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Abstract: We present evolution equations for a family of paths that results from anisotropically
weighting curve energies in non-linear statistics of manifold valued data. This situation arises
when performing inference on data that have non-trivial covariance and are anisotropic distributed.
The family can be interpreted as most probable paths for a driving semi-martingale that through
stochastic development is mapped to the manifold. We discuss how the paths are projections
of geodesics for a sub-Riemannian metric on the frame bundle of the manifold, and how the
curvature of the underlying connection appears in the sub-Riemannian Hamilton–Jacobi equations.
Evolution equations for both metric and cometric formulations of the sub-Riemannian metric
are derived. We furthermore show how rank-deficient metrics can be mixed with an underlying
Riemannian metric, and we relate the paths to geodesics and polynomials in Riemannian geometry.
Examples from the family of paths are visualized on embedded surfaces, and we explore
computational representations on finite dimensional landmark manifolds with geometry induced
from right-invariant metrics on diffeomorphism groups.

Keywords: sub-Riemannian geometry; geodesics; most probable paths; stochastic development;
non-linear data analysis; statistics

1. Introduction

When manifold valued data have non-trivial covariance (i.e., when anisotropy asserts higher
variance in some directions than others), non-zero curvature necessitates special care when generalizing
Euclidean space normal distributions to manifold valued distributions: in the Euclidean situation,
normal distributions can be seen as transition distributions of diffusion processes, but on the
manifold, holonomy makes transport of covariance path-dependent in the presence of curvature,
preventing a global notion of a spatially constant covariance matrix. To handle this, in the diffusion
principal component analysis (PCA) framework [1], and with the class of anisotropic normal
distributions on manifolds defined in [2,3], data on non-linear manifolds are modelled as being
distributed according to transition distributions of anisotropic diffusion processes that are mapped
from Euclidean space to the manifold by stochastic development (see [4]). The construction is
connected to a non-bracket-generating sub-Riemannian metric on the bundle of linear frames of
the manifold, the frame bundle, and the requirement that covariance stays covariantly constant gives a
nonholonomically constrained system.

Velocity vectors and geodesic distances are conventionally used for estimation and statistics in
Riemannian manifolds; for example, for estimation of the Frechét mean [5], for Principal Geodesic
Analysis [6], and for tangent space statistics [7]. In contrast to this, anisotropy as modelled with
anisotropic normal distributions makes a distance for a sub-Riemannian metric the natural vehicle for
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estimation and statistics. This metric naturally accounts for anisotropy in a similar way as the precision
matrix weights the inner product in the negative log-likelihood of a Euclidean normal distribution.
The connection between the weighted distance and statistics of manifold valued data was presented
in [2], and the underlying sub-Riemannian and fiber-bundle geometry, together with properties of
the generated densities, was further explored in [3]. The fundamental idea is to perform statistics on
manifolds by maximum likelihood (ML) instead of parametric constructions that use, for example,
approximating geodesic subspaces; by defining natural families of probability distributions (in this
case using diffusion processes), ML parameter estimates give a coherent way to statistically model
non-linear data. The anisotropically weighted distance and the resulting family of extremal paths
arises in this situation when the diffusion processes have non-isotropic covariance (i.e., when the
distribution is not generated from a standard Brownian motion).

In this paper, we focus on the family of most probable paths for the semi-martingales that drives the
stochastic development, and in turn the manifold valued anisotropic stochastic processes. Such paths,
as exemplified in Figure 1, extremize the anisotropically weighted action functional. We present
derivations of evolution equations for the paths from different viewpoints, and we discuss the role of
frames as representing either metrics or cometrics. In the derivation, we explicitly see the influence
of the connection and its curvature. We then turn to the relation between the sub-Riemannian metric
and the Sasaki–Mok metric on the frame bundle, and we develop a construction that allows the
sub-Riemannian metric to be defined as a sum of a rank-deficient generator and an underlying
Riemannian metric. Finally, we relate the paths to geodesics and polynomials in Riemannian geometry,
and we explore computational representations on different manifolds including a specific case:
the finite dimensional manifolds arising in the Large Deformation Diffeomorphic Metric Mapping
(LDDMM) [8] landmark matching problem. The paper ends with a discussion concerning statistical
implications, open questions, and concluding remarks.
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Figure 1. (a) A most probable path (MPP) for a driving Euclidean Brownian motion on an ellipsoid.
The gray ellipsis over the starting point (red dot) indicates the covariance of the anisotropic diffusion.
A frame ut (black/gray vectors) representing the square root covariance is parallel transported along
the curve, enabling the anisotropic weighting with the precision matrix in the action functional.
With isotropic covariance, normal MPPs are Riemannian geodesics. In general situations, such as the
displayed anisotropic case, the family of MPPs is much larger; (b) The corresponding anti-development
in R2 (red line) of the MPP. Compare with the anti-development of a Riemannian geodesic with same
initial velocity (blue dotted line). The frames ut ∈ GL(R2, Txt M) provide local frame coordinates for
each time t.

Background

Generalizing common statistical tools for performing inference on Euclidean space data to
manifold valued data has been the subject of extensive work (e.g., [9]). Perhaps most fundamental
is the notion of Frechét or Karcher means [5,10], defined as minimizers of the square Riemannian
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distance. Generalizations of the Euclidean principal component analysis procedure to manifolds are
particularly relevant for data exhibiting anisotropy. Approaches include principal geodesic analysis
(PGA, [6]), geodesic PCA (GPCA, [11]), principal nested spheres (PNS, [12]), barycentric subspace
analysis (BSA, [13]), and horizontal component analysis (HCA, [14]). Common to these constructions
are explicit representations of approximating low-dimensional subspaces. The fundamental challenge
here is that the notion of Euclidean linear subspace on which PCA relies has no direct analogue in
non-linear spaces.

A different approach taken by diffusion PCA (DPCA, [1,2]) and probabilistic PGA [15] is to base
the PCA problem on a maximum likelihood fit of normal distributions to data. In Euclidean space,
this approach was first introduced with probabilistic PCA [16]. In DPCA, the process of stochastic
development [4] is used to define a class of anisotropic distributions that generalizes the family of
Euclidean space normal distributions to the manifold context. DPCA is then a simple maximum
likelihood fit in this family of distributions mimicking the Euclidean probabilistic PCA. The approach
transfers the geometric complexities of defining subspaces common in the approaches listed above to
the problem of defining a geometrically natural notion of normal distributions.

In Euclidean space, squared distances ‖x − x0‖2 between observations x and the mean x0 are
affinely related to the negative log-likelihood of a normal distribution N (x0, Id). This makes an ML
fit of the mean such as performed in probabilistic PCA equivalent to minimizing squared distances.
On a manifold, distances dg(x, x0)

2 coming from a Riemannian metric g are equivalent to tangent
space distances ‖Logx0

x‖2 when mapping data from M to Tx0 M using the inverse exponential map
Logx0

. Assuming Logx0
x are distributed according to a normal distribution in the linear space Tx0 M,

this restores the equivalence with a maximum likelihood fit. Let {e1, . . . , ed} be the standard basis
for Rd. If u : Rd → Tx0 M is a linear invertible map with ue1, . . . , ued orthonormal with respect to g,
the normal distribution in Tx0 M can be defined as uN (0, Id) (see Figure 2).

