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To appear in the Annals of Probability

LARGE EXCURSIONS AND CONDITIONED LAWS FOR
RECURSIVE SEQUENCES GENERATED BY RANDOM

MATRICES

By Jeffrey F. Collamore and Sebastian Mentemeier∗

University of Copenhagen and TU Dortmund

We study the large exceedance probabilities and large exceedance
paths of the recursive sequence Vn = MnVn−1+Qn, where {(Mn, Qn)}
is an i.i.d. sequence, and M1 is a d × d random matrix and Q1 is a
random vector, both with nonnegative entries. We impose conditions
which guarantee the existence of a unique stationary distribution
for {Vn} and a Cramér-type condition for {Mn}. Under these as-
sumptions, we characterize the distribution of the first passage time
TAu := inf{n : Vn ∈ uA}, where A is a general subset of Rd, exhibiting
that TAu /u

α converges to an exponential law for a certain α > 0. In
the process, we revisit and refine classical estimates for P (V ∈ uA),
where V possesses the stationary law of {Vn}. Namely, for A ⊂ Rd,
we show that P (V ∈ uA) ∼ CAu

−α as u → ∞, providing, most im-
portantly, a new characterization of the constant CA. As a simple
consequence of these estimates, we also obtain an expression for the
extremal index of {|Vn|}. Finally, we describe the large exceedance
paths via two conditioned limit theorems showing, roughly, that {Vn}
follows an exponentially-shifted Markov random walk, which we iden-
tify. We thereby generalize results from the theory of classical random
walk to multivariate recursive sequences.

1. Introduction. The goal of this paper is to describe the extremal
behavior and tail asymptotics, and to develop certain conditioned limit the-
orems, for the multivariate recursive sequence

(1.1) Vn = MnVn−1 +Qn, n = 1, 2, . . . , V0 ∼ γ,

where {(Mn, Qn)} is an i.i.d. sequence, M1 is a d × d random matrix with
nonnegative entries, and is Q1 a nonnegative random vector, and the initial
measure γ in (1.1) is supported on the nonnegative orthant and independent
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2 J. F. COLLAMORE AND S. MENTEMEIER

of {(Mn, Qn)} (typically taken to be point mass at v ∈ [0,∞)d). We allow
for an arbitrary dependence structure between M1 and Q1.

Motivated by branching processes in random environments with immi-
gration, as considered by Solomon [47, 48], the recursive sequence (1.1) was
originally studied in the fundamental paper of Kesten [28]. Assuming that
the top Lyapunov exponent for {Mn} is negative, then the Markov chain
{Vn} has a unique stationary distribution; and if V is a random variable
possessing the stationary law of {Vn}, then it is shown in [28] that under
appropriate moment and irreducibility conditions,

(1.2) P
(〈
w, V

〉
> u

)
∼ Cwu

−α as u→∞,

for any vector w ∈ (0,∞)d and some constant Cw > 0.
Recently, there has been a renewed interest in Kesten’s estimate. For

example, the asymptotics in (1.2) have been shown to characterize the sta-
tionary tail decay in the GARCH(p, q) financial time series model or, anal-
ogously, the ARMA(p, q) process with random coefficients; cf. [19, 38]. The
process (1.1) is also relevant for the study of random walk in random en-
vironment (cf., e.g., [30, 50]), and in a variety of other problems related
to branching processes and Mandelbrot cascades; cf. [11, 24, 33] and refer-
ences therein. Furthermore, in recent years, the scope of Kesten’s method
has broadened to include more general fixed point equations in R; namely

equations of the form V
d
= F (V ), where F : R → R is a random func-

tion independent of V , and F (v) ≈ Mv, for large v, where M is a random

variable in R; cf. [4, 18, 23, 39]. (Here
d
= denotes equality in distribution.)

Moreover, generalizations to Markov-dependent recursive sequences (satis-
fying different assumptions from those we consider here) have been obtained
in [14, 17, 44].

It is natural to ask whether this theory may be extended to reveal more
refined path properties of the process {Vn}. In fact, some characteristics
of {Vn} over large excursions can essentially be inferred from those of the
Markov random walk {(Xn, Sn) : n = 0, 1, . . .}, defined by

(1.3) Xn =
Mn · · ·M1X0

|Mn · · ·M1X0|
, Sn = log |Mn · · ·M1X0|,

where | · | denotes a norm in Rd, and X0 can be taken to be the projec-
tion of V0 onto the unit sphere. While the rough equivalence between {Vn}
and {eSnXn} has been utilized by numerous authors, including Kesten [28],
the correspondence between these processes has typically only been em-
ployed to obtain estimates such as (1.2), and not to characterize more de-
tailed path properties. In contrast, our approach will be to quantify this
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discrepancy using Markov nonlinear renewal theory, as developed in Melfi
[34, 35], yielding—after accounting for the small-time behavior—estimates
which show that {Vn} is closely approximated by {eSnXn} in a manner
which we characterize mathematically. Consequently, it is natural to ex-
pect that, over a large excursion, the random walk structure inherent in
{(Xn, Sn)} may be exploited to yield deeper properties of {Vn} which mimic
known attributes of Markov random walk. Following this approach, we shall
reexamine Kesten’s estimate, then extend the approach to obtain related
asymptotic results relevant in extreme value theory, and, ultimately, derive
certain path estimates conditioned on a large excursion, showing quantita-
tively that the path of {Vn} under a large excursion resembles a Markov
random walk, but in an exponentially-tilted measure (which we will identify
as the “α-shifted measure” below).

We start by revisiting (1.2), establishing under appropriate conditions
that, for any set A ⊂ [0,∞)d with positive distance to the origin,

(1.4) P (V ∈ uA) ∼ C

λ′(α)
Lα(A)u−α as u→∞,

for a universal constant C and a measure Lα. In particular, we obtain a new
representation of the constant C as the αth moment of a certain power series
derived from {(Mn, Qn)} and the time-reversed products of {Mn}; see (2.9)
and (2.10) below. The formula we derive can be viewed as a multidimensional
extension of a central result in [18]. (For related one-dimensional estimates,
see also [12, 21] and the discussion in Section 2.3 below.) From (1.4), we
immediately conclude that V is multivariate regularly varying, as could only
be deduced from (1.2) with the help of the Cramér-Wold device; cf. [6, 8].
We emphasize that this additional step is not needed in our method.

Following a similar approach, we then examine the extremal behavior of
{Vn}. Specifically, letting A ⊂ (0,∞)d have a positive distance to the origin
and setting TAu = inf{n : Vn ∈ uA}, we study the growth rate of TAu as
u→∞. We show that

(1.5) lim
u→∞

P
(
TAu
uα
≤ z

∣∣∣∣V0 = v

)
= e−KAz, z ≥ 0,

where α is given as in (1.2) and KA is a constant which we also characterize,
relating this constant explicitly to C and to the pre-factor appearing in
the asymptotic expression, as u → ∞, for the hitting probability of the
set uA by {eSnXn}. As a special case, setting A = {x : |x| > 1}, we then
conclude that {|Vn|} belongs to the maximum domain of attraction of the
Fréchet distribution. However, it should be emphasized that (1.5) is actually
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a stronger result, yielding the directional dependence of {Vn} and suggesting
a natural extension of classical extreme value theory to this multidimensional
setting. Note that (1.5) characterizes the first passage times of the “forward”
iterates {Vn} (in the sense of Letac [32]), which are qualitatively different
from the “backward” iterates. In one dimension, the backward iterates are
perpetuities, and the first passage times of these sequences have recently
been studied in in [9], yielding very different results from those we obtain
here. In contrast, (1.5) is qualitatively similar to reflected random walk, and
(1.5) can be viewed as an extension, to our setting, of a classical result
due to Iglehart [27] and some of its extensions, e.g. [20]. In particular, (1.5)
sharpens earlier work, largely restricted to one-dimensional recursions, in
[11, 19, 41, 42]; cf. Remark 2.9 below.

The key to establishing (1.4) and (1.5) is a proposition, where we study
the behavior of {Vn} over cycles emanating from, and then returning to,
a given set D ⊂ [0,∞)d. Drawing an analogy with reflected random walk,
these returns to D play the role of Iglehart’s [27] returns of a reflected random
walk to the origin. Letting τ denote the first return time to D, then for any
suitable function g and any m ∈ {1, 2, . . .}, we consider in Proposition 4.1
the limit behavior of

uαE
[
g

(
VTAu
u
, . . . ,

VTAu +m

u

)
1{TAu <τ}

∣∣∣V0 = v

]
as u→∞.

If g = 1, then this quantity represents the rescaled probability that {Vn}
enters the set uA before returning to D. Moreover, for general g, we show that
the post-TAu -process behaves as {eSnXn}, but starting with the stationary
overjump distribution. This idea is then extended in the final section of
the article to include the path behavior prior to time TAu , drawing a close
analogy to the trajectory of {eSnXn} in the α-shifted measure.

Namely, we develop two conditioned limit theorems. In the first, we study
the empirical law of {log |Vn| − log |Vn−1|} conditioned on {TAu < τ}, show-
ing that this empirical law converges weakly in P

(
· |TAu < τ

)
-probability to

the distribution, under stationarity, of S1 in the α-shifted measure. We also
establish a result concerning the joint distribution of {VIu , VIu+1, . . .} con-
ditioned on {TAu < τ}, where Iu grows “slowly” compared wtih u.

We emphasize that we shall develop our limit theorems without assuming
that the process {Vn} is Harris recurrent, and, thus—while we shall often
draw upon the theory of Harris recurrent chains and these methods will play
an important role in our analysis—our appoach will ultimately not require
this standard assumption from Markov chain theory, which is unnatural in
our setting. We circumvent this requirement by introducing a smoothing
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technique, where the sequence {Qkn} is “smoothed” for some k ∈ {1, 2, . . .},
thereby ensuring that the resulting process is Harris recurrent, yet the effect
of this smoothing is negligible in an asymptotic limit. This technique could
also be adapted to other recursive sequences satisfying a stochastic fixed
point equation (as considered in the one-dimensional setting in [18]). To
obtain a general theory without Harris recurrence, we shall, instead, rely
throughout the article on the recently-developed theory of Guivarc’h and Le
Page [25], which exploits spectral gap properties on special function spaces
for matrix products under weak regularity conditions. While the theory in
[25] is developed for invertible matrices, a formulation for matrices with
nonnegative entries, as we consider here, has recently been given in [10].

We now turn to a precise statement of our main results.

2. Statement of results.

2.1. Notation. Let N+ := {1, 2, . . .} denote the positive integers. For
given d ∈ N+, assume that Rd is endowed with the scalar product

〈
·, ·
〉

and
canonical orthonormal basis {ei}. Set Rd+ =

{
x ∈ Rd :

〈
x, ei

〉
≥ 0, 1 ≤ i ≤ d

}
.

Let | · | denote a norm in Rd+, and assume throughout the article that
| · | is monotone, i.e., if x, y ∈ Rd+ satisfy y − x ∈ Rd+, then |x| ≤ |y|. Let

Sd−1 := {x ∈ Rd : |x| = 1} denote the unit sphere and Sd−1
+ := Rd+ ∩ Sd−1;

and for any x ∈ Rd \ {0}, let x̃ denote its projection onto the unit sphere,
namely

x̃ ≡ (x)∼ := |x|−1x.

Set Br(y) = {x ∈ Rd : |x− y| < r}, r > 0; and B+
r (y) = Br(y) ∩ Rd+.

For any subspace S of Rd+, let B(S ) denote the collection of Borel sets
on S ; and let E◦, Ē, Ec, and ∂E denote the interior, closure, complement,
and boundary of E ∈ B(S ), respectively. For any measure ν on S ⊂
Rd+, denote the support of ν by supp ν. Also, denote the set of bounded
continuous real-valued functions on a space E by Cb(E), equipped with the
norm |f |∞ := sup{|f(x)| : x ∈ E}.

Let M denote the collection of d×d matrices with nonnegative coefficients,
and let ‖m‖ denote operator norm, i.e., ‖m‖ := supx∈Sd−1 |mx|, m ∈M.

Now suppose that {Vn} and {(Mn, Qn) : n ∈ N+} are defined as in the
previous section; in particular, each (Mn, Qn) is an i.i.d. copy of (M,Q),
where the random matrix M takes values in M a.s., Q takes values in Rd+
a.s., and we allow the pair (M,Q) to have an arbitrary dependence struc-
ture. Denote the probability laws of (M,Q), M , and Q by µ, µM , and µQ,
respectively. Assume that {(Mn, Qn) : n = 1, . . . , n} is adapted to a given
filtration {Fn : n = 1, 2, . . .}.
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2.2. Basic assumptions. We first introduce certain restrictions on {Mn}.

Allowable and positively regular matrices. We say that a matrix m ∈
M is allowable if it has no zero row or column. Moreover, if the coefficients
of a given matrix m ∈ M are strictly positive, then we write m � 0 and
say that m is positively regular. Also write M◦ = {m ∈M : m � 0} . As a
standing assumption, we shall always assume that there exists an n ∈ N+

such that
N := inf {n ∈ N+ : Mn · · ·M1 � 0} <∞ a.s.;

thus, ultimately, the product Mn · · ·M1 is positively regular with probability
one. This assumption will be subsumed in the stronger Hypothesis (H1),
given below (cf. [26, Lemma 3.1] or [10, Lemma 6.3]).

Non-arithmetic distributions for random matrices. Next, we shall
need a generalization of the notion of a non-arithmetic distribution to the
setting of random matrices. To this end, let ΓM denote the smallest closed
subsemigroup of M which contains suppµM .

Definition 2.1. We say that µM is non-arithmetic if the additive group
generated by {log ‖m‖ : m ∈ ΓM ∩M◦} is dense in R.

It is shown in [13, Lemma 2.7] that this condition implies that of Shurenkov
[45], which is closer to the condition imposed on one-dimensional Markov
random walks, but not easily verified in the setting of random matrices. It is
worth observing that, alternatively, we could replace log ‖m‖ with the Frobe-
nius eigenvalue of m in Definition 2.1; thus, our definition is in agreement
with the one given by Kesten in [28].

We are now prepared to introduce our basic assumptions on the distribu-
tion function µM of M .

Hypothesis (H1). µM is non-arithmetic and µM{m : m is allowable} = 1.

Next, we turn to certain moment conditions that will be imposed on the
pair (M,Q). Let

D =

{
θ ≥ 0 :

∫
M
‖m‖θ µM (dm) <∞

}
=
{
θ ≥ 0 : E

[
‖M‖θ

]
<∞

}
;

and let mT denote the transpose of m. Then for any θ ∈ D and any f ∈
Cb(Sd−1

+ ), set:

Pθf(x) = E
[
|Mx|θ f

(
M̃x

)]
; P ∗θ f(x) = E

[∣∣MTx
∣∣θ f(M̃Tx

)]
;
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λ(θ) = lim
n→∞

(
E
[
‖Mn · · ·M1‖θ

])1/n
; Λ(θ) = log λ(θ).

In the following lemma, we describe the left-invariant measures and right-
invariant functions associated with the operators Pθ and P ∗θ .

Lemma 2.2. Assume θ ∈ D and µM{m : m is allowable} = 1. Then
λ(θ) is the spectral radius of Pθ, and there is a unique probability mea-
sure lθ on Sd−1

+ and a unique, strictly positive function rθ ∈ Cb
(
Sd−1

+

)
with∫

rθ(x)lθ(dx) = 1 such that

(2.1) lθPθ = λ(θ)lθ and Pθrθ = λ(θ)rθ.

Furthermore, the function rθ is max{θ, 1}-Hölder continuous; and thus, rθ
is bounded from above and below by finite positive constants.

Similarly, the spectral radius of P ∗θ equals λ(θ), and there exist a pair
(l∗θ , r

∗
θ) which has the equivalent properties, relative to P ∗θ , as those possessed

by (lθ, rθ) relative to Pθ. Moreover,

(2.2) rθ(x) = c

∫
Sd−1
+

〈x, y〉θl∗θ(dy), ∀x ∈ Sd−1
+ ,

for c =
(∫ 〈

x, y
〉α
l∗θ(dx)lθ(dy)

)−1
; and likewise, (2.2) also holds if (rθ, l

∗
θ) is

replaced with (r∗θ , lθ).

In the above lemma, we have written lθPθ for the application of the adjoint
operator P ′θ to the measure lθ, i.e. lθPθ is the unique measure satisfying∫

Sd−1
+

f(x)
(
lθPθ)(dx) =

∫
Sd−1
+

(
Pθf(x)) lθ(dx), for all f ∈ Cb(Sd−1

+ ).

The proof of Lemma 2.1 can be found in [10], Proposition 3.1; see also [25,
Theorem 2.16] for an analogous result in the setting of invertible matrices.

For any allowable matrix m, now define i(m) := infx∈Sd−1
+
|mx| .

Hypothesis (H2). There exists an α > 0 such that λ(α) = 1, and the
following moment conditions hold:

E
[
‖M‖α max{|log ‖M‖| , |log i(M)|}

]
<∞; and E

[
|Q|α

]
<∞.

The shifted distribution. We shall utilize the constant α in (H2) to
employ a change of measure, as developed in the multidimensional frame-
work by Kesten [28]. Namely for m ∈M, θ ∈ D and any n ∈ N+, define

pθn(x,m) =
|mx|θ

(λ(θ))n
rθ
(
m̃x
)

rθ(x)
, x ∈ Sd−1

+ .
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Note by an application of Lemma 2.2 that∫
pθn(x,mn · · ·m1) µ⊗n ({dmi, dqi}ni=1) = 1, x ∈ Sd−1

+ .

Moreover, the system of probability measures µθn,x = pθn(x, ·)µ⊗n is a pro-
jective system; hence by the Kolmogorov extension theorem, there exists
a unique probability measure Pθx on (M × Rd+)N+ having marginals µθn,x.
When the random variables {(Mn, Qn) : n = 1, 2, . . .} are generated by the
measure Pθx rather than the true underlying probability measure, we write
Eθx[·]. We shall refer to this measure as the “θ-shifted measure.”

It is worth observing that, although {(Mn, Qn) : n = 1, 2, . . .} is assumed
to be i.i.d. in the unshifted measure, this sequence will be Markov-dependent
in the θ-shifted measure, for any θ > 0. However,

(2.3) ηθ(E) :=

∫
E
rθ(x)lθ(dx) yields that P̂θ :=

∫
Sd−1
+

Pθx ηθ(dx)

is shift-invariant; i.e., the sequence {(Mn, Qn)} is stationary under P̂θ; cf.
Section 3.1 of [10]. This is an important observation, as it will allow us to
apply the results of Hennion [26] on products of random matrices; cf. Section
4 below. Furthermore, by Lemma 6.2 of [10], Pθx � P̂θ for all x ∈ Sd−1

+ ; and
we shall use this result frequently to infer convergence Pαx -a.s., for arbitrary
x ∈ Sd−1

+ , by proving P̂θ-a.s. convergence.
In the θ-shifted measure, the limit behavior is described through the fol-

lowing generalization of the Furstenberg-Kesten theorem, which may be de-
duced from [26, Theorem 2] together with [10, Theorem 6.1].

