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METHODOLOGY Open Access

Large-scale benchmarking reveals false
discoveries and count transformation
sensitivity in 16S rRNA gene amplicon data
analysis methods used in microbiome
studies
Jonathan Thorsen1†, Asker Brejnrod2,3†, Martin Mortensen2, Morten A. Rasmussen1, Jakob Stokholm1,
Waleed Abu Al-Soud2, Søren Sørensen2, Hans Bisgaard1* and Johannes Waage1*

Abstract

Background: There is an immense scientific interest in the human microbiome and its effects on human physiology,
health, and disease. A common approach for examining bacterial communities is high-throughput sequencing of 16S
rRNA gene hypervariable regions, aggregating sequence-similar amplicons into operational taxonomic units (OTUs).
Strategies for detecting differential relative abundance of OTUs between sample conditions include classical statistical
approaches as well as a plethora of newer methods, many borrowing from the related field of RNA-seq analysis. This
effort is complicated by unique data characteristics, including sparsity, sequencing depth variation, and nonconformity
of read counts to theoretical distributions, which is often exacerbated by exploratory and/or unbalanced study designs.
Here, we assess the robustness of available methods for (1) inference in differential relative abundance analysis and (2)
beta-diversity-based sample separation, using a rigorous benchmarking framework based on large clinical 16S
microbiome datasets from different sources.

Results: Running more than 380,000 full differential relative abundance tests on real datasets with permuted
case/control assignments and in silico-spiked OTUs, we identify large differences in method performance on a
range of parameters, including false positive rates, sensitivity to sparsity and case/control balances, and spike-in
retrieval rate. In large datasets, methods with the highest false positive rates also tend to have the best detection power.
For beta-diversity-based sample separation, we show that library size normalization has very little effect and that the
distance metric is the most important factor in terms of separation power.

Conclusions: Our results, generalizable to datasets from different sequencing platforms, demonstrate how the choice of
method considerably affects analysis outcome. Here, we give recommendations for tools that exhibit low false positive
rates, have good retrieval power across effect sizes and case/control proportions, and have low sparsity bias. Result output
from some commonly used methods should be interpreted with caution. We provide an easily extensible framework for
benchmarking of new methods and future microbiome datasets.
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Background
Technical advances in DNA sequencing have allowed for
the collection of high-dimensional biological data on an
unprecedented scale. This development has ignited a
surge of scientific opportunities and interest in the
human microbiome and its effects on human physiology,
health, and disease [1, 2]. A common approach to
microbiome studies is the amplification of hypervariable
regions of bacterial 16S rRNA genes from biological
samples, sequencing of amplicons in a high-throughput
fashion, and grouping of sequences into operational taxo-
nomic units (OTUs) [3–5] for downstream applications.
A common statistical analysis of OTU data is differen-

tial relative abundance (DA) testing, a serial univariate
test of each OTU between two sample groups, e.g., phe-
notypes, compartments, or time-points. This relatively
simple endeavor is complicated by certain characteristics
of the data, in particular three major points. First, the
OTU count matrix is sparse, with often between 80 and
95% of the counts being zero [6, 7]. Second, the library
sizes (sum of counts in each sample; also referred to as
sequencing depth) vary significantly, sometimes by
several orders of magnitude, making it nonsensical to
compare counts directly between samples, since they
each represent a different fraction of the composition of
a given sample. Third, as is well known from ecological
literature, the variances of these count distributions are
greater than their means, a phenomenon known as over-
dispersion [8, 9]. In the RNA-seq field which is based on
similar sequencing technology, explicit modeling of this
mean-variance relationship has been attempted [10, 11].
The aim of this work is to benchmark the many options

investigators face when analyzing 16S amplicon-based
sequencing data. Previous work with similar objectives has
focused on the practice of rarefaction [12, 13], i.e., resam-
pling reads within each sample to equal amounts to over-
come the differences in sequencing depths. This work
attempts three separate benchmarks of inference robust-
ness, all based on real datasets generated from clinical
samples, obtained from different compartments in the
human microbiome, including the gut, hypopharynx, and
vagina, covering a wide range of human ecological niches.
First, we have quantified the false discovery rate of the

most popular differential relative abundance (DA) methods
by randomly assigning case/control status to samples, thus
creating an empirical null distribution, and testing each
OTU for differential relative abundance. Second, we have
simulated in silico spiking of known magnitudes and
examined how well these can be recovered. We have used
a range of multiplicative and additive spike-in magnitudes
applied to OTUs from different relative abundance tertiles
to explicitly control the range of OTUs to be recovered.
Furthermore, as the microbiome field is currently in a state
where many projects are exploratory and not explicitly

designed, we have examined the effect of the case/control
proportion. The included methods are well-established
choices for data analysis in many fields. The Welch two-
sample t test is the default choice for comparing two
sample means, while the Wilcoxon rank sum test is a
nonparametric alternative. Negative binomial generalized
linear models (GLM) have long been a popular option in
ecology for modeling count data such as species observa-
tion counts [14], by adding an additional parameter to
account for the aforementioned overdispersion. From the
field of RNA-seq, which have faced many of the same data
analysis challenges, we have included two widely used
packages estimating counts parametrically, also utilizing
the negative binomial distribution, DEseq2 [15] and edgeR
[16], as well as baySeq [17], using an empirical Bayes
method for parameter estimation. From the field of micro-
bial ecology, metagenomeSeq [7] has been designed with
microbial marker surveys in mind, using a normalization
procedure and a zero-inflated gaussian (ZIG) mixture
model, designed to handle sequence depth issues and
sparsity, as well as an alternative zero-inflated log-normal
model with included parameter shrinkage (feature model)
[18]. The ALDEx2 method has been developed with
emphasis on the compositional nature of sequencing data,
implementing Monte Carlo sampling of Dirichlet distribu-
tions and averaging p values across resamples [19]. In
addition, we have implemented a simple custom permuta-
tion test, based on the null distribution of a test statistic