M
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v

M

x0
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Figure 2. (a) Normal distributions uN (0, Id) in the tangent space Tx0 M with covariance uuT

(blue ellipsis) can be mapped to the manifold by applying the exponential map Expx0
to sampled

vectors v ∈ Tx0 M (red vectors). This effectively linearises the geometry around x0; (b) The stochastic
development map ϕu maps Rd valued paths wt to M by transporting the covariance in each step
(blue ellipses) giving a covariance ut along the entire sample path. The approach does not linearise
around a single point. Holonomy of the connection implies that the covariance “rotates” around
closed loops—an effect which can be illustrated by continuing the transport along the loop created by
the dashed path. The anisotropic metric gFM weights step lengths by the transported covariance at
each time t.

The map u can be represented as a point in the frame bundle FM of M. When the orthonormal
requirement on u is relaxed so that uN (0, Id) is a normal distribution in Tx0 M with anisotropic
covariance, the negative log-likelihood in Tx0 M is related to (u−1Logx0

x)T(u−1Logx0
x) in the same

way as the precision matrix Σ−1 is related to the negative log-likelihood (x − x0)
TΣ−1(x − x0) in

Euclidean space. The distance is thus weighted by the anisotropy of u, and u can be interpreted as
a square root covariance matrix Σ1/2.
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However, the above approach does not specify how u changes when moving away from the
base point x0. The use of Logx0

x effectively linearises the geometry around x0, but a geometrically
natural way to relate u at points nearby to x0 will be to parallel transport it, equivalently specifying
that u when transported does not change as measured from the curved geometry. This constraint is
nonholonomic, and it implies that any path from x0 to x carries with it a parallel transport of u lifting
paths from M to paths in the frame bundle FM. It therefore becomes natural to equip FM with a form
of metric that encodes the anisotropy represented by u. The result is the sub-Riemannian metric on FM
defined below that weights infinitesimal movements on M using the parallel transport of the frame u.
Optimal paths for this metric are sub-Riemannian geodesics giving the family of most probable paths for
the driving process that this paper concerns. Figure 1 shows one such path for an anisotropic normal
distribution with M an ellipsoid embedded in R3.

2. Frame Bundles, Stochastic Development, and Anisotropic Diffusions

Let M be a finite dimensional manifold of dimension d with connection C, and let x0 be a fixed
point in M. When a Riemannian metric is present, and C is its Levi–Civita connection, we denote the
metric gR. For a given interval [0, T], we let W(M) denote the Wiener space of continuous paths in M
starting at x0. Similarly, W(Rd) is the Wiener space of paths in Rd. We let H(Rd) denote the subspace
of W(Rd) of finite energy paths.

Let now u = (u1, . . . , ud) be a frame for Tx M, x ∈ M; i.e., u1, . . . , ud is an ordered set of
linearly independent vectors in Tx M with span{u1, . . . , ud} = Tx M. We can regard the frame as
an isomorphism u : Rd → Tx M with u(ei) = ui, where e1, . . . , ed denotes the standard basis in Rd.
Stochastic development (e.g., [4]) provides an invertible map ϕu from W(Rd) to W(M). Through ϕu,
Euclidean semi-martingales map to stochastic processes on M. When M is Riemannian and u
orthonormal, the result is the Eells–Elworthy–Malliavin construction of Brownian motion [17]. We here
outline the geometry behind development, stochastic development, the connection, and curvature,
focusing in particular on frame bundle geometry.

2.1. The Frame Bundle

For each point x ∈ M, let Fx M be the set of frames for Tx M (i.e., the set of ordered bases for
Tx M). The set {Fx M}x∈M can be given a natural differential structure as a fiber bundle on M called
the frame bundle FM. It can equivalently be defined as the principal bundle GL(Rd, TM). We let the
map π : FM→ M denote the canonical projection. The kernel of π∗ : TFM→ TM is the sub-bundle
of TFM that consists of vectors tangent to the fibers π−1(x). It is denoted the vertical subspace VFM.
We will often work in a local trivialization u = (x, u1, . . . , ud) ∈ FM, where x = π(u) ∈ M denotes the
base point, and for each i = 1, . . . , d, ui ∈ Tx M is the ith frame vector. For v ∈ Tx M and u ∈ FM with
π(u) = x, the vector u−1v ∈ Rd expresses v in components in terms of the frame u. We will denote the
vector u−1v frame coordinates of v.

For a differentiable curve xt in M with x = x0, a frame u for Tx0 M can be parallel transported
along xt by parallel transporting each vector in the frame, thus giving a path ut ∈ FM. Such
paths are called horizontal, and have zero acceleration in the sense C(u̇i,t) = 0. For each x ∈ M,
their derivatives form a d-dimensional subspace of the d + d2-dimensional tangent space TuFM.
This horizontal subspace HFM and the vertical subspace VFM together split the tangent bundle of
FM (i.e., TFM = HFM⊕VFM). The split induces a map π∗ : HFM → TM, see Figure 3. For fixed
u ∈ FM, the restriction π∗|Hu FM : HuFM→ Tx M is an isomorphism. Its inverse is called the horizontal
lift and is denoted hu in the following. Using hu, horizontal vector fields He on FM are defined for
vectors e ∈ Rd by He(u) = hu(ue). In particular, the standard basis (e1, . . . , ed) on Rd gives d globally
defined horizontal vector fields Hi ∈ HFM, i = 1, . . . , d by Hi = Hei . Intuitively, the fields Hi(u)
model infinitesimal transformations in M of x0 in direction ui = uei with corresponding infinitesimal
parallel transport of the vectors u1, . . . , ud of the frame along the direction ui. A horizontal lift of a
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differentiable curve xt ∈ M is a curve in FM tangent to HFM that projects to xt. Horizontal lifts are
unique up to the choice of initial frame u0.

TFM

T∗FM

HFMVFM

FM× gl(n)

FM

TMT∗M M

h + v 7→ hh + v 7→ v

π∗ψ πFM

πTM

gFM

gR

Figure 3. Relations between the manifold, frame bundle, the horizontal distribution HFM, the vertical
bundle VFM, a Riemannian metric gR, and the sub-Riemannian metric gFM, defined below.
The connection C provides the splitting TFM = HFM⊕VFM. The restrictions π∗|Hu M are invertible
maps Hu M→ Tπ(u)M with inverse hu, the horizontal lift. Correspondingly, the vertical bundle VFM
is isomorphic to the trivial bundle FM× gl(n). The metric gFM : T∗FM→ TFM has an image in the
subspace HFM.

2.2. Development and Stochastic Development

Let xt be a differentiable curve on M and ut a horizontal lift. If st is a curve in Rd with
components si

t such that ẋt = Hi(u)si
t, xt is said to be a development of st. Correspondingly, st is the

anti-development of xt. For each t, the vector st contains frame coordinates of ẋt as defined above.
Similarly, let Wt be an Rd valued Brownian motion so that sample paths Wt(ω) ∈W(Rd). A solution to
the stochastic differential equation dUt = ∑d

i=1 Hi(Ut) ◦ dWi
t in FM is called a stochastic development

of Wt in FM. The solution projects to a stochastic development Xt = π(Ut) in M. We call the process
Wt in Rd, that through ϕ maps to Xt, the driving process of Xt. Let ϕu : W(Rd)→ W(M) be the map
that for fixed u sends a path in Rd to its development on M. Its inverse ϕ−1

u is the anti-development in
Rd of paths on M given u.