Lemma 2.3. Assume that (H1) is satisfied and let θ ∈ D, and suppose
that (H2) holds with θ in place of α. Then for x, y ∈ Sd−1

+ , we have Pθ-a.s.
that:

lim
n→∞

1

n
log |Mn · · ·M1x| = lim

n→∞

1

n
log ‖Mn · · ·M1‖ = Λ′(θ) = Êθ[S1];

lim
n→∞

sup

{ ∣∣∣∣ 1n1{N≤n} log〈y,Mn . . .M1x〉 − Λ′(θ)

∣∣∣∣ : x, y ∈ Sd−1
+

}
= 0.

Here, Λ′(θ) is interpreted as a one-sided derivative if θ ∈ ∂D. Note Λ′(0) <
0, since Λ is convex and Λ(0) = Λ(α) = 1; thus, the top Lyapunov exponent
associated with {Mn} is negative. Together with the moment assumptions
in (H2), this guarantees the existence of a unique stationary distribution for
{Vn} (cf. [28]), which is given by the law of

(2.4) V := Q1 +

∞∑
k=2

M1 · · ·Mk−1Qk.
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The Markov random walk. The process {Mn} induces a Markov ran-
dom walk on Sd−1

+ × R, obtained by setting

(2.5) Xn = (Mn · · ·M1X0)∼ , Sn = log |Mn · · ·M1X0|, n = 1, 2, . . . ,

for some initial state X0 ∈ Sd−1
+ and S0 = 0. In contrast to (1.3), in some

contexts we will need to take X0 to be different from V0, but still independent
of {(Mn, Qn)}. This process will play an important role in the sequel. Note
that in the θ-shifted measure, {Xn} has a unique stationary distribution
given by the measure ηθ in (2.3); see [10, Theorem 4.11].

Probability measures. We introduce the following conventions to de-
scribe conditional probabilities which depend on the initial values of X0 and
V0. Write:

Pv(·) = P(·|V0 = v), Pθx(·) = P(·|X0 = x), Pθx,v(·) = Pθx(·|V0 = v),

and use the same notation for the corresponding expectations. When con-
ditioning on an initial distribution V0 ∼ γ, write Pγ(·) =

∫
Pv(·) γ(dv),

Pθγ(·) =
∫
Pθṽ,v(·)γ(dv), and finally set Pθδv(·) = Pθṽ,v(·). We note that while

working in the θ-shifted measure, we will generally need to specify both X0

and V0 in these equations, and we will typically take X0 = Ṽ0. The reason for
the asymmetry comes from the observation that, due to the Markov depen-
dence in the θ-shifted measure, the initial state does affect the law of {Mn}
and hence that of {Vn} under Pθ. Finally, we note that we will sometimes
suppress the dependence on (x, v) when these values are clear and simply
write Pα-a.s.

In this terminology, the change of measure can be written as follows: for
all n ∈ N+, x ∈ Sd−1

+ , and any bounded measurable function f : Sd−1
+ ×(M×

Rd+)n,

rα(x)Eαx,v
[ e−αSn
rα(Xn)

f(X0, V0,M1, Q1, . . . ,Mn, Qn)
]

(2.6)

= E
[
f(x, v,M1, Q1, · · · ,Mn, Qn)

]
.

2.3. Tail estimates for {Vn}. We now turn to our first main result, where
we revisit and extend Kesten’s well known theorem in [28].

Let π denote the stationary distribution of {Vn}, which is given by the
law of the random variable V defined in (2.4). Now fix a set D ⊂ Rd+ where
π(D) > 0, and let πD denote the stationary distribution of {Vn} restricted
to D; that is,

(2.7) πD(E) =
π(E ∩ D)

π(D)
, E ∈ B(Rd+).
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Also let τ denote the first return time of {Vn} to D; namely,

τ = inf{n ∈ N+ : Vn ∈ D}.

Next, let ~1 = (1, . . . , 1)T , and define

(2.8) Yi = lim
n→∞

(
M>i · · ·M>n ~1

)∼
, n = 1, 2, . . . .

Note that if θ ∈ D, then the limit on the right-hand side exists Pθ-a.s.,
since this product constitutes a backward sequence of an iterated function
system and the maps {Mn} act as contractions on Sd−1

+ ; cf. [26, Section 3].
Moreover, the law of Yi is given by

η∗θ(E) :=

∫
E
r∗θ(x)l∗θ(dx), E ∈ B(Sd−1

+ ),

where r∗θ and l∗θ are given as in Lemma 2.2 (cf. [25], Theorem 3.2; [10],
Proposition 3.1).

The condition (K). Recall that under (H1), the measure µM is non-
arithmetic and hence Mn · · ·M1 is positively regular for sufficiently large n
w.p.1, implying that for some positive integer k and some s > 0,

(K) Mk · · ·M2Q1 � s~1 with positive probability.

Now if k > 1, then it is natural to introduce the k-step process; namely, fix
k ∈ N+, and for all n ∈ N+, set

M̂n := Mkn · · ·Mk(n−1)+1 and Q̂n =
kn∑

i=k(n−1)+1

Mkn · · ·Mi+1Qi.

Note as a consequence of these definitions that

Vkn = M̂nVk(n−1) + Q̂n, n = 1, 2, . . . ,

where Q̂n− s~1 � 0 with positive probability. It is worth observing here that
the stationary distributions of {Vkn} and {Vn} are, of course, identical.

Finally, let C0

(
Rd+ \ {0}

)
denote the set of bounded continuous functions

on Rd+ \ {0} which are supported on Rd+ \Br(0), for some r > 0.

Theorem 2.4. Assume that Hypotheses (H1) and (H2) are satisfied, and
suppose that D = B+

r (0), where r has been chosen sufficiently large such that
π(D) > 0. If f ∈ C0

(
Rd+ \ {0}

)
and k = 1 in (K), then

(2.9) lim
u→∞

uαE
[
f

(
V

u

)]
=

C

λ′(α)

∫
Sd−1
+ ×R

e−αsf(esx)lα(dx)ds,
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where

(2.10) C=

∫
D
rα(ṽ)Eαδv

[(
|v|+

∞∑
i=1

〈
Yi, Q̃i

〉〈
Yi, Xi

〉 |Qi|
|Mi · · ·M1ṽ|

)α
1{τ=∞}

]
π(dv).

If k > 1 in (K), then the theorem still holds, but the constant C is then

computed with respect to the k-step chain {Vkn} generated by {(M̂i, Q̂i)}
rather than with respect to the 1-step chain {Vn}.

If {Vn} is a Harris recurrent chain, then we may always take k = 1; see
Proposition 5.2 below. Moreover, if Q � 0 with positive probability, then we
may again take k = 1.

More generally, when dealing with the k-step chain, we observe that the
stopping time τ in (2.10) must now be computed with respect to that chain
(rather than the 1-step chain), and the drift factor λ′(α) in (2.9) must be
replaced with the drift of the k-step chain, namely kλ′(α); cf. Remark 5.3
below.

Remark 2.5. For another representation of (2.9), let Lα be the measure
on Rd+ \ {0} defined by the equation∫

Sd−1
+ ×R

e−αsf(esx)lα(dx)ds =

∫
Rd+\{0}

f(x)Lα(dx).

Then (2.9) gives the vague convergence (of measures on Rd+ \ {0}) toward
C/λ′(α). In particular, for any measurable set A ⊂ Rd+ which is bounded
away from zero and satisfies Lα(∂A) = 0, it follows from the Portmanteau
theorem that

(2.11) lim
u→∞

uαP (V ∈ uA) =
C

λ′(α)
Lα(A).

Furthermore, note that for any t > 0 and any measurable E ⊂ Sd−1
+ with

lα(∂E) = 0, the sets Et := {x ∈ Rd+ : |x| > t, x/|x| ∈ E} are Lα-continuous.

Hence, for all E ⊂ Sd−1
+ with lα(∂E) = 0,

(2.12) lim
u→∞

uαP
(
|V | > tu,

V

|V |
∈ E

)
=

C

αλ′(α)
t−αlα(E).

Thus we infer the weak convergence

(2.13) lim
u→∞

P
(
V

|V |
∈ ·
∣∣∣ |V | > u

)
⇒ lα(·).
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Remark 2.6. Let C̃(v) denote the expectation in (2.10); that is, C =∫
D rα(ṽ)C̃(v)π(dv). Then we have two further representations for C̃(v). First,

by Lemma 3.6 below, it will follow that

(2.14) C̃(v) = lim
n→∞

Eαδv

[(
|Vn|

|Mn · · ·M1Ṽ0|

)α
1{τ≥n}

]
.

Moreover, it will follow by combining Corollary 4.2 (noting C(v) = rα(ṽ)C̃(v))
with Lemma 6.1 that

(2.15) C̃(v) = lim
u→∞

P
(
|Vn| > u, 0 ≤ n < τ |V0 = v

)
P
(
Sn > log u, for some n ∈ N |X0 = ṽ

) .
The latter expression shows that C̃(v) describes the discrepancy between
the probability of a large exceedance of {Vn} occuring over a cycle, and the
probability of ruin for the corresponding Markov random walk.

We conclude this section with a brief comparison of our result to some
recent one-dimensional representations. As noted in the introduction, (2.10)
can be viewed as a generalization of a result of Collamore and Vidyashankar
[18] to the multidimensional setting. Alternatively, building upon Goldie
[23], it is shown in Buraczewski et al. [12] that in the one-dimensional setting
(and its generalization to the class of similarities described there), we have
C = (αλ′(α))−1 limn→∞ n

−1E [|Vn|α]. Finally, a further one-dimensional rep-
resentation was derived in Enriquez et al. [21], expressed in terms of expec-
tations of perpetuity sequences under a delicate conditioning on the process.
The proofs of these one-dimensional results are all quite different, and there-
fore it is not transparent how they can be easily unified.

2.4. Extremal estimates for maxima and first passage times. Our next
objective is to study the probability of a large exceedance occuring over a
single cycle emanating from, and then returning to, a given set D ⊂ Rd+,
and, in this way, to characterize the distribution of the first passage time

(2.16) Tu := inf {n ∈ N+ : |Vn| > u} ,

or more generally,

(2.17) TAu := inf {n ∈ N+ : Vn ∈ uA} , where A ⊂ {x ∈ Rd+ : |x| > 1},

and we assume that the set A satisfies the following regularity property.

Definition 2.7. We say that a set A ∈ B(Rd) is a semi-cone if A ⊂
Rd+ \B1(0) and x ∈ ∂A⇒ {tx : t > 1} ⊂ A.
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Now suppose that A is a semi-cone, let {Sn} be defined as in (2.5), and
set

dA(x) = inf {t > 1 : tx ∈ A} , x ∈ Sd−1
+ ;(2.18)

SAn = Sn − log dA(Xn), n = 0, 1, 2, . . . ;

rAα (x) = rα(x)
(
dA(x)

)α
, x ∈ Sd−1

+ ; PA =
{
x ∈ Sd−1

+ : dA(x) <∞
}
.

As a consequence of Kesten’s renewal theorem, it will be shown in Lemma
6.1 below that if PA = Sd−1

+ , then

(2.19) P
(
Mn · · ·M1Ṽ0 ∈ uA, for some n ∈ N+

∣∣∣V0 = v
)
∼ rα(ṽ)DAu

−α

as u→∞, where

(2.20) DA :=

∫
Sd−1
+ ×R+

e−αs

rAα (x)
%A(dx, ds)

and the measure %A will be specified below in Section 3.3. Essentially, (2.19)
is the ruin estimate for the Markov random walk {(Xn, S

A
n ) : n = 0, 1, . . .}

under the initial state X0 = ṽ, and %A corresponds to the stationary excess
distribution for this process. Indeed, if A is a semi-cone and dA is continuous,
then it follows immediately from the definitions that eSnXn ∈ uA⇔ eSn >
u · dA(Xn) and hence, on the left-hand side of (2.19),

Mn · · ·M1Ṽ0 ∈ uA ⇔ eSnXn ∈ uA ⇔ SAn > log u.

Now if PA 6= Sd−1
+ , then (2.19) will still hold and this defines the constant

DA, although the identification of DA is less explicit in that case (i.e., there
is no equivalent of (2.20)). However, DA can nonetheless be interpreted as
the ruin constant for the Markov random walk; see Section 6 below.

Finally, let C be defined as in (2.10), and set

(2.21) C(v) = rα(ṽ)Eαδv

[(
|v|+

∞∑
i=1

〈
Yi, Q̃i

〉〈
Yi, Xi

〉 |Qi|
|Mi · · ·M1ṽ|

)α
1{τ=∞}

]
.

Theorem 2.8. Suppose that Hypotheses (H1) and (H2) are satisfied and
D = B+

r (0), where r has been chosen sufficiently large such that π(D) > 0.
Assume that A is a semi-cone, and dA is continuous. Then for any v ∈
Rd+ \ {0},

(2.22) lim
u→∞

uαP
(
TAu < τ

∣∣ V0 = v
)

= DAC(v).
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Furthermore, assuming that k = 1 in (K), we have that the normalized
sequence {TAu /uα} converges in distribution; more precisely,

(2.23) lim
u→∞

P
(
TAu
uα
≤ z

∣∣∣V0 = v

)
= 1− e−KA z, z ≥ 0,

for all v ∈ Rd+ \ {0}, where KA = CDA.

As in Theorem 2.4, the assumption k = 1 is not necessary if {Vn} is Harris
recurrent, or if Q � 0 with positive probability.

Remark 2.9. For one-dimensional recursions, related estimates have
previously been given for the distribution of max

{
Vi : 1 ≤ i ≤ n1/αu

}
as n → ∞; cf. [19, Theorem 2.1] or [41]. However, in the multidimensional
setting, the only result we are aware of is that of Perfekt [42], who studies
the componentwise maxima, namely(

max
1≤i≤n

V1, . . . , max
1≤i≤n

Vd

)
as n→∞.

Note that the componentwise maxima need not be achieved simultaneously;
hence Perfekt’s results do not coincide with ours. Moreover, in all of these
references, additional conditions are assumed which we do not impose here;
in particular, in their formulations it must be assumed that V0 ∼ π.

Remark 2.10. As a particular application of the previous theorem, we
now determine the extremal index of {|Vn|}. Integrating with respect to the
measure π in (2.23), we obtain that

lim
u→∞

P
(
TAu
uα
≤ z

∣∣∣V0 ∼ π
)

= 1− e−KA z, z ≥ 0.

Set A = {x : |x| > 1}. Then it easily follows with u = n1/αw and z = w−α

that

(2.24) lim
n→∞

P
(

max
1≤i≤n

|Vi| ≤ n1/αw
∣∣∣V0 ∼ π

)
= e−KAw

−α
.

Moreover, for this choice of A, it follows by Theorem 2.4 that

(2.25) lim
n→∞

nP
(
|V | > n1/αw

)
=

C

αλ′(α)
w−α.

Then reasoning as in [31, Section 2.2], we conclude from (2.24) and (2.25)
that the extremal index of {|Vn|} is given by

(2.26) Θ = αλ′(α)DA.

For a related result in the one-dimensional setting, see [18, Proposition 2.2].
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2.5. The path and empirical law under a large exceedance. We conclude
by examining the path behavior of {Vn} prior to a large exceedance. Mo-
tivated by classical results for random walk (e.g. Section XII.6.(d) of [22]
or more recent work in [5, 7]), it is natural to expect that, conditioned on
{TAu < τ} (where τ is the return time to any π-positive set D), {Vn} should
behave as its “associate,” which, in our setting, translates to the process
{eSnXn} under the α-shifted measure.

However, in our problem, we cannot anticipate that the behavior of {Vn}
will mimic that of {eSnXn} over the entire trajectory. For this reason, we
introduce an “initial” level εu, where εu = o(u) and εu ↑ ∞ as u→∞, and
study the trajectory of {Vn} subsequent to its exceedance over the level εu.

Theorem 2.11. Suppose that Hypotheses (H1) and (H2) are satisfied,
and assume that A is a semi-cone and the function dA is bounded and contin-
uous on Sd−1

+ . Let m ∈ N+, and let g : (Rd+)m+1 → R be θ-Hölder continuous,
for some θ ≤ min{1, α}, and also bounded. Set

Iu = Tεu , where εu = o(u) and εu ↗∞ as u→∞.

Then for all v ∈ Rd+,

lim
u→∞

Ev
[
g

(
VIu
|VIu |

, . . . ,
VIu+m

|VIu |

) ∣∣∣∣TAu < τ

]
(2.27)

=

∫
Sd−1
+ ×R+

Eαx
[
g
(
X0, e

S1X1, . . . , e
SmXm)

]
%(dx, ds).

The class of θ-Hölder continuous functions is a separating class, and thus
for all m ∈ N+, we then deduce the weak convergence

P
((

VIu
|VIu |

, . . . ,
VIu+m

|VIu |

)
∈ ·
∣∣∣∣TAu < τ

)
⇒

∫
Sd−1
+ ×R+

Pαx
((
X0, e

S1X1, . . . , e
SmXm) ∈ ·

)
%(dx, ds),

for any given V0.
Finally, we conclude by studying the empirical law of {log |Vn|−log |Vn−1|}.

Theorem 2.12. Suppose that Hypotheses (H1) and (H2) are satisfied,
and assume that A is a semi-cone and dA is bounded and continuous on
Sd−1

+ . Then for any v ∈ Rd+ and any bounded Lipschitz continuous function
g : R→ R,

(2.28) lim
u→∞

Ev

∣∣∣∣ 1

TAu

TAu∑
n=1

g

(
log

(
|Vn|
|Vn−1|

))
− Êα [g(S1)]

∣∣∣∣
∣∣∣∣∣∣TAu < τ

 = 0.
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Thus the empirical law of {(log |Vn| − log |Vn−1|)} converges weakly, in
Pv(·|TAu < τ)-probability, to P̂α

(
S1 ∈ ·

)
.

By comparing with [10], Theorem 6.1, we see that (2.28) agrees precisely
with the empirical law, without conditioning, of the Markov random walk
{(Xn, Sn)} under the α-shifted measure.

3. Background. 3.1. Preliminary results from Markov chain theory.
We start by deriving an analog of the drift condition from Markov chain
theory.