defined as log mean counts in cases
mean counts in controls

� �2
obtained through ran-

dom permutations of samples as cases/controls. Finally, we
have quantified the effect of normalization, transformation,
and choice of distance measure on the beta-diversity
separation of samples with a known biological grouping.
Multivariate analysis and choice of distance measure in
particular are currently being debated in microbial ecology
as claims of inherent clustering of vaginal [20] and gut
microbiomes [2] have been made. The robustness of these
claims has been shown to be sensitive to data analysis
choices [21], visualization choice [22], and copy number
estimation procedures [23]. Ecology has a long tradition
for multivariate analysis of species tables, and many of the
currently available tools have therefore been adapted from
this field, such as the Bray-Curtis dissimilarity measure
[24]. Microbial ecology has seen the development of
measures exploiting phylogenetic information in the
sequencing reads. Here, we include the weighted and
unweighted UniFrac [25, 26]. Additionally, we included the
Jensen-Shannon divergence, which plays a key role in
enterotyping and clustering of vaginal microbiomes. The
Euclidean distance is known to be unsuited for ecological
distance measurements due to what has been termed the
“double zero” problem, the fact that it is not possible to
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distinguish if a species is absent from two samples due to
undersampling [7, 27]. It has been included as a baseline,
since many early papers explored microbiomes using
Euclidean-driven principal component analysis.

Results
Study design and data characteristics
The study was divided into three parts (Fig. 1), namely
(1) false positive rate (FPR) testing, (2) spike-in retrieval
testing, and (3) beta-diversity optimization. We used
seven large datasets: three for the FPR tests and spike-in
retrieval tests (labeled A1-A3), one simulated set (labeled
A4) for assessing the effect of spike-in independent sam-
ple strata, and three for the beta-diversity optimization
tests (labeled B1–B3). The datasets and their characteristics
are presented in Additional file 1: Table S1. The datasets
are characterized by having high degrees of sparsity, large
variation in library sizes, and an overdispersed mean-
variance relationship (Additional file 2: Figure S1).

False positive rates
We found striking differences in the FPR of the tested
methods using identical permutations of the three large
datasets A1–A3 (Additional file 3: Figure S2A). A total
of 17,550 full DA tests were analyzed. Generally, many
methods were robust, with FPR close to or below 0.05,
as expected under the null hypothesis. However, edgeR,
metagenomeSeq ZIG (unfiltered, see below), and espe-
cially baySeq displayed very high FPRs, indicating that
models did not fit well to the data. Intriguingly, baySeq,
edgeR, and negative binomial GLMs performed worse
under balanced conditions, i.e., 50% cases and 50%
controls, than under unbalanced conditions with only
10% cases. Most methods had low variance of FPR
across iterations, but metagenomeSeq ZIG and especially
baySeq showed considerable variation within parameter

sets. To ensure that observed differences in FPRs
between balanced conditions were not due to inherent
biological signals or sample structures in the datasets
used, we repeated the analysis in an additional simulated
dataset (A4, n = 5850), based on within-OTU count
permutation, retaining the biological distribution of
OTU count data but breaking within-sample characteris-
tics. With the exception of baySeq, no major deviations
were observed from the results obtained with dataset A3
(Additional file 3: Figure S2B).
Next, we investigated the effect of OTU sparsity on

test inference (Fig. 2) and observed that the sparsity of
any given OTU had different effects when applying the
different methods, in the feces dataset A1. OTU-wise p
values from non-spiked single DA runs with 50% cases,
selected by the median FPR, depended to some extent
on the percentage of zeroes in the OTU in question.
The methods edgeR, negative binomial GLM, metagen-
omeSeq ZIG (unfiltered), and especially baySeq displayed
biased results at high sparsity, meaning that many zeroes
lead to lower p values, irrespective of any signal in the
data. This effect was to some extent ameliorated for meta-
genomeSeq by its filtering step, which essentially removes
most of the sparse OTUs after the model has been esti-
mated, as demonstrated in Fig. 2. The feature model did
not exhibit this inflation. DESeq2 in particular exhibited a
conservative estimation of p values at high sparsity and t
tests, and Wilcoxon and the permutation tests were all
very robust across the range. The ALDEx2 method was
very conservative and showed a narrow band of p values
resembling a Gaussian distribution around 0.5, regardless
of sparsity.

Spike-in retrieval tests
A total of 175,500 spiked DA analyses from datasets
A1–A3 were considered. The spike-ins were performed

Fig. 1 Spike-in approach and analysis flowchart. Left, a theoretical sample where the count data for OTU A is multiplied by 3 before rescaling to
original sequencing depth. Right, flowchart of the simulation study, yielding FPR and AUC for each method, dataset, and set of variables, as well
as R2 values for all combinations of normalization, transformation, and distance in the beta-diversity optimization
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by increasing the raw counts of random OTUs in cases,
either multiplicatively or additively (see Fig. 1), by a
range of spike-in magnitudes, in order to measure the
relative retrieval performance between methods.
Additional file 4: Figure S3A shows the area under the

curve (AUC) value distributions of the receiver operating
characteristics (ROC) curve when using p values to
discriminate between multiplicatively spiked and non-
spiked OTUs in the feces dataset A1, for all the
methods, case proportions, and magnitudes. We found
that most methods improved detection power as the
spike-in magnitudes increase, though both Wilcoxon
and metagenomeSeq ZIG (filtered) did not exhibit this
property to the same extent as the others. The multi-
plicative spike-in AUC distributions for the other two
datasets A2 and A3 (Additional file 4: Figure S3B, S3C)
showed very similar characteristics. Overall, the best
performance in terms of AUC was exhibited by the
sequencing-specific methods edgeR, metagenomeSeq
ZIG, and baySeq, as well as the assumption-free permu-
tation test. The mid-level in performance was represented
by negative binomial GLM, DESeq2, and ALDEx2, whereas
t tests and Wilcoxon performed the worst. The robustness
of these methods varied greatly, with some tests yielding
AUC values below 0.5, in case of the t tests and Wilcoxon
even with a median value below 0.5 in the unbalanced tests

with case proportions at 10%. The most robust test was the
permutation test and metagenomeSeq feature model, which
only very rarely fell below 0.5 in AUC.
We repeated these analyses with additive spiking