Equivalent to the fact that normal distributions N (0, Σ) in Rd can be obtained as the transition
distributions of diffusion processes Σ1/2Wt stopped at time t = 1, a general class of distributions on
the manifold M can be defined by stochastic development of processes Wt, resulting in M-valued
random variables X = X1. This family of distributions on M introduced in [2] is denoted anisotropic
normal distributions. The stochastic development by construction ensures that Ut is horizontal, and the
frames are thus parallel transported along the stochastic displacements. The effect is that the frames
stay covariantly constant, thus resembling the Euclidean situation where Σ1/2 is spatially constant and
therefore does not change as Wt evolves. Thus, as further discussed in Section 3.2, the covariance is
kept constant at each of the infinitesimal stochastic displacements. The existence of a smooth density
for the target process Xt and small time asymptotics are discussed in [3].

Stochastic development gives a map
∫

Diff : FM → Prob(M) to the space of probability
distributions on M. For each point u ∈ FM, the map sends a Brownian motion in Rd to a distribution
µu by stochastic development of the process Ut in FM, starting at u and letting µu be the distribution
of X = π(U1). The pair (x, u), x = π(u) is analogous to the parameters (µ, Σ) for a Euclidean
normal distribution: the point x ∈ M represents the starting point of the diffusion, and the frame u
represents a square root Σ1/2 of the covariance Σ. In the general situation where µu has smooth density,
the construction can be used to fit the parameters u to data by maximum likelihood. As an example,
diffusion PCA fits distributions obtained through

∫
Diff by maximum likelihood to observed samples

in M; i.e., it optimizes for the most likely parameters u = (x, u1, . . . , ud) for the anisotropic diffusion
process, giving a fit to the data of the manifold generalization of the Euclidean normal distribution.

2.3. Adapted Coordinates

For concrete expressions of the geometric constructions related to frame bundles, and for
computational purposes, it is useful to apply coordinates that are adapted to the horizontal bundle
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HFM and the vertical bundle VFM together with their duals H∗FM and V∗FM. The notation below
follows the notation used in, for example, [18]. Let z = (u, ξ) be a local trivialization of T∗FM, and let
(xi, ui

α) be coordinates on FM with ui
α satisfying uα = ui

α∂xi for each α = 1, . . . , d.
To find a basis that is adapted to the horizontal distribution, define the d linearly independent

vector fields Dj = ∂xj − Γhγ

j ∂uh
γ

where Γhγ

j = Γh
jiu

i
γ is the contraction of the Christoffel symbols Γh

ij for

the connection C with ui
α. We denote this adapted frame D. The vertical distribution is correspondingly

spanned by Djβ = ∂
uj

β

. The vectors Dh = dxh, and Dhγ = Γhγ

j dxj + duh
γ constitutes a dual coframe D∗.

The map π∗ : HFM→ TM is in coordinates of the adapted frame π∗(wjDj) = wj∂xj . Correspondingly,
the horizontal lift hu is hu(wj∂xj) = wjDj. The map u : Rd → Tx M is given by the matrix [ui

α] so that
uv = ui

αvα∂xi = uαvα.
Switching between standard coordinates and the adapted frame and coframes can be expressed in

terms of the component matrices A below the frame and coframe induced by the coordinates (xi, ui
α)

and the adapted frame D and coframe D∗. We have

(∂xi ,∂
ui

α
)AD =

[
I 0
−Γ I

]
with inverse D A(∂xi ,∂

ui
α
) =

[
I 0
Γ I

]

writing Γ for the matrix [Γhγ

j ]. Similarly, the component matrices of the dual frame D∗ are

(∂xi ,∂
ui

α
)∗AD∗ =

[
I ΓT

0 I

]
and D∗A(∂xi ,∂

ui
α
)∗ =

[
I −ΓT

0 I

]
.

2.4. Connection and Curvature

The TM valued connection C : TM× TM→ TM lifts to a principal connection TFM× TFM→
VFM on the principal bundle FM. C can then be identified with the gl(n)-valued connection form
ω on TFM. The identification occurs by the isomorphism ψ between FM× gl(n) and VFM given by
ψ(u, v) = d

dt u exp(tv)|t=0 (e.g., [19,20]).
The map ψ is equivariant with respect to the GL(n) action g 7→ ug−1 on FM. In order to explicitly

see the connection between the usual covariant derivative ∇ : Γ(TM) × Γ(TM) → Γ(TM) on M
determined by C and C regarded as a connection on the principal bundle FM, following [19], we let
s : M→ TM be a local vector field on M; equivalently, s ∈ Γ(TM) is a local section of TM. s determines
a map sFM : FM → Rd by sFM(u) = u−1s(π(u)); i.e., it gives the coordinates of s(x) in the frame u
at x. The pushforward (sFM)∗ : TFM→ Rd has in its ith component the exterior derivative d(sFM)i.
Let now w(x) be a local section of FM. The composition w ◦ (sFM)∗ ◦ hw : TM → TM is identical
to the covariant derivative ∇·s : TM → TM. The construction is independent of the choice of w
because of the GL(n)-equivariance of sFM. The connection form ω can be expressed as the matrix
(sFM

1 ◦ hw, . . . , sFM
d ◦ hw) when letting sFM

i (u) = ei.
The identification becomes particularly simple if the covariant derivative is taken along a curve xt

on which wt is the horizontal lift. In this case, we can let st = wt,isi
t. Then, sFM(wt) = (s1

t , . . . , sd
t )

T , and

w−1
t ∇ẋt s = (sF M)∗(hwt(ẋt)) =

d
dt (s

1
t , . . . , sd

t )
T ; (1)

i.e., the covariant derivative takes the form of the standard derivative applied to the frame
coordinates si

t.
The curvature tensor R ∈ T 3

1 (M) gives the gl(n)-valued curvature form Ω : TFM× TFM→ gl(n)
on TFM by

Ω(vu, wu) = u−1R(π∗(vu), π∗(wu))u , vu, wv ∈ TFM .
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Note that Ω(vu, wu) = Ω(hu(π∗(vu)), hu(π∗(wu))), which we can use to write the curvature R as
the gl(n)-valued map Ru : T2(Tπ(u)M) → gl(n), (v, w) 7→ Ω(hu(π∗(vu)), hu(π∗(wu))) for fixed u.
In coordinates, the curvature is

R s
ijk = Γl

ikΓs
jl − Γl

jkΓs
il + Γs

ik;j − Γs
jk;i

where Γs
ik;j = ∂xj Γs

ik.

Let xt,s be a family of paths in M, and let ut,s ∈ π−1(xt,s) be horizontal lifts of xt,s for each fixed s.
Write ẋt,s = ∂txt,s and u̇t,s = ∂tut,s. The s-derivative of ut,s can be regarded a pushforward of the
horizontal lift and is the curve in TFM

∂sut,s = ψ
(
ut,s, ψ−1

u0,s
(C(∂su0,s)) +

∫ s

0
Ω(u̇r,s, ∂sur,s)dr

)
+ hut,s(∂sxt,s)

= ψ
(
ut,s, ψ−1

0,s (C(∂su0,s)) +
∫ s

0
Rur,s(ẋr,s, ∂sxr,s)dr

)
+ hut,s(∂sxt,s) .

