

∫
Γ
dhI(j,x,Φ)dj(∫

Γ
hI(j,x,Φ)dj

)2 , (19)

dhI(i,x,Φ) = (dP (I(x,Φ, σ)− i, β) ∗W (x, α)) , (20)
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where irrelevant arguments have been omitted for brevity. Likewise, we have:

dpI,R(i, j) =
1

|Ω|

∫
Ω

dpI,R(i, j|x) dx, (21)

dpI,R(i, j|x) ≃
dhI,R(i, j,x)∫

Γ 2 hI,R(k, l,x) dk ∧ dl
−
hI,R(i, j,x)

∫
Γ 2 dhI,R(k, l,x) dk ∧ dl(∫

Γ 2 hI,R(k, l,x) dk ∧ dl
)2 ,

(22)

dhI,R(i, j,x) =
(
dP (I(ψ,Φ, σ)− i, β)P (J(ψ, σ)− j, β)

)
∗W (x−ψ, α). (23)

3.2 The Parzen window (PW)

Originally MI was proposed in [21] using PW as density estimator. In the fol-
lowing we will examine this special case of LOI, often used in the literature.
Consider (7) and let α→ ∞. In that case, the window hI simplifies as,

hI(i,x,Φ, α, β, σ) → const.

∫
Ω

P (I(ψ,Φ, σ)− i, β) dψ, (24)

pI(i|Φ, α, β, σ) →
∫
Ω
P (I(ψ,Φ, σ)− i, β) dψ∫

Γ

∫
Ω
P (I(ψ,Φ, σ)− j, β) dψ ∧ dj

. (25)

Choosing

P (i, β) = e−i2/(2β2), (26)

we find that ∫
Γ

∫
Ω

P (I(ψ,Φ, σ)− j, β) dψ ∧ dj = |Ω|
√

2πβ2, (27)

and

pI(i|Φ, α, β, σ) →
1

|Ω|
√

2πβ2

∫
Ω

e
−(I(x,Φ,σ)−i)2

2β2 dx. (28)

Likewise, we have

pI,R(i, j|Φ, α, β, σ) →
1

|Ω|2πβ2

∫
Ω

e
− (I(x,Φ,σ)−i)2+(R(x,σ)−j)2

2β2 dx. (29)

This is precisely the Parzen window method using a Gaussian kernel with infinite
support [21]. Similar results are obtained for any integrable P (i, β). The PW can
be interpreted as a globally orderless image, as W defining the locality extends
globally. Further, since both (28) and (29) obey the diffusion equation w.r.t.
β2/2, we may use Green’s theorem and write,

pI(i|
√
β2
0 + β2) = pI(i|β0) ∗G(i, β), (30)

pI,R(i, j|
√
β2
0 + β2) = pI,R(i, j|β0) ∗G([i, j]T , β), (31)

for fast computation of a range of Parzen window sizes.
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3.3 Generalized Partial Volume (GPV)

Shortly after the introduction of PW partial volume (PV) was introduced in [10]
and extended to GPV in [3]. In the context of LOI GPV can be derived as
follows:

dhI = d (P (I(x,Φ, σ)− i, β) ∗W (x, α)) (32)

= P (I(x̃,Φ, σ)− i, β) ∗ (DxW (x, α)) , (33)

For the joint histograms partial volume approximate as follows:

hI,R(i, j,x, α, β, σ)

=

∫
Ω

P (I(ψ, σ)− i, β)P (J(ψ, σ)− j, β)W (x−ψ, α) dψ (34)

≈ P (J(x, σ)− j, β)

∫
Ω

P (I(ψ, σ)− i, β)W (x−ψ, α) dψ (35)

= P (J(x, σ)− j, β) ((P (I(ϕ(x̃), σ)− i, β)) ∗W (x, α)) (36)

Hence, the differential w.r.t.x

dhI,R(i, j,x, α, β, σ)

= P (J(x, σ)− j, β) ((P (I(ϕ(x̃), σ)− i, β)) ∗ (DxW (x, α))) , (37)