(Additional file 5: Figure S4A, S4B, S4C), yielding very
similar results, albeit with lower variance in the distribu-
tions. We found that the methods exhibited the same
hierarchy of performance across the three datasets as in
the multiplicative spike-in tests. The best performing
models were saturated already at magnitude 10, render-
ing magnitude of change 20 unnecessary.
Finally, we considered a mixed spike-in setup (Add-

itional file 6: Figure S5). In this setup, methods were not
as clearly separated in AUC values, although the same
general hierarchy was retrieved. The highest AUC values
were found in the methods edgeR, metagenomeSeq ZIG,
negative binomial GLMs, and the permutation test.
Figure 3 shows the median AUC values vs the median

FPRs, illustrating the overall performance of the various
methods in the three datasets, at the highest magnitude
(20) with multiplicative spiking.

Subsets and simulated data
We repeated the FPR (n = 11,700) and spike-in tests (n
= 117,000) to examine the relative performance of the
various methods in small- and medium-sized datasets by

FPR = 0.417 FPR = 0.206 FPR = 0.019 FPR = 0.501 FPR = 0.039 FPR = 0.314 FPR = 0.133

FPR = 0.015 FPR = 0.025 FPR = 0.033 FPR = 0.028 FPR = 0 FPR = 0.001 FPR = 0.052

metagenomeSeq metagenomeSeq filtered mgS featureModel baySeq DESeq2 edgeR Negative binomial GLM

t−test Log t−test Wilcoxon Permutation ALDEx2 t−test ALDEx2 Wilcoxon Random uniform
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Fig. 2 OTU sparsity vs. p value. Scatterplots of OTU sparsity vs p value with panels representing each differential relative abundance test method
in feces dataset A1, with 50% cases. Colored line represents the LOESS regression on data. False positive rate (FPR) is defined as the fraction of
OTUs with p< 0.05. Each differential relative abundance test represents the median FPR for that method, out of all 150 permutations. Contour lines indicate
point density and can be compared to a hypothetical null distribution of p values demonstrated in the final panel (“Random uniform”)
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subsetting datasets A1–A3, yielding datasets of lower
sparsity (A1s–A3s and A1m–A3m) (Additional file 1:
Table S1). We found that the performance hierarchy was
very similar across all six subsets with regard to both
FPR and spike-in AUC (Fig. 4). There were some devia-
tions from the larger sets, especially metagenomeSeq
ZIG and the permutation test performed worse in the
subsets, whereas edgeR kept a high AUC but with much
lower FPR. The distributions of FPR and AUC under all
parameter combinations can be seen in Additional file 7:
Figure S6A–D.
In the simulated dataset A4, the AUC results (n =

58,500, Additional file 8: Figure S7A–C) were nearly
identical to those from dataset A3, on which it was
based, except for baySeq, which performed worse in
dataset A4, but with very high variability.

Spike-in retrieval sensitivity to sparsity
We examined the effect of OTU sparsity on the ability of
the various methods to retrieve spiked OTUs, expressed
as the p value quantile of a spiked OTU within all p values
from a dataset, for each method, which should ideally be
as low as possible. Additional file 9: Figure S8A–C shows

that almost all methods had better detection power at low
sparsity (many positive samples), but the patterns of satur-
ation were quite different. Additional file 9: Figure S8A
shows that most methods were primarily dependent on
the number of positive samples, with the lines from the
differently sized datasets following each other closely.
Notably, Wilcoxon tests were negatively influenced by
zero-inflation, meaning that the detection power was
decreased with dataset size for the same number of posi-
tive samples. For the smaller datasets, metagenomeSeq
ZIG and baySeq did not show better performance with
more positive samples. The filtered metagenomeSeq ZIG
and feature model had several OTUs with quantiles of 1,
since p values were filtered or not computed and therefore
set to a value of 1. Additional file 9: Figure S8B shows
sensitivity to case proportion, where almost all methods
had better performance across the range with more
balanced group sizes, though the effect was greatest for
metagenomeSeq feature model and the t test. Finally, in
Additional file 9: Figure S8C, we see that most methods
saturate faster with high spike-in magnitude. Notably, the
Wilcoxon test gains little from increased magnitudes.
Overall, the metagenomeSeq feature model seemed to
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saturate at the lowest number of positive samples for
across these figures, although it required at least two posi-
tive samples in each group to compute a p value, most
evident in Additional file 9: Figure S8B.

Beta-diversity optimization
We studied the effects of library size normalization,
count transformation, and distance metric on the ability
to separate biologically relevant groups in beta-diversity
analyses (Fig. 5). All analyses were significant with p <
0.001, but with large differences in R2 values. In the
feces dataset B1, the optimal separation was found in
log transformed counts using 10−5 as pseudocount
with weighted UniFrac, yielding an Adonis R2 value of
0.367. In the HMP dataset B2, the optimal was non-
transformed weighted UniFrac, with an R2 value of
0.166. In the feces dataset B3, TMM normalization
was not possible due to high sparsity, and this method
was omitted from the analysis. The optimal separation
was found in log transformed counts using 10−5 as
pseudocount with weighted UniFrac, yielding an R2

value of 0.145. As a sensitivity analysis to include
TMM, we agglomerated closely related OTUs, thereby

reducing the number of OTUs and the sparsity, which
did not materially change the results, see Additional
file 10: Figure S9.
Across all three datasets, several characteristics were

very similar. The most important factor was the choice
of distance metric, with the weighted UniFrac metric
scoring the highest in terms of separation power in all
three datasets. The transformation applied to (normal-
ized) counts was of less importance. In the feces dataset
B1, log transformations with very small pseudocounts
were best, whereas the untransformed counts were opti-
mal in the HMP oral dataset B2. In both cases, the effects
were large. The effect of library size normalization was by
far the lowest, especially between no normalization, CSS,
DESeq2, and TMM normalization, which essentially did
not matter in terms of separation in any of the three data-
sets. TSS was the normalization type with the highest
impact, but it mostly changed the optimal transformation
choice, rather than improve or deteriorate the separation
power as such. These effects were very apparent when
comparing the optimal combinations of normalization,
transformation, and distance with the poorest for each
dataset, as described above, visualized with principal
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coordinates analysis (PCoA) plots in panels B and C of
each dataset subplot.