(2)

This follows from the structure equation dω = −ω ∧ ω + Ω (e.g., [21]). Note that the curve
depends on the vertical variation C(∂su0,s) at only one point along the curve. The remaining terms
depend on the horizontal variation or, equivalently, ∂sxt,s. The t-derivative of ∂sut,s is the curve in
TTFM satisfying

∂shut,s(ẋt,s) = ψ
(
ut,s, Rut,s(ẋt,s, ∂sxt,s)

)
+ ∂tψ

(
ut,s, ψ−1

0,s (C(∂su0,s))
)
+ ∂t

(
hut,s(∂sxt,s)

)
= ψ

(
ut,s, Rut,s(ẋt,s, ∂sxt,s)

)
+ ∂tψ

(
ut,s, ψ−1

0,s (C(∂su0,s))
)

+ hut,s(∂t∂sxt,s) + (∂thut,s)(∂sxt,s).

(3)

Here, the first and third term in the last expression are identified with elements of T∂sut,s TFM by
the natural mapping Tut,s FM→ T∂sut,s TFM. When C(∂su0,s) is zero, the relation reflects the property
that the curvature arises when computing brackets between horizontal vector fields. Note that the first
term of (3) has values in VFM, while the third term has values in HFM.

3. The Anisotropically Weighted Metric

For a Euclidean driftless diffusion process with spatially constant stochastic generator Σ,
the log-probability of a sample path can formally be written

ln p̃Σ(xt) ∝ −
∫ 1

0
‖ẋt‖2

Σdt + cΣ (4)

with the norm ‖ · ‖Σ given by the inner product 〈v, w〉Σ =
〈

Σ−1/2v, Σ−1/2w
〉
= vΣ−1w; i.e., the inner

product weighted by the precision matrix Σ−1. Though only formal, as the sample paths are almost
surely nowhere differentiable, the interpretation can be given a precise meaning by taking limits of
piecewise linear curves [21]. Turning to the manifold situation with the processes mapped to M by
stochastic development, the probability of observing a differentiable path can either be given a precise
meaning in the manifold by taking limits of small tubes around the curve, or in Rd by considering
infinitesimal tubes around the anti-development of the curves. With the former formulation, a scalar
curvature correction term must be added to (4), giving the Onsager–Machlup function [22]. The latter
formulation corresponds to defining a notion of path density for the driving Rd-valued process Wt.
When M is Riemannian and Σ unitary, taking the maximum of (4) gives geodesics as most probable
paths for the driving process.

Let now ut be a path in FM, and choose a local trivialization ut = (xt, u1,t, . . . , ud,t) such that the
matrix [ui

α,t] represents the square root covariance matrix Σ1/2 at xt. Since ut being a frame defines an
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invertible map Rd → Txt M, the norm ‖ · ‖Σ above has a direct analogue in the norm ‖ · ‖ut defined by
the inner product

〈v, w〉ut
=
〈

u−1
t v, u−1

t w
〉
Rd

(5)

for vectors v, w ∈ Txt M. The transport of the frame along paths in effect defines a transport of inner
product along sample paths: the paths carry with them the inner product weighted by the precision
matrix, which in turn is a transport of the square root covariance u0 at x0.

The inner product can equivalently be defined as a metric gu : T∗x M → Tx M. Again using that
u can be considered a map Rd → Tx M, gu is defined by ξ 7→ u((ξ ◦ u)]), where ] is the standard
identification (Rd)∗ → Rd. The sequence of mappings defining gu is illustrated below:

T∗x M → (Rd)∗ → Rd → Tx M
ξ 7→ ξ ◦ u 7→ (ξ ◦ u)] 7→ u(ξ ◦ u)].

(6)

This definition uses the Rd inner product in the definition of ]. Its inverse gives the cometric
g−1

u : Tx M→ T∗x M; i.e., v 7→ (u−1v)[ ◦ u−1.

Tx M → Rd → (Rd)∗ → T∗x M
v 7→ u−1v 7→ (u−1)[ 7→ (u−1)[ ◦ u−1.

(7)

3.1. Sub-Riemannian Metric on the Horizontal Distribution

We now lift the path-dependent metric defined above to a sub-Riemannian metric on HFM.
For any w, w̃ ∈ HuFM, the lift of (5) by π∗ is the inner product

〈w, w̃〉 =
〈

u−1π∗w, u−1π∗w̃
〉
Rd

.

The inner product induces a sub-Riemannian metric gFM : TFM∗ → HFM ⊂ TFM by

〈w, gFM(ξ)〉 = (ξ|w) , ∀w ∈ HuFM (8)

with (ξ|w) denoting the evaluation ξ(w) for the covector ξ ∈ T∗FM. The metric gFM gives FM a
non-bracket-generating sub-Riemannian structure [23] on FM (see also Figure 3). It is equivalent
to the lift

ξ 7→ hu(gu(ξ ◦ hu)) , ξ ∈ TuFM (9)

of the metric gu above. In frame coordinates, the metric takes the form

u−1π∗gFM(ξ) =

ξ(H1(u))
...

ξ(Hd(u))

 . (10)

In terms of the adapted coordinates for TFM described in Section 2.3, with w = wjDj and
w̃ = w̃jDj, we have

〈w, w̃〉 =
〈

wiDi, w̃jDj

〉
=
〈

u−1wi∂xi , u−1w̃j∂xj

〉
=
〈

wiuα
i , w̃juα

j

〉
Rd

= δαβwiuα
i w̃juβ

j = Wijwiw̃j

where [uα
i ] is the inverse of [ui

α] and Wij = δαβuα
i uβ

j . Define now Wkl = δαβuk
αul

β, so that WirWrj = δi
j

and WirWrj = δ
j
i . We can then write the metric gFM directly as

gFM(ξhDh + ξhγ
Dhγ ) = WihξhDi, (11)
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because 〈w, gFM(ξ)〉 =
〈

w, W jhξhDj

〉
= WijwiW jhξh = wiξi = ξhDh(wjDj) = ξ(w). One clearly

recognizes the dependence on the horizontal H∗FM part of T∗FM only, and the fact that gFM has
image in HFM. The sub-Riemannian energy of an almost everywhere horizontal path ut is

lFM(ut) =
∫

gFM(u̇t, u̇t)dt;

i.e., the line element is ds2 = WijDiDj in adapted coordinates. The corresponding distance is given by

dFM(u1, u2) = inf{lFM(γ) | γ(0) = u1, γ(1) = u2}.

If we wish to express gFM in canonical coordinates on T∗FM, we can switch between the adapted
frame and the coordinates (xi, ui

α, ξ i, ξ i
α). From (11), gFM has D, D∗ components

DgFM,D∗ =

[
W−1 0

0 0

]
.

Therefore, gFM has the following components in the coordinates (xi, ui
α, ξh, ξhγ

)

(∂xi ,∂
ui

α
)gFM,(∂x ,∂

ui
α
)∗ = (∂xi ,∂

ui
α
)AD DgFM,D∗ D∗A(∂xi ,∂

ui
α
)∗ =

[
W−1 −W−1ΓT

−ΓW−1 ΓW−1ΓT

]

or gij
FM = Wij, g

ijβ
FM = −WihΓ

jβ
h , giα j

FM = −Γiα
h Whj, and g

iα jβ
FM = Γiα

k WkhΓ
jβ
h .