Set P (P (I(ψ,Φ, σ)− i, β) and P (J(x, σ)− j, β)) to a boxcar functions

P (I(ψ,Φ, σ)− i, β) =

{
1 if − β

2 ≤ Ĩ(ψ,Φ, σ)− i < β
2 ,

0 otherwise,
(38)

where β is chosen such that I(ψ,Φ, σ) is mapped into non-coinciding isophotes
curves. The motivation for this is that all isophotes can be evaluated at x̃ simulta-
neously. This is the generalized partial volume (GPV) scheme when integrating
over the entire domain Ω. Thus GPV is small local histograms integrated to
form the globally orderless image as in the PW approach.

4 Fast Implementations

This section presents a complexity analysis of the compact pseudo code required
to implement SSD, PW and GPV. The purpose is to show that these measures
can be implemented as very fast algorithms with only slightly more computations
than SSD. We compare the computational complexity to SSD using identically
interpolation scheme. All kernels used in implementations are 3rd order uniform
B-splines as well as boxcar functions to reduce computational complexity. The
code assumes 3D images, the use cubic B-splines for all kernels and K bins in
the histograms. The pseudo code can be seen in Figure 1 including the analysis
of the computational complexity. We assume that today’s processors have equal
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# Given 2 images , I and R, and the determinant o f the
# trans format ion , det , as a func t i on o f space ,
# c a l c u l a t e PW and GPV fo r NMI and SSD, based on N
# image eva lua t i on points , and K marginal and Kˆ2 j o i n t
# histogram bins . Flops are based on cubic s p l i n e s

FOR N eva lua t i on po in t s
c a l c u l a t e image s p l i n e c o e f f . (60 f l o p s )
IF (SSD | | PW)

c a l c u l a t e d e r i v a t i v e o f image s p l i n e c o e f f . (48 f l o p s )
FOR 64 combinat ions o f image s p l i n e c o e f f .

IF (SSD | | PW)
update image at eva lua t i on po int (4 f l o p s )
update image grad i ent at eva lua t i on po int (12 f l o p s )

IF (GPV)
update histograms (4 f l o p s )

IF (SSD)
update r e s i d u a l (2 f l o p s )

IF (PW)
c a l c u l a t e histogram sp l i n e c o e f f . (20 f l o p s )
FOR 16 histogram sp l i n e c o e f f .

update histograms (2 f l o p s )
IF (PW | | GPV)

c a l c u l a t e NMI and d e r i v a t i v e on histograms (9∗Kˆ2+6K f l o p s )
FOR N eva lua t i on po in t s

IF (GPV)
c a l c u l a t e d e r i v a t i v e o f image s p l i n e c o e f f . (48 f l o p s )
FOR 64 combinat ions o f image s p l i n e c o e f f .

update d e r i v a t i v e o f histogram (16 f l o p s )
IF (PW)

FOR 16 histogram sp l i n e c o e f f .
update d e r i v a t i v e o f histogram (9 f l o p s )

update d e r i v a t i v e s (3 f l o p s )
# Total f l o p usage :
# SSD: 1134N f l o p s
# PW: 1331N +9Kˆ2 +6K f l o p s
# GPV: 1383N +9Kˆ2 +6K f l o p s

Fig. 1. Pseudo code for SSD, PW and GPV.

processing time of, e.g., sum, log, sin etc. From the pseudo code in Figure 1
and the complexity we see that the Parzen window can be considerable larger
without being inferior to GPV in performance. This is of cause a rough estimate
and implementations may vary, but the amount of computations for NMI using
either GPV or PW are comparable in computational complexity to SSD using B-
splines. W.r.t. memory, GPV requires 192×N×8 bytes of memory to obtain the
speed, where the PW only requires 8×N ×8 bytes (on 64-bit, double precision).
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5 Experiments