Lemma 3.1. Assume that (H1) and (H2) are satisfied. Then for any
0 < θ < min{1, α}, there exist positive constants t < 1 and L <∞ such that
for D† := {v ∈ Rd+ : |v| ≤ L},

(3.1) E
[
|Vn|θrθ(Ṽn)

∣∣∣ Fn−1

]
≤ t|Vn−1|θrθ(Ṽn−1), for all Vn−1 ∈ Rd+ \D†.

In particular, for τ † := inf{n ∈ N+ : Vn ∈ D†}, there exists B < ∞ such
that

(3.2) E
[
|Vn|θ1{τ†>n}

∣∣∣V0 = v
]
≤ Btn|v|θ, for all v ∈ Rd+ \ D†.

Proof. Let θ ∈ (0, 1). By applying Eq. (2.2) of Lemma 2.2, then using
subadditivity and a further application of (2.2), we obtain that for some
c ∈ (0,∞),

E
[
|Vn|θrθ(Ṽn)

∣∣∣Fn−1

]
= cE

[∫
Sd−1
+

〈
y, Vn

〉θ
l∗θ(dy)

∣∣∣∣∣Fn−1

]
(3.3)

≤ cE

[∫
Sd−1
+

(〈
y,MnVn−1

〉θ
+
〈
y,Qn

〉θ)
l∗θ(dy)

∣∣∣∣Vn−1

]
≤ E

[
|MnVn−1|θrθ

(
(MnVn−1)∼

)∣∣∣Vn−1

]
+ E

[
|Qn|θ

]
.

The first term on the right-hand side equals

|Vn−1|θPθrθ(Ṽn−1) = |Vn−1|θλ(θ)rθ(Ṽn−1),

and so the required estimate follows under Hypothesis (H2), choosing θ such
that 0 < θ < min{α, 1}.

Using that rθ is bounded from above and below by finite positive constants
(by Lemma 2.2), (3.2) is then obtained by iterating (3.1).
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Lemma 3.2. Suppose (H1) and (H2) are satisfied, and let D = B+
r (0)

for some r > 0 such that π(D) > 0. Let D† = {v ∈ Rd+ : |v| ≤ L}, where L
is chosen such that (3.1) is satisfied and such that D† ⊃ D. Then there exist
constants t ∈ (0, 1) and B <∞ such that for τ = inf{n ∈ N+ : Vn ∈ D},

(3.4) sup
v∈D†

P (τ > n | V0 = v) ≤ Btn, for all n ∈ N+.

Proof. From (3.1), it follows that, starting from an initial state V0 /∈ D†,
{Vn} returns to D† at a geometric rate; for a proof, see [37, Theorem 15.2.5].
Thus it suffices to show that

(3.5) sup
v∈D†

P (τ > n |V0 = v) ≤ (1− s)

for some s > 0 and n ∈ N+. To establish (3.5), we use Proposition 4.3.1
of [11], which precisely describes suppπ. Namely, there exists a set S with
S = suppπ such that the following holds: For each v0 ∈ S , there exists
l ∈ N+ and m1, . . . ,ml ∈ suppµM , q1, . . . , ql ∈ suppµQ such that

h : v 7→ ml · · ·m1v +
l∑

i=1

ml · · ·mi+1qi

is a contraction on Rd+ with v0 as the unique fixed point. Hence, using that
D† is compact, we obtain that for any δ > 0, there exists j ∈ N+ such that
|hj(v) − v0| < δ/2 for all v ∈ D†. Then, from continuity and the definition
of the support, we conclude that

(3.6) inf
v∈D†

P (|Vlj − v0| < δ |V0 = v) > 0.

Since D is open in Rd+ and π(D) > 0, and hence D ∩ supp π 6= ∅, it follows
that D ∩S 6= ∅ as well. Now let v0 ∈ D ∩S and choose δ > 0 such that
Bδ(v0) ∈ D. Then (3.5) follows from (3.6) with k = lj.

For an arbitrary π-positive set D, define the return times κ0 = 0 and

κi = inf {n > κi−1 : Vn ∈ D} , i = 1, 2, . . . ,

and let τi := κi − κi−1. Set ND(n) =
∑n

k=1 1D(Vk). Using that {Vn} is
stationary and ergodic when V0 ∼ π, we infer the following strong law of
large numbers for {κi}, which is standard.
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Lemma 3.3. Suppose that (H1) and (H2) are satisfied and π(D) > 0.
Then for π-a.e. v ∈ Rd+,

(3.7) lim
i→∞

κi
i

= lim
n→∞

(
ND(n)

n

)−1

=
1

π(D)
= EπD [τ1] Pv-a.s.,

and πD(·) := π(·)/π(D) is invariant for the process {Vκi : i = 0, 1, . . .}.

Now let P denote the transition kernel of {Vn}. We conclude this sec-
tion with two results which hold under the following additional Hypothesis
(H3) (which will ultimately be dropped in our main theorems by utilizing a
smoothing argument).

Hypothesis (H3). Assume the following conditions.
(i) There exists a π-positive set F such that, for each v ∈ F , P (v, ·) has
an absolutely continuous component with respect to some σ-finite non-null
measure Φ.
(ii) (supp π)◦ 6= ∅.

Note that under (H3), it follows from [3], Theorem 2.1 (b) and Theorem
2.2 (b) that {Vn} is an aperiodic, positive Harris chain on Rd+. Once this is
observed, the following result is also standard; cf. [37, Theorem 15.0.1].

Lemma 3.4. Assume that (H1), (H2), and (H3) are satisfied. Then {Vn}
is an aperiodic, positive Harris chain on Rd+. Moreover, {Vn} is ψ-irreducible,
regular, and geometrically recurrent.

Lemma 3.5. Suppose that (H1), (H2), and (H3) are satisfied, and let
D ⊂ Rd+ be chosen such that π(D) > 0. Let τ := inf{n ∈ N+ : Vn ∈ D}
denote the first return time of D. Then for any π-integrable function h,

(3.8)

∫
h(v)π(dv) = E

[
h(V )] =

1

EπD [τ ]
EπD

[
τ−1∑
i=0

h(Vi)

]
.

Proof. See [40], Proposition 5.9 and the discussion just prior to [40],
Corollary 5.3. For a closely related result, see the proof of [15, Thm. 2.1].

3.2. Quantifying the discrepancy between {Vn} and {eSnXn}. Set

(3.9) Zn =
Vn

|Mn · · ·M1X0|
and Z(0)

n =

∑n
i=1Mn · · ·Mi+1Qi
|Mn · · ·M1X0|

,
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for all n ∈ N. (Thus Z
(0)
n = (Vn − V0)/|Mn · · ·M1X0|.) Also introduce the

shorthand notation

Πn := Mn · · ·M1 and Πn
i := Mn · · ·Mi.

Lemma 3.6. Assume (H1) and (H2). Then:

(i) supn∈N |Zn| <∞ Pα-a.s. and supn∈N
∣∣Z(0)

n

∣∣ <∞ Pα-a.s.

(ii) Suppose v ∈ Rd+ \ {0}. Then in Pαδv -measure, the sequence {Zn} con-
verges in law to a random variable Z, and |Zn| ⇒ |Z| a.s., where

(3.10) |Z| = |v|+
∞∑
i=1

〈Yi, Q̃i〉
〈Yi, Xi〉

|Qi|
|Πiṽ|

Pαδv -a.s.

Moreover, |Z| is strictly positive and finite Pαδv -a.s. Similarly,

(3.11) lim
n→∞

∣∣Z(0)
n

∣∣ =
∞∑
i=1

〈Yi, Q̃i〉
〈Yi, Xi〉

|Qi|
|Πiṽ|

Pαδv -a.s.

(iii) Let F ⊂ Rd+ \ {0} be a bounded set and let τ ′ be any {Fn}-stopping
time such that supv∈F P (τ ′ > k|V0 = v) ≤ Btk, k ∈ N, for some finite con-
stant B and t ∈ (0, 1). Then for any v ∈ Rd+ \ {0},
(3.12)

sup
v∈F

Eαδv

[
sup
n∈N
|Zn|α 1{τ ′≥n}

]
<∞ and sup

v∈F
Eαδv
[
|Z|α1{τ ′=∞}

]
<∞.

(iv) For v ∈ Rd+ \ {0}, we have the L1-convergence

(3.13) lim
n→∞

Eαδv
[∣∣ |Zn|α1{τ ′≥n} − |Z|α1{τ ′=∞}∣∣] = 0.

Note that by Lemma 3.2, the condition in (iii) holds, in particular, for
τ ′ = τ := inf{n ∈ N+ : Vn ∈ D} with F = D \ {0}.

Proof. For any vector x ∈ Rd, let x(i) =
〈
ei, x

〉
denote the ith component

of x, and set ~1 = (1, . . . , 1)T . Also, except in part (iii), fix V0 = v throughout
the proof.

First recall that any Pαx,v is absolutely continuous with respect to P̂α ([10],
Lemma 6.2), and hence the convergence of {Zn} in law, or the convergence
of {|Zn|} P̂α-a.s., implies the respective convergence under Pαx,v. Thus, it is
sufficient to prove the convergence results in part (i) and (ii) with respect
to the measure P̂α, under which the sequence {(Mn, Qn) : n = 1, 2, . . .} is
stationary (cf. Section 2 above), thus allowing us to apply Hennion [26].
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(i) Suppose m ∈ M, and let xm be chosen such that ‖m‖ = |mxm|. Since
m is nonnegative, an elementary argument shows that xm can, in fact, be

chosen such that x
(i)
m ≥ 0 for all i. Then for any x ∈ Sd−1

+ ,

|mx| ≥
(

min
j
x(j)
) ∣∣∣m~1∣∣∣ ≥ (min

j
x(j)
)
|mxm| =

(
min
j
x(j)
)
‖m‖.

Thus
‖m‖
|mx|

≤ 1

minj x(j)
, for all x ∈ Sd−1

+ and all m ∈M.

Recall the stopping time N := inf
{
n ∈ Z+ : Πn � 0

}
, which is finite P̂α-a.s.

by (H1). [Since µM is equivalent to P̂α(M1 ∈ ·), (H1) holds equally well
for P̂α(M1 ∈ ·). Then Lemma 3.1 of [26] yields finiteness of N.] Identifying
Q0 := V0 = v yields

|Zn| ≤
n∑
i=0

∣∣Πn
i+1Qi

∣∣
|ΠnX0|

≤
n∑
i=0

∥∥Πn
i+1

∥∥ |Qi|∣∣Πn
i+1Xi

∣∣ |ΠiX0|
(3.14)

≤
N∧n∑
i=0

∥∥Πn
i+1

∥∥ |Qi|∣∣Πn
i+1Xi

∣∣ |ΠiX0|
+

n∑
i=N∧n

1

minj X
(j)
i

|Qi|
|ΠiX0|

.

By [10, Lemma 6.3], Ci(x) := infn∈N
(
|Πn

i+1x|/
∥∥Πn

i+1

∥∥) > 0 P̂α-a.s., ∀x ∈
Sd−1

+ . Also X
(j)
i = (ΠiX0)(j)/|ΠiX0|, implying X

(j)
i |ΠiX0| = (ΠiX0)(j) =

〈ej ,ΠiX0〉. This identifies the denominator in the second sum of (3.14), and
shows that this denominator is positive for i ≥ N. Hence

sup
n∈N
|Zn| ≤

N∑
i=0

|Qi|
Ci(Xi) |ΠiX0|

+

∞∑
i=N

|Qi|
minj〈ej ,ΠiX0〉

(3.15)

≤
N∑
i=0

|Qi|
Ci(Xi) |ΠiX0|

+

∞∑
i=N

d∑
j=1

|Qi|
〈ej ,ΠiX0〉

.

Since N < ∞ P̂α-a.s., it suffices to focus on the second sum. By Lemma
2.3, we have that P̂α-a.s.,

(3.16) lim
n→∞

sup

{ ∣∣∣∣ 1n1{N≤n} log〈y,Πnx〉 − Λ′(α)

∣∣∣∣ : x, y ∈ Sd−1
+

}
= 0.

Furthermore, by a Borel-Cantelli argument, P̂α (log |Qi| > δi i.o.) = 0, for
all δ > 0. Thus, given ε ∈ (0,Λ′(α)), there exists a finite integer k0 such
that, for all i ≥ k0 and all j ∈ {1, . . . , d},

(3.17) log |Qi| − log〈ej ,ΠiX0〉 ≤ −
(

Λ′(α)− ε
)
i P̂α-a.s.
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Since (3.17) holds uniformly in j, substituting (3.17) into (3.15) establishes

part (i) of the lemma, where we also use that
∣∣Z(0)

n

∣∣ ≤ |Zn| for all n ∈ N.
(ii) Following [26], let %(Πn

i ) denote the spectral radius of Πn
i , and let Rin

and Lin denote the right and left eigenvectors corresponding to the maximal
eigenvalue in modulus; that is,

Πn
i R

i
n = %(Πn

i )Rin and (Πn
i )T Lin = %(Πn

i )Lin, 1 ≤ i ≤ n.

Note that the Perron-Frobenius theorem assures that Rin and Lin have non-
negative entries. We further assume the following normalization:

∣∣Lin∣∣ = 1,
〈Lin, Rin〉 = 1, 1 ≤ i ≤ n. Let {Yi} be defined as in (2.8). Then we will show

(3.18) lim
n→∞

∣∣∣∣∣〈ej , Zn〉− 〈ej , R̃1
n

〉 n∑
i=0

〈Yi, Q̃i〉
〈Yi, Xi〉

|Qi|
|ΠiX0|

∣∣∣∣∣ = 0 P̂α-a.s.,

for all 1 ≤ j ≤ d. The sequence {R̃1
n} converges in distribution as n → ∞

([26], Theorem 1 (ii) (b)); hence we obtain the convergence, in distribution,
of {Zn} to

Z := lim
n→∞

R̃1
n · lim

n→∞

n∑
i=0

〈Yi, Q̃i〉
〈Yi, Xi〉

|Qi|
|ΠiX0|

.

Moreover, since
∣∣R̃1

n

∣∣ = 1, (3.18) yields (3.10), i.e. limn→∞ |Zn| = |Z| P̂α-a.s.
In the same way, (3.11) is obtained by setting Q0 = 0.

To establish (3.18), first recall (with the identification Q0 := V0 = v) that
Zn =

∑n
i=0

(
Πn
i+1Qi/|ΠnX0|

)
, and observe that∣∣∣∣∣∣

n∑
i=bn/2c+1

〈ej ,Πn
i+1Qi〉

|ΠnX0|

∣∣∣∣∣∣ ≤
∞∑

i=bn/2c+1

∥∥Πn
i+1

∥∥ |Qi|∣∣Πn
i+1Xi

∣∣ |ΠiX0|
,

and the right-hand side tends to zero as n → ∞, by the proof of part (i)
(in particular, (3.15)). Since Yi is a unit vector with nonnegative entries,

〈Yi, Xi〉 ≥ d−1 minj X
(j)
i . Hence we also have∣∣∣∣∣∣〈ej , R̃1

n

〉 n∑
i=bn/2c+1

〈Yi, Q̃i〉
〈Yi, Xi〉

|Qi|
|ΠiX0|

∣∣∣∣∣∣ ≤
n∑

i=bn/2c+1

d

minj X
(j)
i

|Qi|
|ΠiX0|

.

Thus, to establish (3.18) (and part (ii)), it is enough to show that P̂α-a.s.,

(3.19) lim
n→∞

∣∣∣∣∣∣
bn/2c∑
i=0

〈ej ,Πn
i+1Qi〉

|ΠnX0|
−
〈
ej , R̃

1
n

〉 bn/2c∑
i=0

〈Yi, Q̃i〉
〈Yi, Xi〉

|Qi|
|ΠiX0|

∣∣∣∣∣∣ = 0.

Then by the triangle inequality, it is sufficient to establish the following.
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Sublemma 3.7. The following limits hold P̂α-a.s. :

lim
n→∞

bn/2c∑
i=0

∣∣∣∣〈ej ,Πn
i+1Qi〉

|ΠnX0|
− 〈ej , R̃i+1

n 〉
〈Li+1

n , Qi〉
〈Li+1

n , Xi〉
1

|ΠiX0|

∣∣∣∣ = 0;(3.20)

lim
n→∞

bn/2c∑
i=0

∣∣∣∣∣〈ej , R̃i+1
n 〉

|ΠiX0|

(
〈Li+1

n , Qi〉
〈Li+1

n , Xi〉
− 〈Yi+1, Qi〉
〈Yi+1, Xi〉

)∣∣∣∣∣ = 0;(3.21)

lim
n→∞

bn/2c∑
i=0

∣∣∣∣ 1

|ΠiX0|
〈Yi+1, Qi〉
〈Yi+1, Xi〉

(
〈ej , R̃i+1

n 〉 − 〈ej , R̃1
n〉
)∣∣∣∣ = 0.(3.22)

Proof of the Sublemma. For (3.20), observe by [26, Corollary 1] that

(3.23) lim
n→∞

(
Πn
i+1∥∥Πn
i+1

∥∥ − Ri+1
n ⊗ Li+1

n∥∥Ri+1
n ⊗ Li+1

n

∥∥
)

= 0 P̂α-a.s.,

where a⊗ b is the rank-one matrix with 〈ei, (a⊗ b)ej〉 = 〈ei, a〉〈b, ej〉 . From
(3.23) we infer the asymptotic identities

lim
n→∞

(
〈ej ,Πn

i+1Qi〉∥∥Πn
i+1

∥∥ − 〈ej , R
i+1
n 〉〈Li+1

n , Qi〉∥∥Ri+1
n ⊗ Li+1

n

∥∥
)

= 0;(3.24)

lim
n→∞

(∣∣Πn
i+1Xi

∣∣∥∥Πn
i+1

∥∥ −
∣∣Ri+1

n

∣∣ 〈Li+1
n , Xi〉∥∥Ri+1

n ⊗ Li+1
n

∥∥
)

= 0.(3.25)

Combining (3.24) and (3.25), we conclude that

lim
n→∞

〈ej ,Πn
i+1Qi〉

|ΠnX0|
= lim

n→∞

〈ej ,Πn
i+1Qi〉

|Πn
i+1Xi||ΠiX0|

(3.26)

= lim
n→∞

〈ej , R̃i+1
n 〉
〈Li+1

n , Qi〉
〈Li+1

n , Xi〉
1

|ΠiX0|
P̂α-a.s.,

showing, in particular, that the individual terms in (3.20) → 0 P̂α-a.s.
To prove that the sum in (3.20) converges to zero, we now invoke a dom-

inated convergence argument. Since N is finite a.s., it suffices to focus on
summands with i ≥ N, where we can assume that all components of Xi are
positive, as the remaining terms form a finite sum. Observe that

(3.27)
〈Li+1

n ,~1〉maxj Q
(j)
i

〈Li+1
n ,~1〉minj X

(j)
i

≤ |Qi|
minj X

(j)
i

,
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and therefore

sup
n

bn/2c∑
i=N

∣∣∣∣〈ej ,Πn
i+1Qi〉

|ΠnX0|
− 〈ej , R̃i+1

n 〉
〈Li+1

n , Qi〉
〈Li+1

n , Xi〉
1

|ΠiX0|

∣∣∣∣(3.28)

≤ 2 sup
n

bn/2c∑
i=N

1

miniX
(j)
i

|Qi|
|ΠiX0|

<∞ P̂α-a.s.,

by part (i) (where we have used the calculation in (3.14) to handle the first
term on the left-hand side). Thus, using a dominated convergence argument
(applied pointwise on the space where (3.25) and (3.28) hold), we deduce
that (3.20) follows from (3.25).