3.2. Covariance and Nonholonomicity

The metric gFM encodes the anisotropic weighting given the frame u, thus up to an affine
transformation measuring the energy of horizontal paths equivalently to the negative log-probability of
sample paths of Euclidean anisotropic diffusions as formally given in (4). In addition, the requirement
that paths must stay horizontal almost everywhere enforces that C(u̇t) = 0 a.e., i.e., that no change
of the covariance is measured by the connection. The intuitive effect is that covariance is covariantly
constant as seen by the connection. Globally, curvature of C will imply that the covariance changes
when transported along closed loops, and torsion will imply that the base point “slips” when travelling
along covariantly closed loops on M. However, the zero acceleration requirement implies that the
covariance is as close to spatially constant as possible with the given connection. This is enabled by the
parallel transport of the frame, and it ensures that the model closely resembles the Euclidean case with
spatially constant stochastic generator.

With non-zero curvature of C, the horizontal distribution is non-integrable (i.e., the brackets
[Hi, Hj] are non-zero for some i, j). This prevents integrability of the horizontal distribution HFM in
the sense of the Frobenius theorem. In this case, the horizontal constraint is nonholonomic similarly to
nonholonomic constraints appearing in geometric mechanics (e.g., [24]). The requirement of covariantly
constant covariance thus results in a nonholonomic system.

3.3. Riemannian Metrics on FM

If the horizontality constraint is relaxed, a related Riemannian metric on FM can be defined
by pulling back a metric on gl(n) to each fiber using the isomorphism ψ(u, ·)−1 : VuFM → gl(n).
Therefore, the metric on HFM can be extended to a Riemannian metric on FM. Such metrics
incorporate the anisotropically weighted metric on HFM, however, allowing vertical variations and
thus that covariances can change unrestricted.

When M is Riemannian, the metric gFM is in addition related to the Sasaki–Mok metric on FM [18]
that extends the Sasaki metric on TM. As for the above Riemannian metric on FM, the Sasaki–Mok
metric allows paths in FM to have derivatives in the vertical space VFM. On HFM, the Riemannian
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metric gR is here lifted to the metric gSM = (vu, wu) = gR(π∗(vu), π∗(wu)) (i.e., the metric is not
anisotropically weighted). The line element is in this case ds2 = gijdxidxj + XβαgijDαi Dβ j .

Geodesics for gSM are lifts of Riemannian geodesics for gR on M, in contrast to the sub-Riemannian
normal geodesics for gFM which we will characterize below. The family of curves arising as projections
to M of normal geodesics for gFM includes Riemannian geodesics for gR (and thus projections of
geodesics for gSM), but the family is in general larger than geodesics for gR.

4. Constrained Evolutions

Extremal paths for (5) can be interpreted as most probable paths for the driving process Wt when
u0 defines an anisotropic diffusion. This is captured in the following definition [3]:

Definition 1. A most probable path for the driving process (MPP) from x = π(u0) ∈ M to y ∈ M is a smooth
path xt : [0, 1]→ M with x0 = x and x1 = y such that its anti-development ϕ−1

u0
(xt) is a most probable path

for Wt; i.e.,

xt ∈ argminσ,σ0=x,σ1=y

∫ 1

0
−LRd(ϕ−1

u0
(σt), d

dt ϕ−1
u0

(σt)) dt

with LRd being the Onsager–Machlup function for the process Wt on Rd [22].

The definition uses the one-to-one relation between W(Rd) and W(M) provided by ϕu0 to
characterize the paths using the Rd Onsager–Machlup function LRd . When M is Riemannian
with metric gR, the Onsager–Machlup function for a g-Brownian motion on M is L(xt, ẋt) =

− 1
2‖ẋt‖2

gR
+ 1

12 SgR(xt) with SgR denoting the scalar curvature. This curvature term vanishes on
Rd, and therefore LRd(γt, γ̇t) = − 1

2‖γ̇t‖2 for a curve γt ∈ Rd.
By pulling xt ∈ M back to Rd using ϕ−1

u0
, the construction removes the 1

12 SgR(xt) scalar curvature
correction term present in the non-Euclidean Onsager–Machlup function. It thereby provides a relation
between geodesic energy and most probable paths for the driving process. This is contained in the
following characterization of most probable paths for the driving process as extremal paths of the
sub-Riemannian distance [3] that follows from the Euclidean space Onsager–Machlup theorem [22].

Theorem 1 ([3]). Let Q(u0) denote the principal sub-bundle of FM of points z ∈ FM reachable from u0 ∈ FM
by horizontal paths. Suppose the Hörmander condition is satisfied on Q(u0), and that Q(u0) has compact fibers.
Then, most probable paths from x0 to y ∈ M for the driving process of Xt exist, and they are projections of
sub-Riemannian geodesics in FM minimizing the sub-Riemannian distance from u0 to π−1(y).

Below, we will derive evolution equations for the set of such extremal paths that correspond to
normal sub-Riemannian geodesics.

4.1. Normal Geodesics for gFM

Connected to the metric gFM is the Hamiltonian

H(z) =
1
2
(z|gFM(z)) (12)

on the symplectic space T∗FM. Letting π̂ denote the projection on the bundle T∗FM→ FM, (8) gives

H(z) =
1
2
〈gFM(z)|gFM(z)〉 = 1

2
‖z ◦ hπ̂(z) ◦ π̂(z)‖2

(Rd)∗ =
1
2

d

∑
i=1

ξ(Hi(u))2.

Normal geodesics in sub-Riemannian manifolds satisfy the Hamilton–Jacobi equations [23] with
Hamiltonian flow

żt = XH = Ω#dH(z) (13)
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where Ω here is the canonical symplectic form on T∗FM (e.g., [25]). We denote (13) the MPP equations,
and we let projections xt = πT∗FM(zt) of minimizing curves satisfying (13) be denoted normal MPPs.
The system (13) has 2(d + d2) degrees of freedom, in contrast to the usual 2d degrees of freedom for the
classical geodesic equation. Of these, d2 describes the current frame at time t, while the remaining d2

allows the curve to “twist” while still being horizontal. We will see this effect visualized in Section 6.
In a local canonical trivialization z = (u, ξ), (13) gives the Hamilton–Jacobi equations

u̇ = ∂ξ H(u, ξ) = gFM(u, ξ) = hu
(
u( ξ(H1(u)), . . . , ξ(Hd(u)) )T)

ξ̇ = −∂u H(u, ξ) = −∂u
1
2
‖ξ ◦ hu ◦ u‖2

(Rd)∗ = −∂u
1
2

d

∑
i=1

ξ(Hi(u))2.
(14)

Using (3), we have for the second equation

ξ̇ = −
d

∑
i=1

ξ(Hi(u))ξ(∂uhu(uei))

= −
d

∑
i=1

ξ(Hi(u))ξ
(
ψ(u, Ru(uei, π∗(∂u))) + ∂hu(uei)

ψ
(
u, ψ−1(C(∂u))

)
+ ∂hu(uei)

hu(π∗(∂u))
)

= −ξ
(
ψ(u, Ru(π∗(u̇), π∗(∂u))) + ∂u̇ψ

(
u, ψ−1(C(∂u))

)
+ ∂u̇hu(π∗(∂u))

)
.