Discussion
We conducted extensive benchmarking of the most popu-
lar available methods for differential relative abundance

testing of large microbiome datasets. The main character-
istics of each method in terms of FPR, AUC, balance
sensitivity, and computational burden are summarized in
Additional file 11: Table S3. We found that several
methods, including edgeR, metagenomeSeq ZIG, and bay-
Seq, had high false positive rates when testing randomly
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permuted data, often grossly overestimating the OTU-
wise differences between two groups, which indicates that
assumptions made by the models were not met by the
data. Intriguingly, the methods with the highest FPR also
had the highest AUC values for recovering our spiked
OTUs. Thus, the p values obtained from these methods
are very well suited to distinguish differentially abundant
OTUs from non-differentially abundant OTUs, but are
not meaningful in relation to normal thresholds for sig-
nificance (i.e., 5%), instead representing an arbitrary classi-
fier value. This problem could potentially be solved by
setting a more restrictive significance threshold, although
the value of this threshold would need to be set empiric-
ally for each dataset, for instance through a permutation
similar to the setup of this study. Even then, for some of
the methods, especially metagenomeSeq ZIG and baySeq,
we found that p values varied greatly with the sparsity of a
given OTU, meaning that this empirical cutoff value
should not be the same in all OTUs but, to some extent,
depend on the sparsity of that OTU to accurately reflect
the null distribution. It has to be noted that baySeq was
run with the default negative binomial prior distribution,
but allows the user to define a custom parameterization
for the prior, which could improve the performance of
baySeq in this regard. We have not explicitly addressed
pre-inference filtering, which is a common practice to
reduce the strain of correction for multiple inference.
However, we have examined the effects of metagenome-
Seq ZIG’s recommended filtering step. We found that this
filtering removed the most sparse/rare OTUs, which ame-
liorates the abovementioned dependence of p values on
sparsity. However, it is a very conservative filtering, which
could also be applied to any of the other methods, and
does not fix the underlying problems with the fit of the
statistical model. Indeed, many rare OTUs could be truly
differentially abundant in many types of studies. We have
analyzed crude p values across all methods, and not expli-
citly corrected p values for multiple inference, leaving the
expected null FPR at 0.05. This correction is a necessary
step in most situations and is often done by controlling
the false discovery rate using the Benjamini-Hochberg
approach [28] or the familywise error rate using, e.g., the
Bonferroni correction [29]. However, this step is inde-
pendent of model choice and should be applied regardless
of which method is used to obtain p values, which makes
it irrelevant in our study setup.

The inclusion of a permutation test is not meant as a
recommendation or novel method, but it proves an
interesting comparison as it is simple, extremely robust,
and has good detection power, such that it far outper-
forms the other simple methods—t test and Wilcoxon. It
should be noted that the many ties in sparse data may
disproportionately limit the maximum statistical power
of rank-based tests such as the Wilcoxon test (illustrated
in Additional file 12: Figure S10), which was also evident
in Additional file 9: Figure S8A–C.
Furthermore, under some circumstances, the t test

produced AUC values that were below 0.5, i.e., worse
than random performance. As can be seen from the
contour lines in Fig. 2, this occurred due to the t test
producing too low p values at extreme levels of sparsity,
where only one sample was positive, which overpowered
the p value decrease from the weaker spike-in magni-
tudes as these were selected to represent low, medium,
and high levels of sparsity. Naturally, this phenomenon
can be attributed to unmet distributional assumptions in
the data.
The AUC statistic is usually employed as a measure of

separation, e.g., how well does a certain biomarker
distinguish between healthy and sick. However, it can
also be used as a scale-independent enrichment statistic,
as in the present study. Importantly, at low spike-in
magnitudes, AUC values should not be expected to be
close to 1 but should rather be used to compare power
between different methods.
We repeated the analyses in small- and medium-sized

datasets, since many researchers opt for smaller, balanced
designs when testing specific experimental hypotheses.
These results showed that some methods performed
worse (permutation test, metagenomeSeq ZIG), while
others improved (edgeR) when compared to the results
from the large datasets. This phenomenon may be linked
to the decreased sparsity of these smaller sets, as described
in Additional file 1: Table S1, due to a lower amount of
rare taxa compared to common taxa, in addition to the
differences in statistical power of the methods given low
sample sizes, which may limit real-world applications.
Previously, the optimal library size normalization for

beta-diversity measures have been thoroughly discussed,
and count transformations have been recognized as im-
portant approaches for optimally separating biologically
meaningful groups [7, 13, 30–32]. Our results highlight