Next we turn to (3.21). It follows by Lemma 3.3 of [26] that, under P̂α, the
sequence {Li+1

n } converges a.s. as n → ∞ to Yi+1. Hence, by a dominated
convergence argument, we conclude that (3.21) holds.

Finally, to establish (3.22), note by Proposition 3.1 of [26] that

(3.29)
∣∣∣R̃i+1

n − R̃1
n

∣∣∣ =
∣∣(Πn

i+1R
i+1
n )∼ − (ΠnR

1
n)∼
∣∣ ≤ 2c(Πn

i+1),

where c(·) is bounded above by one and tends to zero P̂α-a.s. as (n−i)→∞
([26, Lemma 3.2]). Then (3.22) follows, once again, by the dominated conver-
gence theorem. This completes the proof of the sublemma and, consequently,
part (ii) of Lemma 3.6.

Proof of Lemma 3.6 (continued). We now return to the proof of main
lemma, where it remains to verify that (iii) and (iv) hold.

(iii) Let m ∈ N and B1 = maxx,y
(
rα(x)/rα(y)

)
∈ (0,∞). Then for α > 0,

Eαδv

[(
sup
n≤m
|Zn|1{τ ′≥n}

)α]
≤ Eαδv

[(
sup
n≤m

(
|v|+

n∑
k=1

|Πn
k+1Qk|
|ΠnX0|

1{τ ′≥k−1}

))α]

= (rα(ṽ))−1 Eδv

[
rα(Xm)|ΠmX0|α

(
sup
n≤m

(
|v|+

n∑
k=1

|Πn
k+1Qk|
|ΠnX0|

1{τ ′≥k−1}

))α]

≤ B1Eδv

[(
sup
n≤m

(
|ΠmX0||v|+

n∑
k=1

|Πm
n+1Xn| · |Πn

k+1Qk|1{τ ′≥k−1}

))α]

= B1Ev
[( m∑

k=0

∥∥Πm
n+1

∥∥ · ∥∥Πn
k+1

∥∥ · |Qk|1{τ ′≥k−1}

)α]
, where Q0 := v.

Now suppose that α ≥ 1. Then by Minkowski’s inequality,(
Ev
[( m∑

k=0

∥∥Πm
n+1

∥∥ · ∥∥Πn
k+1

∥∥ · |Qk|1{τ ′≥k−1}

)α])1/α
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≤
m∑
k=0

(
E
[ ∥∥Πm

n+1

∥∥α ])1/α(
E
[ ∥∥Πn

k+1

∥∥α ])1/α(
|v|+ E

[
|Q1|α

])1/α
p

1/α
k ,

where pk := Pv (τ ′ ≥ k − 1). Now by [10, Corollary 4.6], E [‖Πn‖α] ≤ B2 ∈
(0,∞), for all n. Moreover, E[|Qi|α] < ∞ by (H2); and by the assumption
of part (iii), pk ≤ B3t

k for some t ∈ (0, 1) (uniformly in v). Combining these
estimates yields

Eαδv

[
sup
n∈N
|Zn|α1{τ ′≥n}

]
≤ B1B

2
2

(
|v|+ E[|Q1|α]

)( ∞∑
k=0

(B3t
k)1/α

)α
<∞,

and this bound is uniform over v ∈ F , for any bounded set F ⊂ Rd+ \ {0}.
If α ≤ 1, then we use the subadditivity, namely the inequality |x+ y|α ≤

|x|α + |y|α in place of Minkowski’s inequality, and then proceed as before.
Now it follows from part (ii) that |Zn|α 1{τ ′≥n} → |Z|α 1{τ ′=∞} Pα-a.s. as

n→∞. Consequently,

sup
v∈F

Eαδv
[
|Z|α 1{τ ′=∞}

]
≤ sup

v∈F
Eαδv

[
sup
n∈N
|Zn|α 1{τ ′≥n}

]
<∞.

(iv) The almost sure convergence |Zn|α 1{τ ′≥n} → |Z|α 1{τ ′=∞} was ob-
tained in part (ii), and it was shown in part (iii) that

{
|Zn|α 1{τ ′≥n}

}
n∈N is

uniformly integrable, and the L1-convergence follows. 2

3.3. Markov nonlinear renewal theory. Set Tu = inf{n ∈ N+ : Sn >
log u}. Assuming (H1) and (H2), then Kesten [28, Theorem 2] proved that
there is a probability measure % on Sd−1

+ × (0,∞), namely the asymptotic
overjump distribution, for which we have the weak convergence

(3.30) (XTu , STu − log u) ⇒ %(·) as u→∞.

If the function dA is bounded and continuous, and we define SAn := Sn −
log dA(Xn) and TAu = inf{n ∈ N+ : SAn > log u}, then only minor modifica-
tions are needed to deduce that for a certain probability measure %A,

(3.31) (XTu , S
A
Tu − log u) ⇒ %A(·) as u→∞.

In this section, we apply the Markov nonlinear renewal theory developed
by Melfi [34, 35] to obtain the asymptotic overjump distributions for the
processes {Vn} and {V A

n }, where

(3.32) V A
n :=

Vn

dA(Ṽn)
, n ∈ N.

First recall the definitions of Tu, TAu in (2.16), (2.17), and note that it
follows from the definitions that TAu = inf{n ∈ N+ : |V A

n | > u}.
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Theorem 3.8. Assume (H1) and (H2). Let dA ∈ Cb
(
Sd−1

+

)
. Then for all

f ∈ Cb
(
Sd−1

+ × (0,∞)
)

and all x ∈ Sd−1
+ and v ∈ Rd+ \ {0},

(3.33) lim
u→∞

Eαx,v
[
f

(
ṼTu , log

|VTu |
u

)]
=

∫
Sd−1
+ ×R+

f(y, s) %(dy, ds),

where % is given as in (3.30). Moreover, the same result also holds if (%, VTu)
is replaced with (%A, V A

TAu
).

Proof. We need to verify conditions (I′), (II), and (III) of [35, Theorem
3] for the process {(Wlog u, Zlog u, Rlog u) = (ṼTu , log |VTu |, log |VTu | − log u)}.

Condition (III), namely tightness of {ṼTu}, is satisfied since Sd−1
+ is com-

pact. The validity of Conditions (I) and (II) is proved below in Lemmas 3.9
and 3.11, respectively. Then (3.33) follows from [35, Theorem 3].

Turning to the case where (%, ṼTu) is replaced with (%A, Ṽ A
TAu

), we need

to check the validity of Conditions (I′) and (II) for {(Ṽ A
n , log |V A

n |)}. By
(3.32), Ṽ A

n = Ṽn. Thus, for f(x, s) = (x, s − log dA(x)), we have that
{(Ṽ A

n , log |V A
n |)} = {f(Ṽn, log |Vn|)} and {(Xn, S

A
n )} = {f(Xn, Sn)} (using

(2.18)). Hence (I′) can be deduced from Lemma 3.9 below. Finally, since dA
is bounded, the tightness of {log |V A

TAu
|− log u} = {log |VTAu |− log dA(VTAu )−

log u} follows from Lemma 3.11.

Write dm for the Prokhorov distance on the space of probability measures
on (Sd−1

+ × [0,∞))m.

Lemma 3.9. Assume (H1) and (H2). Then for all m ∈ N+,

dm

(
Pα
((
ṼTu+k, log

|VTu+k|
|VTu |

)m
k=1
∈ ·
∣∣∣FTu

)
, PαYTu

(
(Xk, Sk)

m
k=1 ∈ ·

))
converges to zero as u→∞ in Pα-probability.

Proof. Using the Markov property,

Pα
(

(ṼTu+k, log |VTu+k| − log |VTu |)1≤k≤m ∈ ·
∣∣∣FTu

)
= PαXTu ,VTu

(
(Ṽk, log |Vk| − log |V0|)1≤k≤m ∈ ·

)
.

By [25, Lemma 3.5], the total variation distance between Pαx,v and Pαy,v is

bounded above by B |x− y|ᾱ for some B < ∞, where ᾱ = min{α, 1}. [The
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proof in [25] is for invertible matrices, but carries over to nonnegative matri-
ces.] Then, as total variation distance is an upper bound for the Prokhorov
distance,

dm

(
PαXTu ,VTu

(
(Ṽk, log |Vk| − log |V0|)mk=1 ∈ ·

)
, Pα

ṼTu

(
(Xk, Sk)

m
k=1 ∈ ·

))
≤ B

∣∣∣XTu − ṼTu
∣∣∣ᾱ

+ dm

(
Pα
ṼTu ,VTu

(
(Ṽk, log |Vk| − log |V0|)mk=1 ∈ ·

)
,Pα

ṼTu
((Xk, Sk)

m
k=1 ∈ ·)

)
.

It will be proved in Lemma 3.10 below that
∣∣XTu − ṼTu

∣∣ tends to zero in
Pα-probability. We thus consider only the last term. Fix the initial values

(ṼTu , VTu) = (ṽ, v), and introduce the notation V
(0)

1 = Q1 and V
(0)
k :=∑k

j=1Mk · · ·Mj+1Qj . Then standard estimates yield, for all v ∈ Rd+ \ {0},

Pαṽ
( ∣∣∣(Ṽk, log |Vk| − log |V0|)1≤k≤m − (Xk, Sk)1≤k≤m

∣∣∣
∞
≥ ε

∣∣V0 = v
)

≤ Pαṽ

(
2

m∑
k=1

|V (0)
k |
|Πkv|

≥ ε

)
≤ B

εα|v|α
m∑
k=1

E
[∣∣V (0)

k

∣∣α],
for some universal constant B, where we used Chebyshev’s inequality and
boundedness of rα in the last inequality. Hence

lim
u→∞

sup
v : |v|≥u

Pαṽ
( ∣∣∣∣(Ṽk, log

|Vk|
|V0|

)m
k=1
−
(
Xk, Sk

)m
k=1

∣∣∣∣
∞
≥ ε

∣∣∣V0 = v
)

= 0.

Recall that convergence in probability implies convergence in the Prokhorov
metric. Since Pα(Tu < ∞) = 1 and |VTu | ≥ u, we infer the Pα-a.s. conver-
gence; namely, as u→∞,

dm

(
Pα
ṼTu ,VTu

((
Ṽk, log

|Vk|
|V0|

)m
k=1
∈ ·
)
,Pα

ṼTu
((Xk, Sk)

m
k=1 ∈ ·)

)
→ 0.

Lemma 3.10. For all x ∈ Sd−1
+ and V0 = v ∈ Rd+ \ {0},

(3.34) lim
u→∞

∣∣∣XTu − ṼTu
∣∣∣ = 0 in Pαx,v-probability.

Proof. Let w = u/2, and decompose the process based on its behav-
ior prior and subsequent to the time Tw. Recalling that Πn

i := Mn · · ·Mi

and using the triangle inequality, we see that Pαx
(∣∣∣ṼTu −XTu

∣∣∣ > ε
)

can be

written as

Pαx

(∣∣∣∣∣Π
Tu
Tw+1VTw +

∑Tu
i=Tw+1

ΠTu
i+1Qi

|VTu |
−
(

ΠTu
Tw+1XTw

)∼∣∣∣∣∣ > ε

)
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≤Eαx

Pαx
∣∣∣∣∣∣Π

Tu
Tw+1VTw +

∑Tu
i=Tw+1 ΠTu

i+1Qi

|VTu |
−

ΠTu
Tw+1VTw∣∣∣ΠTu
Tw+1VTw

∣∣∣
∣∣∣∣∣∣ > ε

2

∣∣∣∣∣∣FTw


+ Pαx

(∣∣∣(ΠTu
Tw+1VTw

)∼
−
(

ΠTu
Tw+1XTw

)∼∣∣∣ > ε

2

)
:= I1(u) + I2(u).

To compute I2(u) as u → ∞, we apply Proposition 3.1 of [26], which
yields

sup
x,y∈Sd−1

+

∣∣(Πn
i+1x)∼ − (Πn

i+1y)∼
∣∣ ≤ 2c(Πn

i+1)

for a function c(·) which is bounded above by one and tends to zero P̂α-a.s.
as (n − i) → ∞ ([26, Lemma 3.2]). Since Pαx is absolutely continuous with
respect to the measure P̂α ([10, Lemma 6.2]), it follows that c

(
ΠTu
Tu/2+1

)
→ 0

Pαx -a.s. for all x ∈ Sd−1
+ , and hence

(3.35) I2(u) ≤ Pαx
(

2c
(

ΠTu
Tw+1

)
>
ε

2

)
↘ 0 as u→∞.

Now consider I1(u) as u→∞. Standard estimates yield

(3.36) I1(u) ≤ Eαx

[
Pα
ṼTw

(
4
∣∣V (0)
Tu

∣∣
u
∣∣ΠTu Ṽ0

∣∣ > ε

2

)]
.

Next recall by Lemma 3.6 (i) that Z 0 :=supn∈N

(
|V (0)
n |/|ΠnX0|

)
<∞ P̂α-a.s.,

and this quantity does not depend on the initial value, V0. Using that
Pα
ṼTw

(·) ≤ B P̂α(·) for some universal constant B ([10, Lemma 6.2]), we

then obtain that

(3.37) I1(u) ≤ B lim
u→∞

P̂α
(

Z 0

u
>
ε

8

)
= 0.

The following lemma concludes the proof of Theorem 3.8.

Lemma 3.11. {ṼTu − log u}u≥1 is tight under Pα.

Proof. A sufficient condition is given in [35], Section 5.2: Letting ξn :=
log |Vn| −Sn and supposing that {ξTu}u≥1 and {ξTu}u≥1 are tight under Pα,
then it follows that {WTu − log u}u≥1 is tight.

Now by Lemma 3.6,

ξn = log
|Vn|
|ΠnV0|

→ logZ Pα-a.s.,
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for a finite random variable Z. Since Tu and Tu are stopping times with
respect to the filtration {Fn} and tend to infinity as u → ∞, we deduce
that

lim
u→∞

ξTu = logZ Pα-a.s. and lim
u→∞

ξTu = logZ Pα-a.s.

Thus, in particular, the families {ξTu}u≥1 and {ξTu}u≥1 converge in distri-
bution under Pα and are consequently tight.

The last result concerns the first passage times in the α-shifted measure.

Lemma 3.12. Assume that dA is bounded and continuous. Then

(3.38) lim
u→∞

TAu
log u

=
1

λ′(α)
in Pα-probability.

Proof. By definition, Vn = Zne
Sn and V A

n = Vn/dA(Ṽn), and conse-
quently

(3.39) log |V A
n | = Sn + |Zn| − log dA(Ṽn) := Sn + ξn.

Recall that supn∈N Zn is finite a.s., by Lemma 3.6. Since dA is bounded, it
follows that the sequence {ξi} in (3.39) is slowly changing (as defined in [46],
Eq. (9.5)). Now by Lemma 2.3, Sn/n→ λ′(α) a.s., and hence log |V A

n |/n→
λ′(α) a.s. The result then follows by reasoning as in [46, Lemma 9.13].

4. Characterizing the large exceedances over cycles.

4.1. Proposition 4.1 and its consequences. Recall that τ denotes the re-
turn time to a set D = B+

r (0), where π(D) > 0, and TAu := inf {n : Vn ∈ uA} =
inf
{
n : |V A

n | > u
}

, where V A
n := Vn/dA(Ṽn) (cf. (3.32)). Also recall that

rAα (x) := rα(x) (dA(x))α, x ∈ Sd−1
+ .

We say that a function g : (Rd+)m+1 → R is almost θ-Hölder continuous if

(4.1) g(v0, . . . , vm) = ĝ(v0, . . . , vm)1{|vm|≥δ}

for some δ ≥ 0 and θ-Hölder continuous function ĝ.

Proposition 4.1. Assume (H1) and (H2) are satisfied. Let m ∈ N and
g : (Rd+)m+1 → R be a bounded almost θ-Hölder continuous function for
θ ≤ min{1, α}, and assume that the function dA is bounded and continuous
on Sd−1

+ . Then for any v ∈ Rd+ \ {0},

lim
u→∞

uαE
[
g

(
VTAu
u
, . . . ,

VTAu +m

u

)
1{TAu <τ}

∣∣∣∣ V0 = v

]
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= rα(ṽ)Eαδv
[
|Z|α1{τ=∞}

]
×
∫

e−αs

rAα (x)
E
[
g
(
eS0X0, . . . , e

SmXm

) ∣∣X0 = x, S0 = s+ log dA(x)
]
%A(dx, ds).

Recall that %A is the asymptotic overjump distribution related to
{
V A
TAu

}
,

while on the left-hand side of the above equation, we evaluate g for the
process {Vn} (not {V A

n }) at a sequence of times commencing at the time
TAu . This explains the additional term “log dA(x)” in the expression for S0;
namely, it arises when transforming V A

TAu
to VTAu .

As a corollary, we specialize to the case where g = 1 (in (4.2)), and then to
the case where we also have dA = 1 (in (4.3)). We use the shorthand notation
C(v) = rα(ṽ)Eαδv

[
|Z|α1{τ=∞}

]
(which is equivalent to the definition given in

Section 2) and employ the change of measure in the second identity (namely
(4.3)).

Corollary 4.2. Under the assumptions of Proposition 4.1, we have
that for any v ∈ Rd+ \ {0},

(4.2) lim
u→∞

uαP
(
TAu < τ

∣∣ V0 = v
)

= C(v)

∫
e−αs

rAα (x)
%A(dx, ds),

and

lim
u→∞

uαE
[
g

(
VTu
u
, . . . ,

VTu+m

u

)
1{Tu<τ}

∣∣∣∣ V0 = v

]
(4.3)

= C(v)

∫
Eαx
[
e−α(Sm+s)

rα(Xm)
g
(
esX0, . . . , e

Sm+sXm

)]
%(dx, ds).