(15)

Here ∂u̇ denotes u-derivative in the direction u̇, equivalently ∂u̇hu(v) = ∂t(hu)(v). While the first
equation of (14) involves only the horizontal part of ξ, the second equation couples the vertical part of
ξ through the evaluation of ξ on the term ψ(u, Ru(π∗(u̇), π∗(∂u)). If the connection is curvature-free,
which in non-flat cases implies that it carries torsion, this vertical term vanishes. Conversely, when M is
Riemannian, C the gR Levi–Civita connection, and u0 is gR orthonormal, gFM(hu(v), hu(w)) = gR(v, w)

for all v, w ∈ Tπ(ut)M. In this case, a normal MPP π(ut) will be a Riemannian gR geodesic.

4.2. Evolution in Coordinates

In coordinates u = (xi, ui
α, ξi, ξiα) for T∗FM, we can equivalently write

ẋi = gijξ j + gijβ ξ jβ = Wijξ j −WihΓ
jβ
h ξ jβ

Ẋi
α = giα jξ j + giα jβ ξ jβ = −Γiα

h Whjξ j + Γiα
k WkhΓ

jβ
h ξ jβ

ξ̇i = −
1
2

(
∂yi ghk

y ξhξk + ∂yi ghkδ
y ξhξkδ

+ ∂yi g
hγk
y ξhγ

ξk + ∂yi g
hγkδ
y ξhγ

ξkδ

)
ξ̇iα = −1

2

(
∂yiα ghk

y ξhξk + ∂yiα ghkδ
y ξhξkδ

+ ∂yiα ghγk
y ξhγ

ξk + ∂yiα ghγkδ
y ξhγ

ξkδ

)
with Γhγ

k,i for ∂yi Γ
hγ

k , and where

∂yl gij = 0 , ∂yl gijβ = −WihΓ
jβ
h,l , ∂yl giα j = −Γiα

h,lW
hj , ∂yl giα jβ = Γiα

k,lW
khΓ

jβ
h + Γiα

k WkhΓ
jβ
h,l ,

∂
ylζ gij = Wij

,lζ
, ∂

ylζ gijβ = −Wih
,lζ Γ

jβ
h −WihΓ

jβ
h,lζ

, ∂
ylζ giα j = −Γiα

h,lζ
Whj − Γiα

h Whj
,lζ

,

∂
ylζ giα jβ = Γiα

k,lζ
WkhΓ

jβ
h + Γiα

k Wkh
,lζ Γ

jβ
h + Γiα

k WkhΓ
jβ
h,lζ

,

Γiα
h,lζ

= ∂
ylζ

(
Γi

hkuk
α

)
= δζαΓi

hl , Wij
,lζ

= δiluj
ζ + δjlui

ζ .
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Combining these expressions, we obtain

ẋi = Wijξ j −WihΓ
jβ
h ξ jβ , Ẋi

α = −Γiα
h Whjξ j + Γiα

k WkhΓ
jβ
h ξ jβ

ξ̇i = WhlΓkδ
l,i ξhξkδ

− 1
2

(
Γhγ

k,i W
khΓkδ

h + Γhγ

k WkhΓkδ
h,i

)
ξhγ

ξkδ

ξ̇iα = Γhδ
k,iα

WkhΓkδ
h ξhγ

ξkδ
−
(

Whl
,iα Γkδ

l + WhlΓkδ
l,iα

)
ξhξkδ

− 1
2

(
Whk

,iα ξhξk + Γhδ
k Wkh

,iα Γkδ
h ξhγ

ξkδ

)
.

4.3. Acceleration and Polynomials for C

We can identify the covariant acceleration ∇ẋt ẋt of curves satisfying the MPP equations, and
hence normal MPPs through their frame coordinates. Let (ut, ξt) satisfy (13). Then, ut is a horizontal
lift of xt = π(ut) and hence by (1), (3), (10), and (15),

u−1
t ∇ẋt ẋt =

d
dt

ξ(hut(ute1))
...

ξ(hut(uted))

 =

ξ̇(hut(ute1))
...

ξ̇(hut(uted))

+

ξ(∂thut(ute1))
...

ξ(∂thut(uted))



= −


ξ(∂hut (ute1)

hut(π∗(u̇t))
...

ξ(∂hut (uted)
hut(π∗(u̇t))

+


ξ(∂hut (π∗(u̇t))hut(ute1))

...
ξ(∂hut (π∗(u̇t))hut(uted))



=

ξ(ψ(ut, Rut(ute1, π∗(u̇t))))
...

ξ(ψ(ut, Rut(uted, π∗(u̇t))))

 .

(16)

The fact that the covariant derivative vanishes for classical geodesic leads to a definition of
higher-order polynomials through the covariant derivative by requiring (∇ẋt)

k ẋt = 0 for a kth order
polynomial (e.g., [26,27]). As discussed above, compared to classical geodesics, curves satisfying the
MPP equations have extra d2 degrees of freedom, allowing the curves to twist and deviate from being
geodesic with respect to C while still satisfying the horizontality constraint on FM. This makes it
natural to ask if normal MPPs relate to polynomials defined using C. For curves satisfying the MPP
equations, using (16) and (15), we have

u−1
t (∇ẋt)

2 ẋt =
d
dt

ξ(ψ(ut, Rut(ute1, π∗(u̇t))))
...

ξ(ψ(ut, Rut(uted, π∗(u̇t))))

 =

ξ(ψ(ut, d
dt Rut(ute1, π∗(u̇t))))

...
ξ(ψ(ut, d

dt Rut(uted, π∗(u̇t))))

 .

Thus, in general, normal MPPs are not second order polynomials in the sense (∇ẋt)
2 ẋt = 0 unless

the curvature Rut(utei, π∗(u̇t)) is constant in t.
For comparison, in the Riemannian case, a variational formulation placing a cost on covariant

acceleration [28,29] leads to cubic splines

(∇ẋt)
2 ẋt = −R(∇ẋt ẋt, xt, )ẋt .

In (16), the curvature terms appear in the covariant acceleration for normal MPPs, while cubic
splines leads to the curvature term appearing in the third order derivative.

5. Cometric Formulation and Low-Rank Generator

We now investigate a cometric gFk M + λgR, where gR is Riemannian, gFk M is a rank k positive
semi-definite inner product arising from k linearly independent tangent vectors, and λ > 0 a weight.
We assume that gFk M is chosen so that gFk M + λgR is invertible, even though gFk M is rank-deficient.
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The situation corresponds to extracting the first k eigenvectors in Euclidean space PCA. If the
eigenvectors are estimated statistically from observed data, this allows the estimation to be restricted
to only the first k eigenvectors. In addition, an important practical implication of the construction is
that a numerical implementation need not transport a full d× d matrix for the frame, but a potentially
much lower dimensional d× k matrix. This point is essential when dealing with high-dimensional
data, examples of which are landmark manifolds as discussed in Section 6.

When using the frame bundle to model covariances, the sum formulation is natural to express as
a cometric compared to a metric because, with the cometric formulation, gFk M + λgR represents a sum
of covariance matrices instead of a sum of precision matrices. Thus, gFk M + λgR can be intuitively
thought of as adding isotropic noise of variance λ to the covariance represented by gFk M.