(See figure on previous page.)
Fig. 5 The effect of normalization, transformation, and distance metric on beta-diversity separation. a Datasets B1–B3 (vertical panels) with all com-
binations of library size normalizations (horizontal panels) and count transformations (color) applied prior to the calculation of distances and use of
Adonis permanova model. Effect of design variable in question (B1—age; B2—tongue versus palate; B3—age group) measured as model R2 value.
The highest and lowest R2 values (yielding best and worst separation, respectively) are demonstrated in subplots b–g for each dataset as principal
coordinate analysis plots, colored by design variable, with overlaid prediction ellipses (B1—subplot (b, c); B2—subplot (d, e); B3—subplot (f, g)).
CSS cumulative sum scaling, TMM trimmed mean of M values, TSS total sum scaling
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the importance of carefully considering which normali-
zations, count transformations, and distance metrics
should be applied to identify the best separation in the
beta-diversity space. In particular, the relative impact of
these three factors has been elucidated. Generally, we
found that library size normalization is the least important
of the three. Especially the difference between no
normalization, CSS, DESeq2, and TMM normalizations
was negligible in all three datasets. TSS normalization was
the most different from the others, but mostly changed
the optimal transformation choice rather than improve or
deteriorate the separation, which highlights the import-
ance of choosing an appropriate pseudocount relative to
the scale of the data when using log transformations.
Count transformations did not necessarily improve separ-
ation but was very impactful in all cases. The effect of a
log transform is down-weighting of high-abundant taxa
and up-weighting of low-abundant taxa, which is a pivotal
consideration in terms of expected abundance levels of
taxonomic differences between groups in a study. The
most important factor was the choice of distance metric.
In all of our examples, the best separation was found with
the weighted UniFrac metric. However, this study was not
designed to infer which distance metric is best, as this will
depend on the data, but rather the relative importance of
these three factors. It should also be noted that R2 values
for presence/absence distance metrics such as unweighted
UniFrac may be inherently limited by sparsity and rare
taxa. Additionally, the problems with increasing sparsity
in large datasets observed in the taxon-wise DA tests
should not affect beta-diversity tests, since pairwise
sample-wise distances do not depend on taxa absent from
both samples.
It is a strength of the study that we, through a large

amount of computations, have generated results from
combinations of parameters of relevance to the field,
namely statistical method, normalization method, case/
control ratio, sample size, and spike-in magnitude. It is
also a strength of this study that our analyses are
conducted on large and biologically diverse human
microbiome data. Many large-scale microbiome studies
are being conducted and planned presently, with diverse
human ecological niches represented. Thus, it is import-
ant to survey different body sites, since the uniquely
different microbial compositions present may influence
the distributional characteristics of the resulting datasets.
While the results presented here derive from biological
data, our results from the spike-in analyses rely on in
silico spike-ins, rather than actual biological signals or
wet-lab spike-ins. This approach is both a strength and a
limitation, in that it allows very precise manipulation
and complete control throughout the experiment, as
well as the opportunity for nearly limitless repetition to
examine well-resolved distributions of the parameters of

interest. Conversely, it does not represent an actual bio-
logical signal, and manipulating the data may skew certain
distributional qualities present, such as the inherent count
ratios between OTUs. Though not feasible in this study, fu-
ture studies could conduct wet-lab spike-ins to track and
compare detection power between packages. However,
great care must be taken to control the relative concentra-
tions of original content vs. spike-in content, especially in
the case of rare OTUs. Hence, this approach also poses
many potential issues that may lead to skewed data not
accurately reflecting true biological changes.
In previous studies, the best way to account for variation

in library sizes has been discussed with a primary focus on
the procedure of rarefying counts that is random within-
sample resampling of counts without replacement to an
even sequencing depth across all samples [12]. This preva-
lent approach has been criticized due to discarding of valid
data, but others argue that it can be the optimal method in
some situations, as uneven library sizes disproportionately
affects unweighted distance measures and presence/
absence analyses [13]. Since the topic of rarefaction already
has been debated in detail, and is currently regarded
unfavorably, we chose not to include it in this study.

Conclusion
This study represents an independent attempt to bench-
mark various methods for differential relative abundance
analysis of count-based microbiome datasets, using real
biological large-scale datasets. The results presented here
warrant an increased awareness of the potential for spuri-
ous findings in differential relative abundance analyses. 16S
data poses problems to both parametric and nonparametric
statistical models, and new methods should explicitly
account for sparsity, which is increased in large datasets.
Considering the results presented here as a whole, we
recommend researchers choose tools for detecting DA that
exhibit low false positive rates, that have good retrieval
power across effect sizes and case/control proportions, and
that are not biased for these parameters at differing levels
of (high) sparsity: metagenomeSeq feature model and the
basic permutation test both fulfill these criteria for large
and small datasets, and edgeR for small datasets. When
exploring beta diversity of microbiome data, analysts should
carefully consider their choice of count transformation and
distance metric, the latter having the largest impact on
results. We have provided all source code and source data
necessary to reproduce the results presented in this study,
including random seeds for random processes. This will
allow other investigators to verify and expand upon our
results and aid in selecting the optimal analysis methods
given the unique characteristics of their own data. The
comparisons can easily be extended to analysis methods
not covered in this paper, ensuring that computation time,
rather than coding time, should be the main limiting factor.
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Methods
Sample collection and preparation
For dataset A1, A2, A3, and B1, the primary sample
materials were collected from the COpenhagen Pro-
spective Studies on Asthma in Childhood 2010 (COP-
SAC2010) mother-child cohort, following 700 children
and their families from pregnancy into childhood, as
previously described in detail [33]. In this study, we used
fecal samples collected at ages 1 week (n = 95), 1 month
(n = 361), and 1 year (n = 622); vaginal swabs collected at
week 36 of pregnancy (n = 670); and hypopharyngeal
aspirates (n = 144) collected at acute wheezy episodes in
children with persistent wheeze aged 1–3 years, using a
soft suction catheter passed through the nose. DNA was
extracted using MoBio PowerSoil kits on an EpMotion
5075, amplified using a two-step PCR reaction with for-
ward and reverse 16S V4 primers, and sequenced using
250bp paired-end sequencing on an Illumina MiSeq. A
full description of the laboratory workflow and the bio-
informatics pipeline is available in the Additional file 13.
To examine effects in smaller datasets, we subset data-

sets A1, A2, and A3 into 16 (small) and 50 samples
(medium) by random sampling with recorded random
seeds, resulting in datasets A1s–A3s and A1m–A3m.
Additionally, we created a simulated dataset A4 by inde-
pendent resampling of all OTUs across samples, without
replacement, of dataset A3.
Additionally, for dataset B2, we used public data from the