4.2. Proof of Proposition 4.1. We will rely on the following.

Lemma 4.3. Assume the conditions of Proposition 4.1. Then:
(i) For all v ∈ Rd+ \ {0}, we have the L1-convergence

(4.4) lim
n→∞

lim
u→∞

Eαδv

[∣∣∣∣∣ZTAu ∣∣α1{TAu <τ} − |Zn|α 1{n≤TAu }1{n≤τ}∣∣∣] = 0.

(ii) For u > 0, define

Gu =
1

rα(XTAu
)

(∣∣VTAu ∣∣
u

)−α
E
[
g

(
VTAu
u
, . . . ,

VTAu +m

u

) ∣∣∣∣FTAu

]
.

Then, independent of n, we have Pα-a.s. that
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lim
u→∞

Eα [Gu|Fn]1{n≤TAu }(4.5)

=

∫
e−αs

rAα (x)
E
[
g
(
(eSnXn)mn=0

) ∣∣∣X0 = x, S0 = s+ log dA(x)
]
%A(dx, ds).

Proof of Lemma 4.3. (i) By Lemma 3.2, τ satisfies the assumptions
in Lemma 3.6 (iii). Thus, this result is a direct consequence of Lemma 3.6
(iv), where the L1-convergence |Zn|α 1{n≤τ} → |Z|α 1{τ=∞} is proved. It
follows that |Zn|α 1{n≤τ} constitutes a Cauchy sequence in L1, yielding the
assertion.

(ii) Let n ∈ N+. Then by the Markov property,

Eα [Gu|Fn]1{n≤TAu } = EαXn,Vn
[
Gu

]
1{n≤TAu } Pα-a.s.

As limu→∞ 1{n≤TAu } = 1 Pα-a.s., it suffices to determine limu→∞ Eαx,v
[
Gu]

and show that this quantity is independent of x and v.
For all v ∈ Rd+ and u > 0, set

Gu(v) = E
[
g

(
v, . . . ,Πmv +

V
(0)
m

u

)]
, G(v) = E

[
g

(
v,Π1v, . . . ,Πmv

)]
,

where V
(0)
m :=

∑m
i=1 Πm

i+1Qi for m ≥ 2 and V
(0)

1 := Q1. Now consider the
decomposition:

Eαx,v
[
Gu

]
= Eαx,v

[
1

rα(XTAu
)

(∣∣VTAu ∣∣
u

)−α(
Gu

(
VTAu
u

)
−G

(
VTAu
u

))]

+ Eαx,v
[
rα(ṼTAu )

rα(XTAu
)

1

rα(ṼTAu )

(∣∣VTAu ∣∣
u

)−α
G

(
VTAu
u

)]
:= I1(u) + I2(u).

Step 1. We begin by showing that I1(u) → 0 as u → ∞. Let ĝ be a
θ-Hölder continuous function with g(v0, . . . , vm) = ĝ(v0, . . . , vm)1{|vm|≥δ}.
Then∣∣∣g((Πnv +

(
V (0)
n /u

))m
n=0

)
− g
((

Πnv
)m
n=0

)∣∣∣
≤
∣∣∣∣ĝ((Πnv +

(
V (0)
n /u

))m
n=0

)
− ĝ
((

Πnv
)m
n=0

)∣∣∣∣1{|Πmv|≥δ}
+ |g|∞

(
1[δ,∞)

(∣∣∣Πmv +
(
V (0)
m /u

)∣∣∣)− 1[δ,∞)

(
|Πmv|

))
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≤ 1

uθ
B1

m∑
n=1

∣∣V (0)
n

∣∣θ + |g|∞
(
1[δ,∞)

(∣∣∣Πmv +
(
V (0)
m /u

)∣∣∣)− 1[δ,∞)

(
|Πmv|

))
for some constant B1 arising from the θ-Hölder continuity of ĝ. Let (M∗, Q∗)
be a pair of random variables that is independent of the sequence {(Mn, Qn)},
where the Pα-law of (M∗, Q∗) is given by P

((
Πm, V

(0)
m

)
∈ ·
)
. Upon setting

B2 = maxy∈Sd−1
+

(rα(y))−1 and using that
(
|VTAu |/u

)−α
< 1, we obtain that

I1(u) ≤ 1

uθ
B1B2 E

[ m∑
n=1

∣∣V (0)
n

∣∣θ](4.6)

+B2 |g|∞
(
Pαx,v

( ∣∣∣∣M∗VTAuu +
Q∗

u

∣∣∣∣ ≥ δ)− Pαx,v
( ∣∣∣∣M∗VTAuu

∣∣∣∣ ≥ δ)) .
Since the θ-moment of V

(0)
n is finite, the first term tends to zero as u→∞.

For the second term, use the Pα-convergence (M∗, Q∗/u) ⇒ (M∗, 0) and(
Ṽ A
TAu
, log |V A

TAu
| − log u

)
⇒ %A (by Theorem 3.8). Let (X,S) ∼ %A be a

random vector independent of (M∗, Q∗) under Pα. Solving (3.32) for Vn, we
have that VTAu /u ⇒ dA(X)eSX. [Here X describes the limiting direction

of V A
TAu
/u and S the limiting logarithmic overjump, as log |V A

TAu
| − log u ⇒

S.] Since the sequences {(M∗, Q∗/u)} and {VTAu /u} are independent, they
converge jointly in distribution. Hence, under Pα,

M∗
VTAu
u

+
Q∗

u
⇒ dA(X)eSM∗X and M∗

VTAu
u
⇒ dA(X)eSM∗X.

Thus, the second term in (4.6) vanishes if [δ,∞) is a continuity set for
dA(X)eS |M∗X|.

We now show that [δ,∞) is a continuity set. Since M∗ is independent
of (X,S), it suffices to show that for any allowable matrix m, the event
{dA(X)eS |mX| = δ} has probability 0. Now for each fixed y ∈ Sd−1

+ , the
equation h(s) := dA(y)es|my| = δ has a unique solution sy ∈ R. Hence

Pα
(
dA(X)eS |mX| = δ

)
=

∫
Sd−1
+ ×R

1{s=sy} %
A(dy, ds) = 0,

since the radial component of the overjump distribution is absolutely con-
tinuous with respect to Lebesgue measure (as can be seen from the repre-
sentation of %A in Eq. (1.16) of [29]).

Thus, having shown that [δ,∞) is a continuity set, we conclude by the
Portmanteau theorem that for all x ∈ Sd−1

+ and v ∈ Rd+ \ {0},

Pαx,v
( ∣∣∣∣M∗VTAuu +

Q∗

u

∣∣∣∣ ≥ δ)− Pαx,v
( ∣∣∣∣M∗VTAuu

∣∣∣∣ ≥ δ)
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→ Pα
(
dA(X)eS |M∗X| ≥ δ

)
− Pα

(
dA(X)eS |M∗X| ≥ δ

)
.

Hence also the second member of (4.6) vanishes as u→∞. Thus I1(u)→ 0
as u→∞.

Step 2. Now turn to I2(u). Using Theorem 3.8, again invoke the conver-
gence

(
(V A
TAu

)∼, log |V A
TAu
|− log u

)
⇒ %A under Pα. Moreover, by Lemma 3.10,

using the continuity and boundedness of rα, we have that rα(ṼTu)/rα(XTu)
tends to one in Pα-probability. Hence by Slutsky’s theorem, the quantity in-
side I2(u) converges in law, and identifying this limit distribution, we deduce
that

lim
u→∞

I2(u) = lim
u→∞

Eαx,v
[
rα(ṼTAu )

rα(XTAu
)

1

rAα (Ṽ A
TAu

)

(∣∣V A
TAu

∣∣
u

)−α
G

(
VTAu
u

)]

=

∫
Sd−1
+ ×R+

e−αs

rAα (y)
G
(
dA(y)esy

)
%A(dy, ds).

Recalling that G(v) = E
[
g
(
v,Π1v, . . . ,Πmv

)]
, the assertion follows.

Proof of Proposition 4.1. Note that {Vn} is transient in the α-shifted
measure and thus TAu < ∞ a.s.; cf. Lemma 3.12. Hence, employing the
change of measure only over the random time interval [0, TAu ] (namely the
“dual” change of measure of [18], Section 4, which we denote by the super-
script D), we obtain that

uαE
[
g

(
VTAu
u
, . . . ,

VTAu +m

u

)
1{TAu <τ}

∣∣∣∣V0 = v

]
= uαrα(ṽ)ED

δv

[
e
−αS

TAu

rα(XTAu
)
1{TAu <τ}E

[
g

(
VTAu
u
, . . . ,

VTAu +m

u

) ∣∣∣∣FTAu

]]
.

Now substitute the quantity Gu of Lemma 4.3 (ii) into the previous equation.
Noting that Zn = Vn/|ΠnX0| =

(
Vn/e

Sn
)
, n ∈ N+, we obtain after a little

algebra that

uαE
[
g

(
VTAu
u
, . . . ,

VTAu +m

u

)
1{TAu <τ}

∣∣∣∣X0 = ṽ, V0 = v

]
(4.7)

= rα(ṽ)ED
δv

[
|ZTAu |

αGu1{TAu <τ}

]
.

For n ∈ N+, the right-hand side can be further equated to

rα(ṽ)Eαδv

[(∣∣ZTAu ∣∣α1{TAu <τ} − |Zn|α 1{n≤TAu }1{n≤τ})Gu

]
(4.8)
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+ rα(ṽ)Eαδv
[
|Zn|α 1{n≤TAu }1{n≤τ} E

α
[
Gu |Fn

]]
,

where we have replaced Eαδv [·|Fn] with Eα[·|Fn] in the last expectation,
since this conditional expectation depends only on (Xn, Vn), and not on
the initial values (X0, V0) once (Xn, Vn) has been specified. Moreover, the
superscript D can now be dropped, since the change of measure over the
random time interval [0, TAu ] coincides with the usual α-shifted measure for
FTAu

-measurable random variables.
To analyze the quantity in (4.8), we first take the limit as u → ∞ and

then as n → ∞. By part (i) of Lemma 4.3 and the boundedness of Gu, we
deduce from (4.7) and (4.8) that

lim
u→∞

uαE
[
g

(
VTAu
u
, . . . ,

VTAu +m

u

)
1{TAu <τ}

∣∣∣∣V0 = v

]
(4.9)

= lim
n→∞

lim
u→∞

rα(ṽ)Eαδv
[
|Zn|α 1{n≤TAu }1{n≤τ} E

α
[
Gu

∣∣∣Fn

]]
.

Now by Lemma 3.6 (iii),
{
|Zn|α1{n≤τ}

}
is uniformly integrable. Denote by

G the right-hand side of (4.5). Since Gu is bounded by b−1 |g|∞ and TAu ↑ ∞
Pα-a.s., it follows by Lemma 4.3 (ii) that

lim
u→∞

uαE
[
g

(
VTAu
u
, . . . ,

VTAu +m

u

)
1{TAu <τ}

∣∣∣∣V0 = v

]
(4.10)

= lim
n→∞

rα(ṽ)Eαδv
[
|Zn|α 1{n≤τ} lim

u→∞
1{n≤TAu }E

α
[
Gu |Fn

]]
=rα(ṽ)Eαδv

[
lim
n→∞

|Zn|α 1{n≤τ}G
]

= rα(ṽ)Eαδv
[
|Z|α 1{τ=∞}

]
G.

In some cases, it is useful to consider functions g which depend on the
infinite path (VTAu , VTAu +1, . . .), or to consider functions g which need not be
bounded. Moreover, it is also useful to have uniform upper bounds. In these
situations, a variant of the above proposition is useful.

Proposition 4.4. Suppose that g : (Rd+)N → [0,∞) is a nonnegative
measurable function, and set

Ḡu =
1

rα
(
XTAu

) (∣∣VTAu ∣∣
u

)−α
E
[
g

((
VTAu +k

u

)
k≥0

) ∣∣∣∣FTAu

]
.

Further, assume that for some finite constant B and some U ≥ 0,

(4.11) sup
u≥U

Ḡu ≤ B Pα-a.s.
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Then for any bounded set F ⊂ Rd+ \{0}, there exists a finite constant L, not
depending on B, such that

0 ≤ sup
u≥U

sup
v∈F

uαE

[
g

((
VTAu +k

u

)
k≥0

)
1{TAu <τ}

∣∣∣∣V0 = v

]
≤ BL.(4.12)

Moreover, if (4.11) holds and lim supu→∞ Ḡu = 0 Pα-a.s., then

(4.13) lim
u→∞

uαE

[
g

((
VTAu +k

u

)
k≥0

)
1{TAu <τ}

∣∣∣∣V0 = v

]
= 0.

Proof. Repeating the argument in the proof of Proposition 4.1 leading
to (4.9), we obtain that

0 ≤ sup
u≥U

sup
v∈F

uαE

[
g

((
VTAu +k

u

)
k≥0

)
1{TAu <τ}

∣∣∣∣V0 = v

]

≤ Brα(ṽ) sup
v∈F

Eαδv

[
sup
n∈N
|Zn|α1{n≤τ}

]
,

which is finite by Lemma 3.6 (iii) and the boundedness of rα. The bound-
edness of Ḡu then allows us to use the dominated convergence theorem in
order to deduce (4.13) from (4.9).

4.3. Toward the proof of Theorem 2.4. We now restrict our attention to
the case where dA = 1; thus TAu = Tu, rAα = rα, and %A = %.

In order to establish Theorem 2.4 in the subsequent section, we first prove
a proposition which, together with Lemma 3.5, will link the tail properties
of V to the renewal measure associated with {(Xn, Sn)}. As before, we use
the shorthand C(v) = rα(ṽ)Eαδv

[
|Z|α1{τ=∞}

]
.

Proposition 4.5. Assume (H1) and (H2) are satisfied. Let θ ≤ min{1, α}
and let f be a nonnegative bounded θ-Hölder continuous function. Then for
all v ∈ Rd+ \ {0},

lim
u→∞

uαE

[
τ−1∑
i=0

f

(
Vi
u

)
1{|Vi|≥u}

∣∣∣∣V0 = v

]
(4.14)

= C(v)

∫
Sd−1
+ ×R+

Eαx

[ ∞∑
i=0

F (Xi, Si + s)

]
%(dx, ds),

where F (x, s) :=
(
e−αsf(esx)/rα(x)

)
1[0,∞)(s) is directly Riemann integrable.
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We note by [36, Section 6.1] that, if F directly Riemann integrable (as
defined in [10], Eq. (7.1)), it follows that on the right-hand side of (4.14),

(4.15) sup
x∈Sd−1

+

sup
s∈R

Eαx

[ ∞∑
i=0

|F (Xi, Si + s)|

]
<∞.

We shall deduce Proposition 4.5 from Corollary 4.2. However, to do so,
we need to handle the remainder terms, which we study in the following.

Lemma 4.6. Let h be a bounded measurable function such that h(x) = 0
for all x ∈ B+

δ (0), for some δ > 0. Then for all v ∈ Rd+ \ {0} and all m ∈ N,

(4.16) lim
m→∞

lim
u→∞

uαE

[
τ−1−Tu∑
k=m

h

(
VTu+k

u

)
1{Tu+m<τ}

∣∣∣∣V0 = v

]
= 0.

Moreover, if F ⊂ Rd+ \ {0} is bounded, then

(4.17) lim sup
u→∞

sup
v∈F

uαE

[
τ−1∑
i=0

h

(
Vi
u

)
1{|Vi|>u}

∣∣∣∣V0 = v

]
<∞.

Furthermore, for all v ∈ Rd+ \ {0},

(4.18) lim
m→∞

lim
u→∞

uαE

[
Tu+m∑
i=τ

h

(
Vi
u

)
1{Tu<τ≤Tu+m}

∣∣∣∣V0 = v

]
= 0.

Proof. Step 1. First we establish (4.16).
By Eq. (4.12) in Proposition 4.4, it suffices to prove that

sup
u≥U

Ḡu := sup
u≥U

1

rα(XTu)

(∣∣VTu∣∣
u

)−α
E
[ τ−1−Tu∑

k=m

∣∣∣∣h(VTu+k

u

)∣∣∣∣1{Tu+m<τ}

∣∣∣∣FTu

]
is bounded above by B(m,U ), where the sequence {B(m,U )} tends to
zero as we first let U →∞ and then let m→∞. By employing the Markov
property and the boundedness of rα, we see that it is enough to show that,
for a suitable sequence B(m,U ),

sup
u≥U

sup
v:|v|≥u

Hu(v) := sup
u≥U

sup
v:|v|≥u

E
[(
|V0|
u

)−α τ−1∑
k=m

h

(
Vk
u

)
1{m<τ}

∣∣∣∣V0 = v

]
≤ B(m,U ).(4.19)
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Now let D† = {v ∈ Rd+ : |v| ≤ L} be defined as in Lemma 3.1, and set
τ † := inf{n ∈ N+ : Vn ∈ D†}. Recall that h(x) = 0 for all x ∈ B+

δ (0).
Hence, for 0 < θ < min{1, α} and |v| > u,

Hu(v) ≤ |h|∞ E
[(
|V0|
u

)−ατ†−1∑
k=m

1{|Vk|>δu} +
τ−1∑
k=τ†

1{|Vk|>δu}

∣∣∣∣V0 = v

]

≤|h|∞
(
|v|
u

)−α ∞∑
k=m

(δu)−θEv
[
|Vk|θ 1{τ†>k}

]
+|h|∞ sup

w∈D†
Ew
[ τ∑
k=0

1{|Vk|>δu}

]
.

The first sum can be estimated further by employing Lemma 3.1; namely,

sup
v:|v|≥u

(
|v|
u

)−α ∞∑
k=m

(δu)−θEv
[
|Vk|θ 1{τ†>k}

]
≤ B

δθ

(
sup
v:|v|≥u

(
|v|
u

)θ−α) tm

1− t
=
B

δθ
tm

1− t
,

and this last term tends to zero as m → ∞. For the second term, note
that (3.4) implies that supw∈D† E[τ |V0 = w] < ∞. Hence we can apply a
dominated convergence argument to infer that

sup
u≥U

sup
w∈D†

Ew
[ τ∑
k=0

1{|Vk|>δu}

]
≤ sup

w∈D†
Ew
[ τ∑
k=0

1{|Vk|>δU }

]
→ 0 as U →∞.

Combining these estimates establishes (4.19), and (4.16) follows.
Finally, (4.17) is a direct consequence of (4.19) (with m = 0 and δ = 1)

combined with (4.12).
Step 2. Turning to (4.18), we apply the second part of Proposition 4.4.