To pursue this, let Fk M denote the bundle of rank k linear maps Rk → Tx M. We define
a cometric by 〈

ξ, ξ̃
〉
= δαβ(ξ|hu(uα))(ξ̃|hu(uβ)) + λ

〈
ξ, ξ̃
〉

gR

for ξ, ξ̃ ∈ T∗u Fk M. The sum over α, β is for α, β = 1, . . . , k. The first term is equivalent to the lift (9) of
the cometric

〈
ξ, ξ̃
〉
=
(
ξ|gu(ξ̂)

)
given u : Rk → Tx M. Note that in the definition (6) of gu, the map u is

not inverted; thus, the definition of the metric immediately carries over to the rank-deficient case.
Let (xi, ui

α), α = 1, . . . , k be a coordinate system on Fk M. The vertical distribution is in this case
spanned by the dk vector fields Djβ = ∂

uj
β

. Except for index sums being over k instead of d terms,

the situation is thus similar to the full-rank case. Note that (ξ|π−1
∗ w) = (ξ|wjDj) = wiξi. The cometric

in coordinates is 〈
ξ, ξ̃
〉
= δαβui

αξiu
j
β ξ̃ j + λgij

Rξi ξ̃ j = ξi

(
δαβui

αuj
β + λgij

R

)
ξ̃ j = ξiWij ξ̃ j

with Wij = δαβui
αuj

β + λgij
R. We can then write the corresponding sub-Riemannian metric gFk M in

terms of the adapted frame D

gFk M(ξhDh + ξhγ
Dhγ) = WihξhDi (17)

because (ξ|gFk M(ξ̃)) =
〈
ξ, ξ̃
〉
= ξiWij ξ̃ j. That is, the situation is analogous to (11), except the term λgij

R
is added to Wij.

The geodesic system is again given by the Hamilton–Jacobi equations. As in the full-rank case,
the system is specified by the derivatives of gFk M:

∂yl g
ij
Fk M = Wij

,l , ∂yl g
ijβ
Fk M = −Wih

,l Γ
jβ
h −WihΓ

jβ
h,l , ∂yl g

iα j
Fk M = −Γiα

h,lW
hj − Γiα

h Whj
,l ,

∂yl g
iα jβ
Fk M = Γiα

k,lW
khΓ

jβ
h + Γiα

k Wkh
,l Γ

jβ
h + Γiα

k WkhΓ
jβ
h,l ,

∂
ylζ gij

Fk M = Wij
,lζ

, ∂
ylζ g

ijβ
Fk M = −Wih

,lζ Γ
jβ
h −WihΓ

jβ
h,lζ

, ∂
ylζ giα j

Fk M = −Γiα
h Whj

,lζ
− Γiα

h,lζ
Whj ,

∂
ylζ g

iα jβ
Fk M = Γiα

k,lζ
WkhΓ

jβ
h + Γiα

k Wkh
,lζ Γ

jβ
h + Γiα

k WkhΓ
jβ
h,lζ

,

Γiα
h,lζ

= ∂
ylζ

(
Γi

hkuk
α

)
= δζαΓi

hl , Wij
,l = λg ij

R ,l , Wij
,lζ

= δiluj
ζ + δjlui

ζ .

Note that the introduction of the Riemannian metric gR implies that Wij are now dependent on
the manifold coordinates xi.

6. Numerical Experiments

We aim at visualizing most probable paths for the driving process and projections of curves
satisfying the MPP Equation (13) in two cases: On 2D surfaces embedded in R3 and on finite
dimensional landmark manifolds that arise from equipping a subset of the diffeomorphism group with
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a right-invariant metric and letting the action descend to the landmarks by a left action. The surface
examples are implemented in Python using the Theano [30] framework for symbolic operations,
automatic differentiation, and numerical evaluation. The landmark equations are detailed below
and implemented in Numpy using Numpy’s standard ODE integrators. The code for running the
experiments is available at http://bitbucket.com/stefansommer/mpps/.

6.1. Embedded Surfaces

We visualize normal MPPs and projections of curves satisfying the MPP Equation (13) on surfaces
embedded in R3 in three cases: The sphere S2, on an ellipsoid, and on a hyperbolic surface. The surfaces
are chosen in order to have both positive and negative curvature, and to have varying degree of
symmetry. In all cases, an open subset of the surfaces are represented in a single chart by a map
F : R2 → R3. For the sphere and ellipsoid, this gives a representation of the surface, except for
the south pole. The metric and Christoffel symbols are calculated using the symbolic differentiation
features of Theano. The integration are performed by a simple Euler integrator.

Figures 4–6 show families of curves satisfying the MPP equations in three cases: (1) With fixed
starting point x0 ∈ M and initial velocity ẋ0 ∈ TM but varying anisotropy represented by changing
frame u in the fiber above x0; (2) minimizing normal MPPs with fixed starting point and endpoint
x0, x1 ∈ M but changing frame u above x0; (3) fixed starting point x0 ∈ M and frame u but varying
V∗FM vertical part of the initial momentum ξ0 ∈ T∗FM. The first and second cases thus show the
effect of varying anisotropy, while the third case illustrates the effect of the “twist” that the d2 degrees
in the vertical momentum allows. Note the displayed anti-developed curves in R2 that for classical C
geodesics would always be straight lines.
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(a) (b) (c)

Figure 4. Curves satisfying the MPP equations (top row) and corresponding anti-development (bottom
row) on three surfaces embedded in R3: (a) An ellipsoid; (b) a sphere; (c) a hyperbolic surface.
The family of curves is generated by rotating by π/2 radians the anisotropic covariance represented in
the initial frame u0 and displayed in the gray ellipse.

http://bitbucket.com/stefansommer/mpps/
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Figure 5. Minimizing normal MPPs between two fixed points (red/cyan). From isotropic covariance
(top row, (a)) to anisotropic (top row, (c)) on S2. Compare with minimizing Riemannian geodesic
(black curve). The MPP travels longer in the directions of high variance. Families of curves (middle
row, (d–f)) and corresponding anti-development (bottom row, (g–i)) on the three surfaces in Figure 4.
The family of curves is generated by rotating the covariance matrix as in Figure 4. Notice how the
varying anisotropy affects the resulting minimizing curves, and how the anti-developed curves end at
different points in R2.
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Figure 6. (a–l) With the setup of Figures 4 and 5, generated families of curves by varying the vertical
V∗FM part of the initial momentum ξ0 ∈ T∗FM but keeping the base point and frame u0 fixed.
The vertical part allows varying degree of “twisting” of the curve.

6.2. LDDMM Landmark Equations

We here give a example of the MPP equations using the finite dimensional landmark manifolds
that arise from right invariant metrics on subsets of the diffeomorphism group in the Large Deformation
Diffeomorphic Metric Mapping (LDDMM) framework [8]. The LDDMM metric can be conveniently
expressed as a cometric, and, using a rank-deficient inner product gFk M as discussed in Section 5,
we can obtain a reduction of the system of equations to 2(2N + 2Nk) compared to 2(2N + (2N)2) with
N landmarks in R2.

Let {p1, . . . , pN} be landmarks in a subset Ω ⊂ Rd. The diffeomorphism group Diff(Ω)

acts on the left on landmarks with the action ϕ.{p1, . . . , pN} = {ϕ(p1), . . . , ϕ(pN)}. In LDDMM,
a Hilbert space structure is imposed on a linear subspace V of L2(Ω,Rd) using a self-adjoint operator
L : V → V∗ ⊂ L2(Ω,Rd) and defining the inner product 〈·, ·〉V by

〈v, w〉V = 〈Lv, w〉L2 .
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Under sufficient conditions on L, V is reproducing and admits a kernel K inverse to L. K is
a Green’s kernel when L is a differential operator, or K can be a Gaussian kernel. The Hilbert structure
on V gives a Riemannian metric on a subset GV ⊂ Diff(Ω) by setting ‖v‖2

ϕ = ‖v ◦ ϕ−1‖2
V ; i.e., regarding

〈·, ·〉V an inner product on TIdGV and extending the metric to GV by right-invariance. This Riemannian
metric descends to a Riemannian metric on the landmark space.