For ease of comparison we restrict ourselves primarily to rigid registration ex-
amples with a few non-rigid included as well. It has previously been shown that
PW is superior to GPV in accuracy, and thus we quantitatively evaluate the
difference in estimated parameters with the prerequisites listed in Section 1. As
the results in Tables 1 and 2 show, there are more or less pronounced differences
numerically between the two methods. In some of the cases both PW or GPV
got stuck in a local minima often simultaneously but with different minimas.
Such problem can be solved using scale space.

param rot x rot y rot z tx ty x tz

Between subject (Brain)

mean 0.0236 -0.0420 -0.0195 2.1120 1.7486 -0.4984

std 0.0556 0.2689 0.0781 7.5876 3.3922 1.6482

Intra subject (Brain)

mean 0.0005 0.0001 -0.0004 -0.1304 -0.0326 0.1685

std 0.0016 0.0032 0.0008 0.7604 0.0825 0.7033

Intra subject (Cardiac)

mean 0.0005 -0.0002 -0.0007 0.0629 0.0473 0.0142

std 0.0006 0.0005 0.0009 0.0883 0.0729 0.0406

Table 1. : Inter and intra subject rigid registration difference and standard deviation
in pixels for T1-weighted MRI brain data and cardiac CINE-MRI data. As seen the
two methods produces significantly different results especially between subjects. This
originates from the smoothing in different domains and the use of the Hölder inequality.
The differences are measured in voxels and radians.

Intra subjects non-rigid (Brain) Difference

mean -0.0182

std 2.446

Table 2. The difference in parameter estimates over 1800 parameters in 18 non-rigid
intra patient T1-weighted MRI registrations in voxels. The cause of difference is the
same as for rigid.

6 Discussion and Conclusion

The differences between the PW and GPV can be explained from a theoretical
point of view: From (29) it is clear that GPV and PW smooth in 2 different
spaces, thus the comparisons are interesting computation wise but less meaning-
ful w.r.t. accuracy. Nevertheless, the approximation made by GPV substantiate
that PW as reported in [8] is more accurate than GPV. In addition The Hölder
inequality also accounts for some of the difference in value of the functional as
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Fig. 2. The difference in NMI estimate for PW and GPW evaluated for 1 dimensional
translational displacement. The observed difference originates from the smoothing in
different domains and the use of the Hölder inequality.

does the choice of Parzen window. Our results also indicate that smoothing in
the isophote domain W influences the objective function more than smoothing
in the image domain I. The exact effects of smoothing in the 3 domains is left
for future investigations.

From (??) we see that the Jacobian locally scales the integration compen-
sating for the deformation. In some schemes this is omitted, reformulating the
transformation to a re-sampling. The choice of approach should be based on
the specific application; however, for density distributions the Jacobian should
be present. The local scaling can cause instability in non-rigid, non-regularized
settings with entropy based measures, as it tends to concentrate the mass at
a single bin in the histogram, a global optimum for both MI and NMI. This
effect is particularly pronounced in GPV, whereas the PW diffuses this effect
over several bins in the R direction and not only the I direction. Some schemes
overcome the missing Jacobian implicitly by composing small deformations and
re-sampling.

To conclude, PW operates directly on intensity distributions and is therefore
the natural choice for information theoretical measures such as NMI. In this pa-
per we have shown that GPV and PW are special cases of LOI extended to joint
probability distributions. From the perspective of LOI we have derived the PW
and GPV, and shown how GPV makes a series of approximations and use of some
special kernels with locality assumptions to achieve its low computational cost.
The PW only rely on transforming LOI to globally orderless images, whereas the
GPV rely approximations using the Hölder inequality to achieve computability,
the use of a boxcar window as Parzen estimator and no image interpolation as
a part of the model. The global entropy comes from integration over the entire
domain. The approximations made in GPV along with smoothing in different
spaces account for the difference in functional and in value of similarity measure
makes PW far more attractive theoretically as well as in practice. In addition
we have shown that PW is faster than the GPV and we substantiated the result
from [8] that PW is more accurate. We therefore conclude that PW is a superior
estimator for NMI compared to GPV.
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