Using that h = 0 on Bδ(0), it is now sufficient to show that for any m ∈ N,

Ḡu :=
1

rα(XTu)

(
|VTu |
u

)−α
E

[
Tu+m∑
i=τ

∣∣∣∣h(Viu
)∣∣∣∣1{|Vi|>δu}1{Tu<τ≤Tu+m}

∣∣∣∣FTu

]
is bounded uniformly in u and tends to zero Pα-a.s. as u → ∞. As the
prefactors are bounded, it suffices to estimate

E
[ Tu+m∑

i=τ

∣∣∣∣h(Viu
)∣∣∣∣1{|Vi|>δu}1{Tu<τ≤Tu+m}

∣∣∣∣FTu

]
(4.20)

≤ |h|∞ E

[
E

[
τ+m∑
i=τ

1{|Vi|>δu}

∣∣∣∣Fτ

]
1{Tu<τ}

∣∣∣∣FTu

]
.
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Let θ ∈ (0, α). Then for all k = 0, . . . ,m,

P ( |Vτ+k| > δu|Vτ = v) ≤ sup
v∈D

(δu)−θE
[
|Vk|θ

∣∣∣V0 = v
]

≤ δ−θu−θ
sup
v∈D

E
[
‖Πk‖θ

]
· |v|θ +

k∑
j=1

E
[∣∣∣Πk

j+1Qj

∣∣∣θ]
 ≤ B1u

−θ

for some finite constant B1 (dependent on m). Substituting this estimate
into (4.20) and then into the definition of Ḡu above (4.20), we obtain that
Ḡu ≤ B2mu

−θ ↓ 0 as u→∞, some B2 <∞. Thus, by Proposition 4.4,

lim
u→∞

uαE

[
Tu+m∑
i=τ

h

(
Vi
u

)
1{Tu<τ≤Tu+m}

∣∣∣∣V0 = v

]
= 0, ∀m ∈ N,

and (4.18) follows.

Proof of Proposition 4.5. Let g(v) := f(v)1{|v|≥1}, and note that g
is an almost θ-Hölder-continuous function. Now

uαEv

[
τ−1∑
i=0

f

(
Vi
u

)
1{|Vi|≥u}

]
= uαEv

[
τ−1∑
i=Tu

f

(
Vi
u

)
1{|Vi|≥u}1{Tu<τ}

]
,

and the right-hand side can be decomposed into three terms, namely

uα
m∑
k=0

Ev
[
g

(
VTu+k

u

)
1{Tu<τ}

]
+ uαEv

[
τ−1−Tu∑
k=m+1

g

(
VTu+k

u

)
1{Tu+m<τ}

]

− uαEv

[
Tu+m∑
i=τ

g

(
Vi
u

)
1{Tu<τ≤Tu+m}

]
.(4.21)

On the right-hand side of (4.21), the last two terms tend to zero, by Lemma
4.6, when taking first the limit u→∞ and then m→∞. Next, by Corollary
4.2, Eq. (4.3), we obtain for the remaining term that

lim
u→∞

uα
m∑
k=0

E
[
g

(
VTu+k

u

)
1{Tu<τ}

∣∣∣∣V0 = v

]

= C(v)

∫
Sd−1
+ ×R+

Eαx

[
m∑
i=0

e−α(Si+s)

rα(Xi)
f(eSi+sXi)1{Si+s≥0}

]
%(dx, ds).

It remains to show that F (x, s) :=
(
e−αsf(esx)/rα(x)

)
1[0,∞)(s) is directly

Riemann integrable, which, by (4.15), will allows us to take the limit as
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m → ∞. Since rα is bounded from below, it follows that for some positive
constant b,

F (s) := sup
x∈Sd−1

+

|F (x, s)| ≤ 1

b
|f |∞ e

−αs1[0,∞)(s).

Since the right-hand side is a decreasing integrable function, we conclude
that F is (univariate) directly Riemann integrable. But F is obtained from
F by taking the supremum over all x ∈ Sd−1

+ , so it follows immediately that
F is (multivariate) Riemann integrable.

5. Proof of Theorem 2.4. In this section, we provide the proof of
Theorem 2.4, first under the additional hypothesis (H3) of Section 3, which
is then removed by approximating {Vn} from above and below by smoothed
processes for which (H3) is satisfied.

To establish Theorem 2.4, we apply Proposition 4.5 directly, except that
we must identify the integral in (4.14). This is done in the following lemma.

Lemma 5.1. Let g : Sd−1
+ × R → R be a directly Riemann integrable

function. Then∫
Eαx

[ ∞∑
i=0

g(Xi, Si + s)1{Si+s≥0}

]
%(dx, ds) =

1

λ′(α)

∫
g(x, s) ηα(dx) ds.

The crucial point is to identify % as the stationary Markov delay distri-
bution, i.e., the initial distribution for {(Xn, Sn)} under which the renewal
measure (restricted to Sd−1

+ ×R+) equals ηα⊗ ds. This identification can be
done along identical lines to the proofs of Theorem 3 and Corollary 3 in [2].
For this reason, we omit the proof and refer the reader to the arXiv version
[16] of our article for the details.

We now establish Theorem 2.4 under the additional Hypothesis (H3) of
Section 3.

Proposition 5.2. Assume that Hypotheses (H1), (H2) and (H3) are
satisfied, and suppose that D ∈ B(Rd+) is bounded and π(D) > 0. Then for
any f ∈ C0

(
Rd+ \ {0}

)
,

(5.1) lim
u→∞

uαE
[
f

(
V

u

)]
=

C

λ′(α)

∫
Sd−1
+ ×R

e−αsf(esx)lα(dx)ds,

where C is given as in (2.10). Equivalently, we have the weak convergence

(5.2) lim
u→∞

uαP
(
|V | > tu,

V

|V |
∈ ·
)
⇒ C

αλ′(α)
t−αlα(·), for all t > 0.
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Proof. We first prove the result under the additional assumption that f
satisfies f(x) = f̂(x)1{|x|≥r} for some r > 0, where f̂ is a θ-Hölder continuous
function with θ ≤ min{1, α}, i.e., f is almost θ-Hölder continuous.

Step 1. First assume r = 1, i.e., f(x) = f̂(x)1{|x|≥1}. Since (H3) is
satisfied, it follows from Lemma 3.5 that

E
[
f̂

(
V

u

)
1{|V |≥u}

]
=

1

EπD [τ ]

∫
D
E

[
τ−1∑
i=0

f̂

(
Vi
u

)
1{|Vi|≥u}

∣∣∣∣V0 = v

]
πD(dv)

=

∫
D
E

[
τ−1∑
i=0

f̂

(
Vi
u

)
1{|Vi|≥u}

∣∣∣∣V0 = v

]
πD(dv),(5.3)

where τ denotes the first return time of {Vn} to D. Moreover, from Lemma
3.3 we have that π(D) = (EπD [τ ])−1, where πD(·) = π(· ∩ D)/π(D).

Now apply Proposition 4.5 and the identity (5.3) separately to the positive
and negative parts of f̂ to obtain that

lim
u→∞

uαE
[
f̂

(
V

u

)
1{|V |≥u}

]
(5.4)

=

∫
D
C(v)

(∫
Sd−1
+ ×R+

Eαx

[ ∞∑
i=0

F (Xi, Si + s)

]
%(dx, ds)

)
π(dv),

where F (x, s) =
(
e−αsf(esx)/rα(x)

)
1[0,∞). Note that Proposition 4.5 actu-

ally holds conditional on {V0 = v}, where v ∈ Rd+ \ {0}; and to extend this
result so that it holds conditional on {V0 ∼ πD}, we have applied a domi-
nated convergence argument together with the bound provided by (4.17) of
Lemma 4.6. Moreover, we have used that π({0}) = 0, which follows since
π is the law of V :=

∑∞
k=1M1 · · ·Mk−1Qk−1 6= 0 w.p.1. Next, observe by

Lemma 5.1 that∫
Eαx

[ ∞∑
i=0

F (Xi, Si + s)

]
%(dx, ds) =

1

λ′(α)

∫
F (x, s)ηα(dx)ds(5.5)

=
1

λ′(α)

∫
e−αs

rα(x)
f(esx) ηα(dx) ds =

1

λ′(α)

∫
e−αsf(esx) lα(dx) ds,

using that ηα(dx) = rα(x)lα(dx) (cf. (2.3) and the discussion there).
Also, by applying Lemma 3.6 (ii), we obtain that∫

D
C(v)π(dv) :=

∫
D
rα(ṽ)Eαδv

[
|Z|α1{τ=∞}

]
π(dv) = C,(5.6)
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where C is given as in (2.10). Then (5.4), (5.5), and (5.6) imply that

lim
u→∞

uαE
[
f

(
V

u

)]
= lim
u→∞

uαE
[
f̂

(
V

u

)
1{|V |≥u}

]
(5.7)

=
C

λ′(α)

∫
Sd−1
+ ×R+

e−αsf(esx)lα(dx)ds

for any bounded, almost θ-Hölder continuous function f satisfying the rep-
resentation f(x) = f̂(x)1{|x|≥1}, where f̂ is θ-Hölder continuous.

The validity of (5.1) for f with f(x) = f̂(x)1{|x|≥r}, for general r > 0,

then follows by applying (5.7) to the function f̂r(x) = r−αf(rv).
Step 2. It remains to remove the assumption that f is almost θ-Hölder

continuous, needed to apply Proposition 4.5 in the above argument. To this
end, observe that for all r > 0,

Υ(r)
u := uαP

(
V

u
∈ ·, |V |

u
≥ r
)

defines a family of uniformly bounded measures on Rd+ \ B+
r (0), where the

boundedness follows by employing (5.1) with f(x) = 1{|x|≥r}, which is an

almost θ-Hölder continuous function. The Fourier characters x 7→ ei〈x,y〉

are bounded Lipschitz continuous functions for any y ∈ Rd; then fy(x) :=
ei〈x,y〉1{|x|≥r} is almost θ-Hölder continuous for any θ ≤ min{1, α}. Let Lα
be the measure on Rd+ \ {0} defined by the equation∫

Sd−1
+ ×R

e−αsf(esx)lα(dx)ds =

∫
Rd+\{0}

f(x)Lα(dx),

and let L
(r)
α denote its restriction to a measure on Rd+ \B+

r (0). Then, based
on what we have proved so far, by considering real and imaginary parts
separately we may infer the convergence, as u→∞, of∫

ei〈x,y〉Υ(r)
u (dx) = uαE

[
ei〈u

−1V,y〉1{|V |≥ru}

]
→ C

λ′(α)

∫
ei〈x,y〉L(r)

α (dx),

for all y ∈ Rd. Then the Lévy continuity theorem yields the weak convergence

Υ
(r)
u ⇒ C

λ′(α)L
(r)
α , for any r > 0. Now if f ∈ C0

(
Rd+ \ {0}

)
, then there exists

r > 0 such that f is supported on
(
B+
r (0)

)c
. Hence

lim
u→∞

uαE
[
f
(V
u

)]
= lim

u→∞

∫
f(x)Υ(r)

u (dx) =
C

λ′(α)

∫
f(x)Lα(dx),

i.e. (5.1) holds. Finally, the equivalence of (5.1) to (5.2) follows from Theo-
rem 2 in [43].
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5.1. Smoothing. To remove Hypothesis (H3), we employ a lower and
upper approximation, where the approximating sequences are smoothed so
that (H3) is satisfied by these sequences.

We begin by constructing the lower approximating sequence. First recall
the condition (K) introduced just prior to the statement of Thereom 2.4.
Also, from this discussion in Section 2, recall the definitions

(5.8) M̂n := Mkn · · ·Mk(n−1)+1, Q̂n :=
kn∑

i=k(n−1)+1

Mkn · · ·Mi+1Qi,

for all n ∈ N+. Now let k ∈ N+ be chosen such that (K) holds. Then

{(M̂n, Q̂n)} is an i.i.d. sequence under P, and with positive probability, Q̂1−
s~1 � 0 for some s > 0. Let Bn = {Q̂n − s~1 � 0}, and let χn,ε := (−ε)χn
for an i.i.d. sequence {χn}, independent of {(M̂n, Q̂n)}, such that χ1 has
a nondegenerate absolutely continuous distribution concentrated on [0, 1]d

(and thus χ1,ε is concentrated on [−ε, 0]d).

For each n, set Q̂n,ε := Q̂n + 1Bnχn,ε and note that, conditioned on the

event Bn, Q̂n,ε has a continuous distribution function. Then, since the event

Bn occurs with positive probability, the distribution function of Q̂n,ε has an
absolutely continuous component with respect to Lebesgue measure.

Now set

(5.9) Vn,ε = M̂nVn−1,ε + Q̂n,ε, n = 1, 2, . . . ; V0,ε = V0.

Then {Vn,ε} forms the smoothed lower sequence. Let

(5.10) Vε := Q̂1,ε +
∞∑
k=2

M̂1 · · · M̂k−1Q̂k,ε,

and note that the law of Vε is the stationary distribution of the process
{Vn,ε}, which we denote by πε.

A smoothed upper sequence is constructed analogously, now choosing χεn :=
εχn, so that this random variable is concentrated on the interval [0, ε]d. For
each n, let Q̂εn = Q̂n + 1Bnχ

ε
n. Then set V ε

0 = V0 and

V ε
n = M̂nV

ε
n−1 + Q̂εn, n = 1, 2, . . . ; V ε = Q̂ε1 +

∞∑
k=2

M̂1 · · · M̂k−1Q̂
ε
k.

Let πε denote the distribution of V ε.
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Remark 5.3. At this stage, it should be emphasized that this smooth-
ing construction only affects the random quantity Q̂n, and not M̂n, and so
the function Λ is unchanged. Thus, in particular, the solution α to the equa-
tion Λ(α) = 0 and the corresponding invariant function rα and invariant
measure lα are the same as for the unsmoothed process. Moreover, since
M̂1 = Mk · · ·M1 and λ(α) = 1, the factor λ′(α) must now be replaced with
kλ′(α); cf. Lemma 2.3.

Remark 5.4. Observe that if k > 1 in (K), then the evolution of the
lower and upper smoothed sequences cannot be compared to the dynamics
of the process {Vn}, but to that of the k-step chain {Vkn : n ∈ N}, which
at time n is equal to

V̂n := M̂n · · · M̂1V0 +
n∑
i=1

M̂n · · · M̂i+1Q̂i.

We then have the sandwich inequality

Vn,ε ≤ V̂n ≤ V ε
n , where V̂n = Vkn.

For the remainder of this section, we consider the k-step chain {V̂n}, defined

in terms of {(M̂i, Q̂i)}. This k-step chain has the same stationary law, but
different dynamics, than the 1-step chain {Vn}.

For any x ∈ Sd−1
+ and F ⊂ Sd−1

+ , let d(x, F ) = inf {|x− y| : y ∈ F}; and

for a given set E ⊂ Sd−1
+ , let

Eε =

{
x ∈ Sd−1

+ : d(x,E) ≤ 2ε

s

}
and Eε =

{
x ∈ Sd−1

+ : d(x,Ec) >
2ε

s

}
.

Lemma 5.5. Let ε > 0. Then under the assumptions of Theorem 2.4:
(i) The approximating sequences {Vn,ε}n∈N and {V ε

n }n∈N each satisfy Hy-
pothesis (H3).

(ii) For all u > 0, we have the sandwich inequality

P
(
|Vε| > u,

Vε
|Vε|
∈ Eε

)
≤ P

(
|V | > u,

V

|V |
∈ E

)
≤ P

(
|V ε| > u,

V ε

|V ε|
∈ Eε

)
.

Proof. (i) To verify part (i) of (H3), let Pε denote the transition kernel

of the process {Vn,ε} in (5.9). Recall that χε is independent of M̂ and Q̂.
Hence, by construction,

Pε(v,E) = P
(
M̂v + Q̂ ∈ E,Bc

)
+

∫
[−ε,0]d

P
(
M̂v + Q̂+ y ∈ E,B

)
P (χε ∈ dy)
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:= P1,ε(v,E) + P2,ε(v,E).

The kernel P2,ε is obtained by the convolution of P
(
M̂v + Q̂ ∈ ·, B

)
with

the probability measure P (χε ∈ ·), which, by assumption, is smooth; thus
P2,ε(v, ·) itself has a Lebesgue density for all v ∈ Rd+. Hence part (i) of (H3)
is satisfied with Φ taken to be Lebesgue measure and F = Rd+.

Since πε is the stationary distribution of the Markov chain with transition
kernel Pε, it follows that πε has a continuous component with respect to
Lebesgue measure. Hence (supp πε)

◦ 6= ∅ and part (ii) of (H3) is satisfied.
The verification for the process {V ε

n } is analogous.
(ii) By construction,

(5.11) V − Vε = −1B1χ1,ε −
∞∑
k=1

M̂1 · · · M̂k1Bk+1
χk+1,ε,

since Q̂k − Q̂k,ε = 1Bkχε. [Here we define Bk in the same way as B, but

with respect to the pair (M̂k, Q̂k).] Consequently, setting M̂0 to be equal to
the identity matrix and recalling that χε is supported on [−ε, 0]d, we obtain
that

(5.12) |V − Vε| ≤ ε
∣∣∣ ∞∑
k=0

(
M̂0 · · · M̂k

~1
)
1Bk+1

∣∣∣.
Moreover,

(5.13) |V | =
∣∣∣ ∞∑
k=0

M̂0 · · · M̂kQ̂k+1

∣∣∣ ≥ s∣∣∣ ∞∑
k=0

(
M̂0 · · · M̂k

~1
)
1Bk+1

∣∣∣.
This implies that

(5.14)

∣∣∣∣ V|V | − V ε

|V ε|

∣∣∣∣ ≤ 1

|V |
|V − V ε|+ |V ε|

∣∣∣∣ 1

|V |
− 1

|V ε|

∣∣∣∣ ≤ 2
|V − V ε|
|V |

≤ 2ε

s
.

Hence

Vε
|Vε|
∈ Eε ⇒ d

(
Vε
|Vε|

, Ec
)
>

2ε

s
⇒ d

(
V

|V |
, Ec

)
> 0⇒ V

|V |
∈ E.

Furthermore, by (5.11), we also have that |Vε| > u⇒ |V | > u. Consequently,

(5.15) P
(
|Vε| > u,

Vε
|Vε|
∈ Eε

)
≤ P

(
|V | > u,

V

|V |
∈ E

)
.

The remaining inequality of part (ii) is established analogously.
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Since Hypothesis (H3) is satisfied for the two approximating sequences
in Lemma 5.5, it is natural to apply Proposition 5.2 to these sequences,
yielding upper and lower bounds for P (|V | > u, V/ |V | ∈ E) as u→∞.