Human Microbiome Project [34], testing separation ability
between the tongue dorsum (n = 316) and hard palate (n =
301) 16S V3-5 samples (http://hmpdacc.org/HMQCP/).
For dataset B3, we used data from Pop et al. [35],
downloaded from Bioconductor (http://bioconductor.org/
packages/release/data/experiment/html/msd16s.html), test-
ing separation between age groups 0–6 months (n = 112),
6–12 months (n = 308), 12–18 months (n = 173), 18–
24 months (n = 146), and 24–60 months (n = 253).
To reduce sparsity of dataset B3, chimeras were

rechecked using USEARCH v7.0.1090 [36] against the
gold database [37], and 3624 chimeras (listed in
Additional file 14: Table S2) were removed from the
OTU table. Since a phylogenetic tree file was not
published along with the OTU table and sample
metadata from this paper, we built one using the
supplied reference sequences as described in the “Bio-
informatics” section of the Additional file 13. Due to
issues with TMM normalization of this dataset (see
the “Results” section), we agglomerated similar OTUs
to reduce the sparsity as a sensitivity analysis. This
was achieved by computing pairwise phylogenetic
distances using the tree and grouping together all
OTUs who were closer to each other than the 0.001
quantile of the distance distribution, see Additional
file 1: Table S1. The OTUs were merged with the

merge_taxa function in the R package phyloseq [38],
using the OTU with the highest sum of counts as
archetype.

Differential relative abundance testing
We selected several widely used methods for differential
relative abundance testing to apply on the datasets, using
built-in library size normalization, default parameters,
and testing as applicable for each method. All tests were
conducted using the statistical software package R [39]
and parallelized using custom bash scripts with GNU
parallel [40]. The source code for all testing procedures
is available in an online repository. The selected
methods and associated transformation steps were as
follows:

� metagenomeSeq ZIG [7]: using raw counts,
cumulative sum scaling (CSS) was applied with
the quantile supplied by cumNormStat. Testing
was done using fitZig.

� metagenomeSeq ZIG, filtered: as above, but
discarding all OTUs below median effective sample
size (supplied by the fitZig model), as recommended
by the authors in the package vignette.

� mgS featureModel: as with metagenomeSeq, but
using fitFeatureModel to test, rather than fitZig.

� baySeq [17]: using raw counts, two models were
defined; no changes and cases vs controls. Library
sizes were supplied to the object. Priors were
estimated with the negative binomial distribution
before estimating likelihoods for cases vs controls.
P values were defined as 1-likelihood.

� DESeq2 [15]: using raw counts, geometric means
were calculated manually and supplied to the
estimateSizeFactors function. Standard testing was
invoked with DESeq.

� edgeR [16]: using raw counts, normalization factors
were calculated with trimmed mean of M values
(TMM), common and tagwise dispersions were
estimated, and testing was done with exactTest.

� Negative binomial generalized linear model (GLM):
using raw counts, a model was fitted to each OTU
with glm.nb from the MASS package [41], using log
(library size) as offset and cases vs controls as the
only dependent variable.

� t test: counts were transformed to relative
abundances, before applying the R built-in t.test
function using default parameters, including the
Welch/Satterthwaite approximation to degrees of
freedom due to possibly unequal variances.

� Log t test: as above, but counts were log
transformed first, with a pseudocount of 1.

� Wilcoxon: counts were transformed to relative
abundances, before applying the R built-in
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Mann-Whitney/Wilcoxon rank sum test with
wilcox.test using default parameters.

� Permutation: a simple custom permutation test was
written and applied to counts normalized to relative
abundances. First, a test statistic was computed as log

mean counts in cases
mean counts in controls

� �2
. Next, 104 permutations of this

test statistic was calculated by random resampling of
all cases and controls without replacement to
empirically estimate the null distribution of each
OTU. The p value associated with an OTU was
calculated as the proportion of permuted test statistics
equal to or greater than the real test statistic.

� ALDEx2 [19]: raw counts were supplied to the aldex
function, using 32 Monte Carlo samples, and both the
Welch t test (we.ep) and Wilcoxon (wi.ep) p values
were used.

If a method did not return a p value for any given
OTU, it was set to 1.

False positive rates
Unannotated OTU tables were tested for FPR by randomly
selecting samples as cases or controls, thus assuring the
null hypothesis, with varying case proportions of 10, 25, or
50%, and subsequently applying all the abovementioned
DA methods. This was repeated 150 times using unique
recorded random seeds, identical between methods. A false
positive was defined as an OTU with a crude p value below
0.05. The FPR was defined as number of false positive
OTUs/total number of OTUs.

Spike-in retrieval performance
Unannotated OTU tables were randomized as described
above. Then, five random OTUs from each relative abun-
dance tertile were modified (“spiked”) with a given magni-
tude, only in cases, to induce a signal in the data. Only
OTUs present in at least one of the assigned case samples
were eligible. Spiking was done either by multiplying
counts by a given magnitude (multiplicative), multiplying
by a range of magnitudes (mixed multiplicative), or adding
the mean proportion of nonzero counts multiplied by a
magnitude to all non-zero counts (additive). After spiking,
samples were rescaled to original sequencing depth. This
was repeated for the magnitudes 0.5, 2, 5, 10, and 20 for
multiplicative and 0.5, 2, 5, and 10 for additive, with the
case/control proportions 10, 25, and 50%. All DA methods
were applied, and p values were obtained as described
above. This was repeated 150 times for all combinations
of case proportion, spike method, magnitude, and method
on each dataset. The area under the receiver operating
characteristic curve (AUC) value was calculated using raw
p values, assuming they were lower in spiked vs. non-
spiked OTUs, with the “pROC” package [42].