Let
∣∣Ẑε∣∣ be defined the same as the random variable |Z| in Section 3.2,

but with respect to the process
{

(M̂i, Q̂i,ε) : i = 1, 2, . . .
}

; namely,

(5.16)
∣∣Ẑε∣∣ = |v|+

∞∑
i=1

〈Ŷi, (Q̂i,ε)∼〉
〈Ŷi, X̂i〉

∣∣Q̂i,ε∣∣∣∣M̂i · · · M̂1ṽ
∣∣ Pαδv -a.s.,

where
Ŷi := lim

n→∞

(
M̂ >
i · · · M̂ >

n
~1
)∼

, n = 1, 2, . . . ,

and X̂i =
(
M̂i · · · M̂1v

)∼
. Then, with E = Sd−1

+ , we obtain by Proposition
5.2, Lemma 5.5, and Remark 5.3 that

Cε
αkλ′(α)

≤ uα lim inf
u→∞

P (|V | > u) ≤ lim sup
u→∞

uαP (|V | > u) ≤ Cε

αkλ′(α)
,

where, in view of Lemma 3.6 (ii), we have

Cε =

∫
D
rα(ṽ)Eαδv

[
|Ẑε|α1{τε=∞}

]
πε(dv)

and

Cε =

∫
D
rα(ṽ)Eαδv

[
|Ẑε|α1{τε=∞}

]
πε(dv).

In what follows, we will generally write τ ≡ τ(D) to emphasize the depen-
dence of this quantity on the choice of D. However, it is important to observe
from Proposition 5.2 that Cε and Cε are universal constants, not dependent
on the choice of D.

The next lemma shows that these constants converge to the required
constant C in (2.10) as ε ↓ 0.

Lemma 5.6. Assume the conditions of Theorem 2.4. Then for any set
D = B+

r (0) with π(D) > 0,

(5.17) Cε ↗ C and Cε ↘ C as ε→ 0,

where C is independent of the choice of D and has the representation

(5.18) C =

∫
D
rα(ṽ)Eαδv

[
|Ẑ|α1{τ(D)=∞}

]
π(dv).
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Proof. To establish the result, we will show

(5.19) lim
ε→0

Cε ≥ C(D) and lim
ε→0

Cε ≤ C(D),

where C(D) represents the quantity on the right-hand side of (5.18). Note
that these limits necessarily exist, since Cε, −Cε are monotonically increas-
ing (as follows from the monotonicity, in ε, of Vε and V ε and (5.2)). Then
(5.19) yields limε→0Cε = C(D) = limε→0C

ε.
Step 1. We begin by establishing that limε→0Cε ≥ C(D̄). Set

Hε(v) = rα(v)Eαδv
[
|Ẑε|α1{τε(D̄)=∞}

]
; H(v) = rα(v)Eαδv

[
|Ẑ|α1{τ(D̄)=∞}

]
.

Then we need to show that

(5.20) lim inf
ε→0

∫
D̄
Hε(v)πε(dv) ≥

∫
D̄
H(v)π(dv).

We will prove below that: (i) Hε(v) ↑ H(v) as ε→ 0; and (ii) for all ε ≥ 0,
the function v 7→ Hε(v) is lower semicontinuous.

Assume that (i) and (ii) hold, and fix ε0 > 0. Since Hε(v) is a monotone
increasing sequence as ε ↓ 0,

Cε ≥
∫
D̄
Hε0(v)πε(dv), for all ε ≤ ε0.

As the function v 7→ Hε0(v) is lower semicontinous and bounded from below
by 0, and πε ⇒ π (cf. (5.11)), in then follows from the Portmanteau theorem
([49, Theorem 1.3.4 (iv)]) that

lim inf
ε→0

Cε ≥ lim inf
ε→0

∫
D̄
Hε0(v)πε(dv) ≥

∫
D̄
Hε0(v)π(dv).

Now let ε0 → 0 and use the monotone convergence Hε0 ↑ H to infer by the
monotone convergence theorem that

lim inf
ε→0

Cε ≥ lim
ε0→0

∫
D̄
Hε0(v)π(dv) =

∫
D̄
H(v)π(dv) = C(D̄).

It remains to prove (i) and (ii). In order to obtain (i), observe that |Vn,ε|
increases monotonically to |V̂n| as ε → 0. Thus, if the process {V̂n} en-
ters D̄, then so does {Vn,ε}, for all ε > 0. Hence, we trivially obtain that
1{τ(D̄)=∞} ≥ 1{τε(D̄)=∞}, where τ(D̄), τε(D̄) are the first passage times of

{V̂n}, {Vn,ε} into D̄, respectively. Conversely, observe that if τ(D̄) =∞, then
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V := (V̂1, V̂2, . . .) ∈
(
D̄c
)N

, which is open. Now Vε := (V1,ε, V2,ε, . . .) con-
verges to V a.s. in the product topology (as χε is supported on [−ε, 0]d). It

follows that Vε ∈
(
D̄c
)N

for sufficiently small ε. Consequently, 1{τ(D̄)=∞} ≤
lim infε→0 1{τε(D̄)=∞}. Thus we conclude that 1{τ(D̄)=∞} = limε→0 1{τε(D̄)=∞}
and, moreover, the convergence is monotone, i.e. 1{τε(D̄)=∞} ↑ 1{τ(D̄)=∞} as

ε → 0. Furthermore, as Q̂ε increases componentwise to Q̂, we deduce from
(5.16) and Lemma 3.6 (ii) that |Ẑε| ↑ |Ẑ| as ε→ 0. Also, by Lemma 3.6 (iii),
|Ẑ|α1{τ(D̄)=∞} is an integrable upper bound for the family

{
|Ẑε|α1{τε(D̄)=∞}

}
ε>0

,
and thus we obtain the monotone convergence Hε(v) ↑ H(v) as ε → 0, for
all v ∈ D̄.

To obtain (ii), observe that if v → v̂, then V(v) converges to V(v̂), where
V := (V1,ε, V2,ε, . . .), and by writing V(v), we emphasize the dependence
of this quantity on its initial state. Then by repeating the argument given
above, we obtain that D̄ closed ⇒ 1{τ(D̄,v̂)=∞} ≤ lim infv→v̂ 1{τ(D̄,v̂)=∞},

where, once again, τ(D̄, ·) denotes the dependence on the initial state. From
the representation (5.16), we deduce that the function v 7→ Ẑε(v) is continu-
ous a.s. (namely, this series converges a.s. by Lemma 3.6 (i)). Then we may
apply Fatou’s Lemma and use the continuity of rα to infer that Hε is lower
semicontinuous.

Step 2. To establish the second inequality in (5.19), we proceed as before,
now using (i′) the convergence

Hε(v) := rα(v)Eαδv
[
|Ẑε|α1{τε(D)=∞}

]
↘ rα(v)Eαδv

[
|Ẑ|α1{τ(D)=∞}

]
:= H◦(v)

and (ii′) the upper semicontinuity of Hε(v), which follows since we consider
now the hitting time of an open set. Furthermore, Lemma 3.6 (iii) yields
that supv∈DHε0(v) ≤ B, for some finite constant B. Then we may apply the
Portmanteau theorem ([49, Theorem 1.3.4 (v)]) to infer that

lim sup
ε→0

Cε ≤ lim sup
ε→0

∫
D
Hε0(v)πε(dv) =

∫
D
Hε0(v)π(dv),

for all ε0 > 0, and thus, letting ε0 → 0 and using (i′),

lim sup
ε→0

Cε ≤
∫
D
H◦(v)π(dv) = C(D).

Step 3. It remains to show that if D = B+
r (0), where π(D) > 0, then,

in the first equation in (5.19), we in fact have that limε→0Cε ≥ C(D). To
this end, let {ri} be chosen such that ri ↑ r as i→∞, and set Di = B+

ri(0).

If {V̂n} avoids D, then it also avoids each Di, so we trivially obtain that
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1{τ(D̄i)=∞} ≥ 1{τ(D)=∞}. Conversely, Vn ∈ D ⇒ Vn ∈ D̄i for sufficiently
large i. Thus limi→∞ 1{τ(D̄i)=∞} = 1{τ(D)=∞}. Now limε→0Cε is a universal

constant, independent of the choice of the set D̄ in (5.19). Consequently, we
conclude by (5.19) that

lim
ε→0

Cε ≥ lim
i→∞

C(D̄i) = lim
i→∞

∫
D̄i
rα(ṽ)Eαδv

[
|Ẑ|α1{τ(D̄i)=∞}

]
π(dv)(5.21)

=

∫
D
rα(ṽ)Eαδv

[
|Ẑ|α1{τ(D)=∞}

]
π(dv) = C(D),

as required.

Proof of Theorem 2.4. It follows directly from Proposition 5.2 and
Lemmas 5.5 and 5.6 that for any E ∈ B(Sd−1

+ ),

(5.22) lim inf
u→∞

uαP
(
|V | > tu,

V

|V |
∈ E

)
≥ C

αkλ′(α)
t−α lim sup

ε→0
lα(Eε)

and

(5.23) lim sup
u→∞

uαP
(
|V | > tu,

V

|V |
∈ E

)
≤ C

αkλ′(α)
t−α lim inf

ε→0
lα(Eε).

Now if lα(∂E) = 0, then

lim sup
ε→0

lα(Eε) = lim inf
ε→0

lα(Eε) = lα(E).

Hence the two bounds coincide and, thus, for all measurable E ⊂ Sd−1
+ with

lα(∂E) = 0,

lim
u→∞

uαP
(
|V | > tu,

V

|V |
∈ E

)
=

C

αkλ′(α)
t−αlα(E).

By the Portmanteau Theorem, this implies the weak convergence

(5.24) uαP
(
|V | > tu,

V

|V |
∈ ·
)
⇒ C

αλ′(α)
t−αlα(·) as u→∞,

for all t > 0, which is equivalent to (2.9) by Theorem 2 of [43].

6. Proof of Theorem 2.8. Next we turn to the proof of Theorem 2.8.
Throughout this section, assume that the set A is a semi-cone.

We begin by identifying the constant appearing in the ruin problem for
the random walk {(Xn, S

A
n )}. For this purpose, define

TAu = inf
{
n ∈ N : Mn · · ·M1Ṽ0 ∈ uA

}
.
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Lemma 6.1. Suppose that (H1) and (H2) are satisfied, and assume that
dA is bounded and continuous on Sd−1

+ . Then for all v ∈ Rd+ \ {0},

(6.1) lim
u→∞

uαP
(
TAu <∞

∣∣V0 = v
)

= rα(ṽ)

∫
e−αs

rAα (x)
%A(dx, ds) := rα(ṽ)DA,

where %A is the asymptotic overjump distribution of the process {(Xn, S
A
n )}.

Proof. Converting to the α-shifted measure, we obtain that for any
v ∈ Rd+ \ {0},

uαP
(
TAu <∞|V0 = v

)
= rα(ṽ)Eαṽ

[
e
−α
(
SA
TAu
−log u

) (
rAα
(
XTAu

))−1
1{TAu<∞}

]
,

using the definitions of SAn and rAα . To characterize the limit on the right-
hand side, use the weak convergence (3.31), which holds due to Kesten’s
renewal theorem.

To establish the weak convergence of {TAu /uα}, the main idea will be to
study the excursions of {Vn} over cycles eminating from the set D. For this
purpose, we introduce the random variables

Ui := max
κi−1<n≤κi

V A
n , i = 1, 2, . . . ,

where V A
n := Vn/dA(Ṽn) and {κi} denote the successive return times to D;

that is, κi = inf{n > κi−1 : Vn ∈ D}, i ∈ N+; κ0 = 0. For n ∈ N+, also set

M U
n = max {U1, . . . , Un} ; Mn = max

{
V A

1 , . . . , V
A
n

}
.

Recall that {TAu ≤ N} = {V A
n > u, some n ≤ N}. Thus, {M U

n > u}
describes the event that TAu occurs by the random time κn, while {Mn > u}
describes the event that TAu occurs by the deterministic time n.

Proposition 6.2. Suppose that (H1) and (H2) are satisfied, and suppose
that there exists m ∈ N+ such that (H3) holds for the m-skeleton {Vmn : n ∈
N}. Assume that D ∈ B(Rd+) is bounded and π(D) > 0, and suppose that the

function dA is bounded and continuous on Sd−1
+ . Then for all v ∈ Rd+ \ {0},

(6.2) lim
n→∞

P
(
M U

n ≤ n1/αu
∣∣V0 = v

)
= exp

{
−KA EπD [τ ]u−α

}
,

where KA = CDA and C is given as in (2.10).
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Unless explicitly noted, we assume throughout the rest of this section that
V0 = v for a fixed v ∈ Rd+ \ {0}, i.e., P = Pv.

Proof. Set un = n1/αu. Then for any l ∈ N+,

l∑
i=1

P (Ui > un)−
∑

1≤i<j≤l
P (Ui > un, Uj > un)(6.3)

≤ P
(
M U

l > un
)
≤

l∑
i=1

P (Ui > un) .

Now fix k ∈ N+. We begin by calculating
∑l(n)

i=1 P (Ui > un), as n → ∞,
for the sequence l(n) = bn/kc. By Eq. (4.2) of Corollary 4.2 and the Markov
property, we have that for all i ∈ N+ and w ∈ Rd+ \ {0},

lim
n→∞

nuαP
(
Ui > un

∣∣Vκi−1 = w
)

= lim
n→∞

nuαP
(
TAu < τ |V0 = w

)
(6.4)

= rα(w̃)Eαδw
[
|Z|α1{τ=∞}

] ∫ e−αs

rAα (x)
%A(dx, ds) := H(w) = C(w)DA.

Under Hypotheses (H3), {Vmn : n ≥ 0} is a positive aperiodic Harris
chain (Lemma 3.4). Then {Vn}, and hence {Vκi}, are positive m-periodic
Harris chains (cf. [1, Theorem 8.3.7]), and the invariant measure of {Vκi}
is πD (cf. Lemma 3.3). If γi denotes the law of Vκi , i ∈ N+, then Harris
recurrence gives that |n−1

∑n
i=1 γi − πD|TV → 0 as n → ∞, where | · |TV

denotes the total variation distance; see [37, Theorem 13.3.4]. Set

Hn(w) = nuαP (U1 > un | V0 = w) .

Using (4.17) with h ≡ 1, we have sup {Hn(w) : w ∈ D \ {0}, n ∈ N} ≤ B <
∞. Now nuαP (Ui > un) =

∫
DHn(w)γi−1(dw), and

∣∣∣∣kn
bn/kc∑
i=1

nuαP (Ui > un)−
∫
D
H(w)πD(dw)

∣∣∣∣(6.5)

≤

∣∣∣∣∣∣
∫
D
Hn(w)

(
k

n

bn/kc∑
i=1

γi−1 − πD
)

(dw)−
∫
D

(
Hn(w)−H(w)

)
πD(dw)

∣∣∣∣∣∣
≤ B

∣∣∣∣∣∣kn
bn/kc∑
i=1

γi−1 − πD

∣∣∣∣∣∣
TV

+

∫
D
|Hn(w)−H(w)|πD(dw).
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The second term tends to zero as n→∞ by dominated convergence and the
fact that Hn(w) → H(w), by (6.4). Thus the left-hand side of (6.5) tends
to zero as n→∞, and hence, using (6.4),

lim
n→∞

bn/kc∑
i=1

uαP (Ui > un) =
1

k

∫
D
H(w)πD(dw)(6.6)

=
DA

k

∫
D
C(w)

π(dw)

π(D)
=
KAEπD [τ ]

k
,

since C =
∫
DC(w)π(dw) and EπD [τ ] = (π(D))−1 (by Lemma 3.3). Substi-

tuting this equation into (6.3), we deduce that for any k ∈ N+,

(6.7) lim sup
n→∞

P
(
M U
bn/kc > un

)
≤ KAEπD [τ ]

k
u−α.

Note that the right-hand side is independent of V0 ∈ Rd+ \{0}, and hence the
same calculation yields the asymptotic behavior of the maximum over any
block of comparable length; in particular, for lim supn→∞ P

(
Ubjn/kc+1, . . . ,

Ub(j+1)n/kc > un
∣∣Fκbjn/kc

)
, j = 0, . . . , k − 1. Hence, letting k → ∞, we

conclude by (6.7) that

lim sup
n→∞

P
(
M U

n ≤ un
)
≤
(

1− KAEπD [τ ]u−α

k

)k
→ exp

{
−KAEπD [τ ]u−α

}
as k →∞. Moreover, again using the upper bound provided by Lemma 4.6
(uniform in the initial state), we obtain that for any positive integer k,

(6.8) lim sup
n→∞

∑
1≤i<j≤bn/kc

P (Ui > un, Uj > un) = o

(
1

k

)
as n→∞.

Finally, using (6.6) and (6.8) in (6.3), we see that we also have

lim inf
n→∞

P
(
M U

n ≤ un
)
≥ exp

{
−KAEπD [τ ]u−α

}
.

Lemma 6.3. Suppose that (H1), (H2), and (H3) are satisfied and dA is
bounded and continuous. Then for any ∆ > 0, there exists a constant δ > 0
such that

(6.9) lim sup
n→∞

P
(

max
|m−n|<nδ

|Mm −Mn| > n1/α∆

)
≤ ∆.
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Proof. Let k ∈ N+. Then Mn+k = max
{
Mn, V

A
n+1, . . . , V

A
n+k

}
, and

hence
Mn ≤Mn+k ≤Mn + max

{
V A
n+1, . . . , V

A
n+k

}
.

Since V A
n := Vn/dA(Ṽn), it follows that

(6.10) max
|m−n|<nδ

|Mm −Mn| ≤ bmax
{
|Vbn−nδc+1|, . . . , |Vbn+nδc|

}
,

where b = max
{

(dA(x))−1 : x ∈ Sd−1
+

}
<∞. We now determine the maxi-

mum on the right-hand side, conditioned on {Vbn−nδc = v}. Set

mn = bn+ nδc − (bn− nδc+ 1) ≤ 2nδ,

and observe that as an upper bound, it is sufficient to study Mmn condi-
tioned on {V0 = v}.

Let D ⊂ Rd+ be chosen such that π(Dc) ≤ ∆/2, and let v ∈ D \ {0}.
Since Mn ≤ M U

n and mn ≤ 2nδ, we obtain from Proposition 6.2 (with
A = {x ∈ Rd+ : |x| > 1}) that

lim sup
n→∞

P
(
Mmn > n1/α∆

∣∣V0 = v
)
≤ 1− exp {−KA EπD [τ ] · 2δ∆−α}

= 2KA EπD [τ ] ∆−αt, where t ∈ (0, δ),(6.11)

and the right-hand side is ≤ ∆/2 when δ is chosen sufficiently small. Note
that (6.11) holds for all v ∈ D \ {0}. Finally, let γn denote the distribution
function of Vbn−nδc. By the positive Harris recurrence of {Vn} (Lemma 3.4),
we have that |γn − π|TV → 0 as n → ∞. Then, using Fatou’s lemma, we
deduce that

lim sup
n→∞

P
(

max
|m−n|<nδ

|Mm −Mn| > n1/α∆

)
≤ lim sup

n→∞

(
γn(Dc) + |γn − π|TV +

∫
D
P
(

Mmn > n1/α∆
∣∣∣ V0 = v

)
π(dv)

)
≤ π(Dc) +

∆

2
π(D) ≤ ∆.