Beta-diversity optimization
To assess the effects of normalization, transformation,
and distance metrics on the ability of beta-diversity
analysis to distinguish between groups, we selected data-
sets with less-than-perfect separation by a particular
design variable. Next, datasets were subjected to differ-
ent normalization methods (none (included as baseline),
total sum scaling/relative abundance (TSS), metagenome-
Seq’s cumulative sum scaling (CSS), edgeR’s trimmed
mean of M values (TMM) and DESeq2’s size factors), and
transformations (natural logarithm with pseudocount 1,
0.01, and 0.0001, square root, and cubic root). In case of
pseudocounts below one, all post-transformation values
were corrected by subtracting the log of the pseudocount,
effectively preserving zeroes from the original counts.
Finally, selected distance metrics were applied (Bray-Curtis,
Euclidean, Jensen-Shannon Divergence, UniFrac, weighted
UniFrac) to provide beta-diversity distance matrices from
all these combinations. Jensen-Shannon Divergence,
UniFrac, and weighted UniFrac are independent of
normalization by design and were only computed once
per dataset and transformation. We then fitted a
distance-based permutation multiple analysis of vari-
ance (PERMANOVA) model (Adonis from the R pack-
age vegan [43]) to assess the separation power of the
given design variable in the dataset, measured as an R-
squared value. In datasets B1 and B2, where the design
included repeated measurements, these were supplied
to the model in the strata argument. All data handling
and distance calculations were done using the statis-
tical software package R [39] with the add-on package
phyloseq [38]. All plots were produced with the pack-
age ggplot2 [44].

Additional files

Additional file 1: Table S1. Overview of the datasets used in the study.
Sampling and data characteristics of the seven datasets used in the
study, A1–A4 for the false positive rate and spike-in retrieval tests and
B1–B3 for the beta-diversity optimization tests. (XLSX 5 kb)

Additional file 2: Figure S1. Data characteristics for feces dataset A1.
(A) Dot plot overview of the dataset; black if an OTU was present, blank if
not present in a given sample. Sparsity in the dataset is 90.8%. (B) Library
size distribution showing differences of several orders of magnitude. (C)
Mean-variance relationship showing overdispersion, i.e., higher variance
than mean value of a given OTU. (PDF 504 kb)

Additional file 3: Figure S2. A. False positive rate distributions for
datasets A1–A3. Violin plot of distributions of false positive rate (FPR) in
150 iterations for each case proportion in datasets A1–A3 (vertical
panels), analyzed with all differential relative abundance methods
(horizontal panels). FPR is defined as the fraction of OTUs with p < 0.05.
P values were not corrected for multiple testing. Black dots represent
medians in each distribution. B. False positive rate distributions for
dataset A4. Violin plot of distributions of false positive rate (FPR) in 150
iterations dataset A4, analyzed with all differential relative abundance
methods (horizontal panels). FPR is defined as the fraction of OTUs with
p < 0.05. P values were not corrected for multiple testing. Black dots
represent medians in each distribution. (ZIP 649 kb)
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Additional file 4: Figure S3. A. Area under the curve distributions for
multiplicative spike-ins in dataset A1. Violin plot of distributions of area under
the receiver operating characteristic curve (AUC) for spiked vs non-spiked p
values from differential relative abundance (DA) tests. AUC distributions from
150 iterations for each combination of spike-in magnitude and case
proportion (vertical panels) in dataset A1, analyzed with all differential
relative abundance methods (horizontal panels). Black dots represent
medians in each distribution. B. Area under the curve distributions for
multiplicative spike-ins in dataset A2. Violin plot of distributions of
area under the receiver operating characteristic curve (AUC) for
spiked vs non-spiked p values from differential relative abundance
(DA) tests. AUC distributions from 150 iterations for each combination
of spike-in magnitude and case proportion (vertical panels) in dataset
A2, analyzed with all differential relative abundance methods (horizontal
panels). Black dots represent medians in each distribution. C. Area under the
curve distributions for multiplicative spike-ins in dataset A3. Violin plot of
distributions of area under the receiver operating characteristic curve (AUC)
for spiked vs non-spiked p values from differential relative abundance (DA)
tests. AUC distributions from 150 iterations for each combination of spike-in
magnitude and case proportion (vertical panels) in dataset A3, analyzed
with all differential relative abundance methods (horizontal panels). Black
dots represent medians in each distribution. (ZIP 2685 kb)

Additional file 5: Figure S4. A. Area under the curve distributions for
additive spike-ins in dataset A1. Violin plot of distributions of area under the
receiver operating characteristic curve (AUC) for spiked vs non-spiked p
values from differential relative abundance (DA) tests. AUC
distributions from 150 iterations for each combination of spike-in magnitude
and case proportion (vertical panels) in dataset A1, analyzed with all
differential relative abundance methods (horizontal panels). Black dots
represent medians in each distribution. B. Area under the curve distributions
for additive spike-ins in dataset A2. Violin plot of distributions of area under
the receiver operating characteristic curve (AUC) for spiked vs non-spiked p
values from differential relative abundance (DA) tests. AUC distributions from
150 iterations for each combination of spike-in magnitude and case
proportion (vertical panels) in dataset A2, analyzed with all differential
relative abundance methods (horizontal panels). Black dots represent
medians in each distribution. C. Area under the curve distributions for
additive spike-ins in dataset A3. Violin plot of distributions of area
under the receiver operating characteristic curve (AUC) for spiked vs
non-spiked p values from differential relative abundance (DA) tests.
AUC distributions from 150 iterations for each combination of spike-in
magnitude and case proportion (vertical panels) in dataset A3, analyzed
with all differential relative abundance methods (horizontal panels). Black
dots represent medians in each distribution. (ZIP 2183 kb)

Additional file 6: Figure S5. Area under the curve distributions for
mixed multiplicative spike-ins in datasets A1–A3. Violin plot of distributions of
area under the receiver operating characteristic curve (AUC) for spiked vs non-
spiked p values from differential relative abundance tests. AUC distributions
from 150 iterations for each case proportion in datasets A1–A3 (vertical
panels), analyzed with all differential relative abundance methods (horizontal
panels). Black dots represent medians in each distribution. (PDF 588 kb)