Proof of Theorem 2.8. Assuming that dA is bounded, the first asser-
tion follows from Corollary 4.2, Eq. (4.2), and the uniformity provided by
Lemma 4.6. To remove the assumption that dA is bounded, see Step 4 below.
To establish the remaining assertion, we proceed in four steps.

Step 1. First assume that dA is bounded and continuous and that (H3)
is satisfied. We claim that

(6.12) lim
n→∞

P
(
Mn ≤ n1/αu

)
= e−KAu

−α
;
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that is to say, we can transfer the result for maxima over cycles (Proposition
6.2) to the process of running maxima, namely to Mn.

To establish an upper bound for lim supn→∞ P
(
Mn ≤ n1/αu

)
, observe

that, by definition, M U
ND(n) corresponds to the value of {Mj} during its last

visit to D in the time interval [0, n]. Thus

(6.13) P
(
Mn > n1/αu

)
≥ P

(
M U

ND(n) > n1/αu
)
.

To replace the random time ND(n) by a fixed time, observe by Lemma
3.3 that for all δ > 0,

(6.14) P
(∣∣∣∣ND(n)

n
− π(D)

∣∣∣∣ ≥ δ)→ 0 as n→∞.

Set tn = n (π(D)− δ) and Ωn =
{∣∣ (ND(n)/n)− π(D)

∣∣ < δ
}

, and note that
ND(n) ≥ btnc on Ωn. Then

(6.15) P
(
M U

ND(n) > n1/αu
)
≥ P

(
M U
btnc > n1/αu

)
− P (Ωc

n) .

Then combining (6.13), (6.14), and (6.15) and applying Proposition 6.2, we
conclude that for all δ > 0,

lim inf
n→∞

P
(
Mn > n1/αu

)
≥ lim

n→∞
P
(
M U
btnc > n1/αu

)
= 1− exp

{
−KAEπD [τ ] (π(D)− δ)u−α

}
.

Hence, letting δ ↓ 0 and recalling that π(D) = (EπD [τ ])−1 (Lemma 3.3), we
obtain that

(6.16) lim sup
n→∞

P
(
Mn ≤ n1/αu

)
≤ exp{−KAu

−α}.

To establish the corresponding lower bound for P
(
Mn ≤ n1/αu

)
, observe

that for any ∆ > 0,

P
(
Mn > n1/αu

)
≤ P

(
M U

ND(n) > n1/α(u−∆)
)

(6.17)

+ P
(∣∣∣Mn −M U

ND(n)

∣∣∣ > n1/α∆
)
.

Reasoning as before, we see that the first term on the right-hand side satisfies

(6.18) lim sup
n→∞

P
(
M U

ND(n) > n1/α(u−∆)
)
≤ 1− exp

{
−KA(u−∆)−α

}
.
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Now to quantify the second term on the right-hand side of (6.17), recall
that M U

ND(n) is the value of the process {Mj} during its last visit to D in

the interval [0, n]. Since κi denotes the time of the ith visit to D, it follows
by definition that M U

ND(n) = MκND(n)
. Moreover, for any δ > 0, we obtain

by Lemma 3.3 that

P
(∣∣∣κND(n)

n
− 1
∣∣∣ ≥ δ)→ 0 as n→∞.

Set Ω̂n =
{∣∣(κND(n)/n

)
− 1
∣∣ < δ

}
. Then

P
(∣∣∣Mn −M U

ND(n)

∣∣∣ > n1/α∆
)
≤ P

(∣∣∣Mn −M U
ND(n)

∣∣∣ > n1/α∆; Ω̂n

)
+ P

(
Ω̂c
n

)
≤ P

(
max

|m−n|<nδ
|Mm −Mn| > n1/α∆

)
+ o(1)

as n→∞. Hence by Lemma 6.3,

(6.19) lim sup
n→∞

P
(∣∣∣Mn −M U

ND(n)

∣∣∣ > n1/α∆
)
≤ ∆.

Finally, substituting (6.18) and (6.19) into (6.17) and letting ∆ → 0, we
conclude that lim infn→∞ P

(
Mn ≤ n1/αu

)
≥ exp

{
−KAu

−α}. Together
with (6.16), the assertion follows.

Step 2. Next we remove the additional assumption (H3), but still assume
that the function dA is bounded and continuous.

To remove (H3), we employ the smoothing argument introduced in Section

5. Let {(M̂n, Q̂n : n = 0, 1, . . .} be defined as in (5.8). Then, since we are

assuming here that k = 1 in (K), it follows that (M̂n, Q̂n) = (Mn, Qn) for
all n ∈ N+. This yields Vn,ε ≤ Vn ≤ V ε

n for all n ∈ N+.
By repeating the computation leading to (5.14), we obtain∣∣∣Ṽn,ε − Ṽn∣∣∣ ≤ 2ε

s
and

∣∣∣Ṽ ε
n − Ṽn

∣∣∣ ≤ 2ε

s
for all n ∈ N+.

Since dA is assumed to be continuous on the compact set Sd−1
+ , it is, in fact,

equicontinous. Hence there is a sequence δ(ε), tending to zero as ε→ 0, such
that∣∣∣dA(Ṽn,ε)− dA(Ṽn)

∣∣∣ ≤ δ(ε) and
∣∣∣dA(Ṽ ε

n

)
− dA

(
Ṽn
)∣∣∣ ≤ δ(ε) for all n ∈ N+.

Since A ⊂ {v : |v| > 1} ⇒ dA > 1, we have |Vn| ≤ udA
(
Ṽn
)
⇒

|Vn,ε| ≤ u dA
(
Ṽn
)
≤ u dA

(
Ṽn,ε

)
+ u δ(ε) ≤ u dA

(
Ṽn,ε)

(
1 + δ(ε)

)
.
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Thus P (Mn ≤ u) ≤ P (Mn,ε ≤ u(1 + δ(ε))). Similarly, for all n ∈ N+,

|V ε
n | ≤ u dA

(
Ṽ ε
n

)(
1− δ(ε)

)
⇒ |Vn| ≤ u dA

(
Ṽ ε
n

)
− u δ(ε) ≤ u dA

(
Ṽn
)
,

and we obtain that P (Mn ≤ u) ≥ P (M ε
n ≤ u(1− δ(ε))). Using these upper

and lower bounds together with Step 1, we conclude that

exp
{
−Kε(u− δ(ε))−α

}
≤ lim inf

n→∞
P
(
Mn ≤ n1/αu

)
(6.20)

≤ lim sup
n→∞

P
(
Mn ≤ n1/αu

)
≤ exp

{
−Kε(u+ δ(ε))−α

}
,

for constants Kε := CεDA and Kε := CεDA, where Cε and Cε are given as
in Section 5. By Lemma 5.6, this yields (6.12).

Step 3. We now relate the behavior of the maxima to the behavior of the
first passage times. Recall that Vn ∈ uA ⇔ |Vn| > udA(Ṽn) ⇔ |V A

n | > u.
Hence for all n ∈ N+ and all u > 0,

(6.21) P
(
TAu ≤ n

)
= P

(
|V A
i | > u, some 1 ≤ i ≤ n

)
= P (Mn > u) .

Then by (6.12) and (6.21), limn→∞ P
(
TA
n1/αw

≤ n
)

= 1 − e−KA w−α ; and

setting u = n1/αw and z = w−α yields

(6.22) lim
u→∞

P
(
TAu
uα
≤ z
)

= 1− e−KA z, z ≥ 0.

Step 4. Finally suppose that PA := {x ∈ Sd−1
+ : dA(x) < ∞} 6= Sd−1

+ .
For any L ≥ 1, set

KL = {w ∈ Rd+ : |w| ≥ L} and AL = A ∪KL.

First observe that dKL
(x) := inf{t : tx ∈ KL} = L, ∀x ∈ Sd−1

+ . Hence,
letting rKL

α be defined as in (2.18), we have that rKL
α (x) = Lαrα(x) ↑ ∞ as

L→∞ (uniformly in x, by Lemma 2.2). Now in general, the constant KA is
proportional to DA, where the latter constant was characterized in Lemma
6.1. Using this characterization, we see that rKL

α (x) ↑ ∞, ∀x⇒ DKL
A ↓ 0 as

L→∞. Consequently,

(6.23) ∆(L) := lim
u→∞

P
(
TKL
u

uα
≤ z
)
↘ 0 as L→∞.

Since ∣∣∣∣P(TALuuα ≤ z
)
− P

(
TAu
uα
≤ z
)∣∣∣∣ ≤ P

(
TKL
u

uα
≤ z
)
,
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we conclude that for all z ≥ 0,

lim
u→∞

P
(
TALu
uα
≤ z
)
−∆(L) ≤ lim inf

u→∞
P
(
TAu
uα
≤ z
)

≤ lim sup
u→∞

P
(
TAu
uα
≤ z
)
≤ lim

u→∞
P
(
TALu
uα
≤ z
)

+ ∆(L).

Thus, by (6.23) and Step 3,

lim
u→∞

P
(
TAu
uα
≤ z
)

= 1− lim
L→∞

exp
{
− (CDAL)z

}
:= 1− exp

{
− (CDA)z

}
.

Observe thatDA := limL→∞DAL exists, sinceDAL = uαP
(
TALu <∞|V0 ∼ πD

)
is a decreasing sequence; namely, it represents the hitting probability of a
decreasing sequence of sets.

It remains to identify DA as the ruin constant in this case. Arguing as
before, we have that for all u > 0,∣∣∣uαP (TALu <∞|V0 = v

)
−uαP

(
TAu <∞|V0 = v

) ∣∣∣ ≤ uαP (TKL
u <∞|V0 = v

)
,

which tends to zero as L→∞. Thus, by another sandwich argument,

lim
u→∞

uαP
(
TAu <∞|V0 = v

)
= lim
L→∞

(
lim
u→∞

uαP
(
TALu <∞|V0 = v

))
=rα(ṽ) lim

L→∞
DAL = rα(ṽ)DA,

which gives the required identification of DA as the constant in the ruin
problem for the Markov random walk; cf. Lemma 6.1.

To conclude the proof, observe that the same reasoning yields (2.22) for
unbounded functions dA; namely, one can again introduce the family AL =
A∪KL for L ≥ 1, and argue that the hitting probability of the set KL—now
prior to the return time τ—becomes asymptotically negligible as L → ∞.
The argument is entirely identical, so we omit the details.

7. Determining the path of large exceedance. We conclude by
providing the proofs of Theorems 2.11 and 2.12. [For a stronger version of
Theorem 2.11, allowing paths of infinite length, see the arXiv version [16].]

Proof of Theorem 2.11. It follows by Theorem 2.8 that

lim
u→∞

uαEv
[
1{TAu <τ}

]
= C(v)

∫
e−αs

rAα (x)
%A(dx, ds) = C(v)DA,



56 J. F. COLLAMORE AND S. MENTEMEIER

where C(v) = rα(ṽ)Eαδv
[
|Z|α1{τ=∞}

]
and DA is given as in (2.20). Thus, to

establish the result, it suffices to show that

lim
u→∞

uαEv
[
g

(
VIu
|VIu |

, . . . ,
VIu+m

|VIu |

)
1{TAu <τ}

]
(7.1)

= C(v)DA

∫
Eαx
[
g
(
X0, e

S1X1, . . . , e
SmXm)

]
%(dx, ds),

To verify (7.1), proceed as in the proof of Proposition 4.1, first converting
to the α-shifted measure to obtain that

uαEv
[
g

(
VIu
|VIu |

, . . . ,
VIu+m

|VIu |

)
1{TAu <τ}

]
(7.2)

= uαrα(ṽ)Eαδv

[
e
−αS

TAu

rα(XTAu
)
g

(
VIu
|VIu |

, . . . ,
VIu+m

|VIu |

)
1{TAu <τ}

]
= rα(ṽ)Eαδv

[
|ZTAu |

αGu1{TAu <τ}

]
,

where Zn := |Vn|/eSn , n = 0, 1, . . . , and

(7.3) Gu :=
1

rAα (XTAu
)

(∣∣V A
TAu

∣∣
u

)−α(
dA(XTAu

)

dA(ṼTAu )

)α
g

(
VIu
|VIu |

, . . . ,
VIu+m

|VIu |

)
.

[The term
(
dA(XTAu

)/dA(ṼTAu )
)α

arises when replacing |VTAu |
−α/rα(XTAu

)

with |V A
TAu
|−α/rAα (XTAu

), as can be seen directly from the definitions (2.18)

and (3.32).] The right-hand side of (7.2) can be written as the difference of
two terms, namely

rα(ṽ)Eαδv

[(∣∣ZTAu ∣∣α1{TAu <τ} − |Zn|α 1{n≤TAu }1{n≤τ})Gu

]
(7.4)

+ rα(ṽ)Eαδv

[
|Zn|α 1{n≤TAu }1{n≤τ} E

α
[
Gu |Fn

]]
.

As in the proof of Proposition 4.1, we may then apply Lemma 4.3 (i) and
use the uniform boundedness of {Gu} to conclude that the first term in (7.4)
tends to zero as u→∞ and then n→∞.

Thus, it suffices to analyze the second term in (7.4). Reasoning again as
in the proof of Proposition 4.1, it suffices to show that

lim
u→∞

Eα [Gu|Fn] = DA lim
u→∞

EαXn,Vn

[
g

(
VIu
|VIu |

, . . . ,
VIu+m

|VIu |

)]
Pα-a.s..(7.5)
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Now to establish (7.5), introduce a further conditioning on FIu+m inside
Eα [Gu|Fn]. Then by the nonlinear renewal theorem (Theorem 3.8) together
with Lemma 3.10,

D(u) := EαXIu+m,VIu+m

 1

rAα (ṼTAu )

(∣∣V A
TAu

∣∣
u

)−α(
dA(XTAu

)

dA(ṼTAu )

)α
rAα (ṼTAu )

rAα (XTAu
)

1{Iu+m<TAu }

converges to DA in Pα-probability. Then on {n ≤ TAu },

lim
u→∞

Eα [Gu|Fn] = lim
u→∞

EαXn,Vn

[
(D(u)−DA) g

(
VIu
|VIu |

, . . . ,
VIu+m

|VIu |

)]
+ lim
u→∞

DA EαXn,Vn

[
g

(
VIu
|VIu |

, . . . ,
VIu+m

|VIu |

)]
Pα-a.s.,

and the first term on the right-hand side vanishes by dominated convergence.
This completes the proof of (7.5) and hence the theorem.

Proof of Theorem 2.12. It suffices to show that

lim sup
u→∞

uαEv

∣∣∣∣ 1

TAu

TAu∑
n=1

g

(
log

(
|Vn|
|Vn−1|

))
− Êα [g(S1)]

∣∣∣∣1{TAu <τ}
 = 0.

For simplicity, introduce the shorthand notation µg := Êα[g(S1)] and
Σn
i :=

∑n
j=i g

(
log |Vj | − log |Vj−1|

)
.

Let {εu}u>0 be a sequence such that εu = o(u) and εu ↑ ∞ as u → ∞.
Let γu = u − εu and Ju = TAγu , and set B1 = maxx,y (rα(x)/rα(y)). Then
from a change of measure argument, we infer that

uαE
[∣∣∣ 1

TAu
Σ
TAu
1 − µg

∣∣∣1{TAu <τ}
∣∣∣∣ V0 = v

]
= rα(ṽ)Eαδv

[
e
−α(S

TAu
−log u)

rα(XTAu
)

∣∣∣ 1

TAu
Σ
TAu
1 − µg

∣∣∣1{TAu <τ}]
≤ B1 Eαδv

[∣∣∣ 1

Ju
ΣJu

1 − µg
∣∣∣]+B1 Eαδv

[∣∣∣ 1

Ju
ΣJu

1 −
1

TAu
Σ
TAu
1

∣∣∣] := I1(u) + I2(u).

First consider I2(u). Note |J−1
u ΣJu

1 − (TAu )−1Σ
TAu
1 | is bounded above by∣∣∣∣ 1

Ju

(
ΣJu

1 − Σ
TAu
1

)∣∣∣∣+

∣∣∣∣( 1

Ju
− 1

TAu

)
Σ
TAu
1

∣∣∣∣ ≤ 2

∣∣∣∣TAu − JuJu

∣∣∣∣ · |g|∞.
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By Lemma 3.12, (Ju/ log u) → (λ′(α))−1 and
(
(TAu − Ju)/ log u

)
→ 0 in

Pα-probability. Hence, the term inside the expectation in I2(u) tends to
zero in Pα-probability and furthermore is bounded above by 2|g|∞. Thus
lim supu→∞ I2(u) = 0.

To study I1(u), observe that |J−1
u ΣJu

1 − µg| is bounded above by

1

Ju

Ju∑
n=1

∣∣∣∣g(log

(
|Vn|
|Vn−1|

))
− g
(
Sn−Sn−1

)∣∣∣∣ +

∣∣∣∣∣ 1

Ju

Ju∑
n=1

g (Sn − Sn−1)− µg

∣∣∣∣∣ .
By Lemma 3.12, Ju ↑ ∞ a.s. as u → ∞. The second term tends to zero
Pα-a.s., by [10, Lemma 6.1]. Next, use the Lipschitz continuity of g to infer
that for some finite constant Bg, the first term is bounded above by

Bg
Ju

Ju∑
n=1

(∣∣∣ log |Vn| − log |Vn−1| − (Sn − Sn−1)
∣∣∣).

Also, it follows directly from the definitions (as given in (2.5) and (3.9)) that

(7.6)
∣∣∣ log |Vn| − log |Vn−1| − (Sn − Sn−1)

∣∣∣ :=
∣∣∣ log |Zn| − log |Zn−1|

∣∣∣.
Now by Lemma 3.6, {|Zn|} converges a.s. to the proper random variable |Z|
(and thus forms a Cauchy sequence). Then by Césaro’s theorem,

(7.7) lim sup
u→∞

1

Ju

Ju∑
n=1

∣∣∣ log |Zn| − log |Zn−1|
∣∣∣ = 0 a.s.,

and we conclude by an application of Fatou’s lemma that lim supu→∞ I1(u) =
0 Pα-a.s. This establishes (2.28).
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