Additional file 7: Figure S6. A. False positive rate distributions for
datasets A1s–A3s and A1m–A3m. Violin plot of distributions of false
positive rate (FPR) in 150 iterations for datasets A1s–A3s and A1m–A3m
(vertical panels), analyzed with all differential relative abundance methods
(horizontal panels). FPR is defined as the fraction of OTUs with p < 0.05.
P values were not corrected for multiple testing. Black dots represent
medians in each distribution. B. Area under the curve distributions for
multiplicative spike-ins in datasets A1s–A3s and A1m–A3m. Violin plot of
distributions of area under the receiver operating characteristic curve
(AUC) for spiked vs non-spiked p values from differential relative abundance
(DA) tests. AUC distributions from 150 iterations for each multiplicative
spike-in magnitude in datasets A1s–A3s and A1m–A3m (vertical panels),
analyzed with all differential relative abundance methods (horizontal panels).
Black dots represent medians in each distribution. C. Area under the curve
distributions for additive spike-ins in datasets A1s–A3s and A1m–A3m. Violin
plot of distributions of area under the receiver operating characteristic curve
(AUC) for spiked vs non-spiked p values from differential relative abundance
(DA) tests. AUC distributions from 150 iterations for each additive spike-in

magnitude in datasets A1s–A3s and A1m–A3m (vertical panels), analyzed
with all differential relative abundance methods (horizontal panels). Black
dots represent medians in each distribution. D. Area under the curve
distributions for mixed multiplicative spike-ins in datasets A1s–A3s
and A1m–A3m. Violin plot of distributions of area under the receiver
operating characteristic curve (AUC) for spiked vs non-spiked p values
from differential relative abundance (DA) tests. AUC distributions from
150 iterations for mixed multiplicative spike-in magnitudes in datasets
A1s–A3s and A1m–A3m (vertical panels), analyzed with all differential
relative abundance methods (horizontal panels). Black dots represent
medians in each distribution. (ZIP 4027 kb)

Additional file 8: Figure S7. A. Area under the curve distributions for
multiplicative spike-ins in dataset A4. Violin plot of distributions of
area under the receiver operating characteristic curve (AUC) for
spiked vs non-spiked p values from differential relative abundance
(DA) tests. AUC distributions from 150 iterations for each combination
of multiplicative spike-in magnitude and case proportion (vertical
panels) in dataset A4, analyzed with all differential relative abundance
methods (horizontal panels). Black dots represent medians in each
distribution. B. Area under the curve distributions for additive spike-ins in
dataset A4. Violin plot of distributions of area under the receiver operating
characteristic curve (AUC) for spiked vs non-spiked p values from differential
relative abundance (DA) tests. AUC distributions from 150 iterations for each
combination of additive spike-in magnitude and case proportion (vertical
panels) in dataset A4, analyzed with all differential relative abundance
methods (horizontal panels). Black dots represent medians in each distribution.
C. Area under the curve distributions for mixed multiplicative spike-ins in
dataset A4. Violin plot of distributions of area under the receiver operating
characteristic curve (AUC) for spiked vs non-spiked p values from differential
relative abundance (DA) tests. AUC distributions from 150 iterations for each
case proportion (vertical panels) in dataset A4, analyzed with all differential
relative abundance methods (horizontal panels). Black dots represent medians
in each distribution. (ZIP 1831 kb)

Additional file 9: Figure S8. A. Spike-in retrieval as a function of number
of positive samples, by dataset size. Aggregated results across 150 iterations
of multiplicative spike-ins of magnitude 5 with 50% cases, in datasets A1,
A1s, and A1m. Each dot represents a spiked OTU. The Y-axis displays its p
value quantile (0 is lowest p value, 1 is highest p value) within that DA run,
and the X axis shows how many samples are positive (nonzero) for that
OTU. Results from the three datasets are overlaid with different colors and
faceted by statistical method. B. Spike-in retrieval as a function of number
of positive samples, by case proportion. Aggregated results across 150
iterations of multiplicative spike-ins of magnitude 5 with 10, 25, or 50%
cases, in dataset A1. Each dot represents a spiked OTU. The Y-axis displays
its p value quantile (0 is lowest p value, 1 is highest p value) within that DA
run, and the X axis shows how many samples are positive (nonzero) for that
OTU.
Results from the three case proportions are overlaid with different colors,
and faceted by statistical method. C. Spike-in retrieval as a function of
number of positive samples, by spike-in magnitude. Aggregated results
across 150 iterations of multiplicative spike-ins of magnitudes 0.5, 2, 5, 10,
and 20 with 50% cases, in dataset A1. Each dot represents a spiked OTU.
The Y-axis displays its p value quantile (0 is lowest p value, 1 is
highest p value) within that DA run, and the X axis shows how
many samples are positive (nonzero) for that OTU. Results from the
different spike-in magnitudes are overlaid with different colors, and
faceted by statistical method. (ZIP 16398 kb)

Additional file 10: Figure S9. The effect of normalization,
transformation, and distance metric on beta-diversity separation in the
modified dataset B3. Dataset B3 modified by grouping of several OTUs,
reducing the dataset to 8770 OTUs. All combinations of library size
normalizations (horizontal panels) and count transformations (color)
applied prior to calculation of distances and use of Adonis permanova
model. Effect of age group measured as model R2 value. The highest and
lowest R2 values (yielding best and worst separation, respectively) are
demonstrated in subplots B & C as principal coordinate analysis plots,
colored by design variable, with overlaid prediction ellipses. CSS
cumulative sum scaling, TMM trimmed mean of M values, TSS total
sum scaling. (PDF 124 kb)
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Additional file 11: Table S3. Summary of benchmark performance for
included tools. (PDF 32 kb)

Additional file 12: Figure S10. The lowest obtainable p values from a
Wilcoxon rank sum test depend on sample size and sparsity. Overview of
the lowest p value theoretically obtainable using optimal conditions for a
given sample size and level of sparsity. Optimal conditions refer to (a)
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