Let M be the manifold M = {(p1
1, . . . , pd

1, . . . , p1
N , . . . , pd

N)|(p1
i , . . . , pd

i ) ∈ Rd}. The LDDMM
metric on the landmark manifold M is directly related to the kernel K when written as a cometric
gp(ξ, η) = ∑N

i,j=1 ξ iK(pi, pj)η
j. Letting ik denote the index of the kth component of the ith landmark,

the cometric is in coordinates gik jl
p = K(pi, pj)

l
k. The Christoffel symbols can be written in terms of

derivatives of the cometric gij [31] (recall that δi
j = gikgkj = gjkgki)

Γk
ij =

1
2

gir

(
gkl grs

,l − gsl grk
,l − grl gks

,l

)
gsj . (18)

This relation comes from the fact that gjm,k = −gjrgrs
,kgsm gives the derivative of the metric.

The derivatives of the cometric is simply gik jl

,rq = (δi
r + δ

j
r)∂pq

r
K(pi, pj)

l
k. Using (18), derivatives of the

Christoffel symbols can be computed

Γk
ij,ξ =

1
2

gir,ξ

(
gkl grs

,l − gsl grk
,l − grl gks

,l

)
gsj +

1
2

gir

(
gkl grs

,l − gsl grk
,l − grl gks

,l

)
gsj,ξ

+
1
2

gir

(
gkl

,ξ grs
,l + gkl grs

,lξ − gsl
,ξ grk

,l − gsl grk
,lξ − grl

,ξ gks
,l − grl gks

,lξ

)
gsj .

This provides the full data for numerical integration of the evolution equations on Fk M.
In Figure 7 (top row), we plot minimizing normal MPPs on the landmark manifold with two

landmarks and varying covariance in the R2 horizontal and vertical direction. The plot shows the
landmark equivalent of the experiment in Figure 5. Note how adding covariance in the horizontal and
vertical direction, respectively, allows the minimizing normal MPP to vary more in these directions
because the anisotropically-weighted metric penalizes high-covariance directions less.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7. (Top row) Matching of two landmarks (green) to two landmarks (red) by (a) computing a
minimizing Riemannian geodesic on the landmark manifold, and (b–e) minimizing MPPs with added
covariance (arrows) in R2 horizontal direction (b,c) and vertical (d,e). The action of the corresponding
diffeomorphisms on a regular grid is visualized by the deformed grid which is colored by the warp
strain. The added covariance allows the paths to have more movement in the horizontal and vertical
direction, respectively, because the anisotropically weighted metric penalizes high-covariance directions
less. (bottom row, (f–j)) Five landmark trajectories with fixed initial velocity and anisotropic covariance
but varying V∗FM vertical initial momentum ξ0. Changing the vertical momentum “twists” the paths.
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Figure 7 (bottom row) shows five curves satisfying the MPP equations with varying vertical
V∗FM initial momentum similarly to the plots in Figure 6. Again, we see how the extra degrees of
freedom allows the paths to twist, generating a higher-dimensional family than classical geodesics
with respect to C.

7. Discussion and Concluding Remarks

Incorporating anisotropy in models for data in non-linear spaces via the frame bundle as pursued
in this paper leads to a sub-Riemannian structure and metric. A direct implication is that most probable
paths to observed data in the sense of sequences of stochastic steps of a driving semi-martingale are
not related to geodesics in the classical sense. Instead, a best estimate of the sequence of steps wt ∈ Rd

that leads to an observation x = ϕu(wt)|t=1 is an MPP in the sense of Definition 1. As shown in the
paper, these paths are generally not geodesics or polynomials with respect to the connection on the
manifold. In particular, if M has a Riemannian structure, the MPPs are generally neither Riemannian
geodesics nor Riemannian polynomials. Below, we discuss the statistical implications of this result.

7.1. Statistical Estimators

Metric distances and Riemannian geodesics have been the traditional vehicle for representing
observed data in non-linear spaces. Most fundamentally, the sample Frechét mean

x̂ = argminx∈M

N

∑
i=1

dgR (x, xi)
2 (19)

of observed data x1, . . . , xN ∈ M relies crucially on the Riemannian distance dgR connected to the
metric gR. Many PCA constructs (e.g., Principal Geodesics Analysis [6]) use the Riemannian Exp.
and Log maps to map between linear tangent spaces and the manifold. These maps are defined from
the Riemannian metric and Riemannian geodesics. Distributions modelled as in the random orbit
model [32] or Bayesian models [15,33] again rely on geodesics with random initial conditions.

Using the frame bundle sub-Riemannian metric gFM, we can define an estimator analogous to the
Riemannian Frechét mean estimator. Assuming the covariance is a priori known, the estimator

x̂ = argminu∈s(M)

N

∑
i=1

dFM

(
u, π−1(xi)

)2
(20)

acts correspondingly to the Frechét mean estimator (19). Here s ∈ Γ(FM) is a (local) section of FM that
to x ∈ M connects the known covariance represented by s(x) ∈ FM. The distances dFM

(
u, π−1(xi)

)
,

u = s(x) are realized by MPPs from the mean candidate x to the fibers π−1(xi). The Frechét mean
problem is thus lifted to the frame bundle with the anisotropic weighting incorporated in the metric
gFM. This metric is not related to gR, except for its dependence on the connection C that can be defined
as the Levi–Civita connection of gR. The fundamental role of the distance dgR and gR geodesics in (19)
is thus removed.

Because covariance is an integral part of the model, sample covariance can also be estimated
directly along with the sample mean. In [3], the estimator

û = argminu∈FM

N

∑
i=1

dFM

(
u, π−1(xi)

)2
− N log(detgR u) (21)

is suggested. The normalizing term −N log(detgR u) is derived such that the estimator exactly
corresponds to the maximum likelihood estimator of mean and covariance for Euclidean Gaussian
distributions. The determinant is defined via gR, and the term acts to prevent the covariance from
approaching infinity. Maximum likelihood estimators of mean and covariance for normally distributed
Euclidean data have unique solutions in the sample mean and sample covariance matrix, respectively.
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Uniqueness of the Frechét mean (19) is only ensured for sufficiently concentrated data. For the
estimator (21), existence and uniqueness properties are not immediate, and more work is needed in
order to find necessary and sufficient conditions.

7.2. Priors and Low-Rank Estimation

The low-rank cometric formulation pursued in Section 5 gives a natural restriction of (21) to
u ∈ Fk M, 1 ≤ k ≤ d. As for Euclidean PCA, most variance is often captured in the span of the first
k eigenvectors with k � d. Estimates of the remaining eigenvectors are generally ignored, as the
variance of the eigenvector estimates increases as the noise captured in the span of the last eigenvectors
becomes increasingly uniform. The low-rank cometric restricts the estimation to only the first k
eigenvectors, and thus builds the construction directly into the model. In addition, it makes numerical
implementation feasible, because a numerical representation need only store and evolve d× k matrices.
As a different approach for regularizing the estimator (21), the normalizing term −N log(detgR u) can
be extended with other priors (e.g., an L1-type penalizing term). Such priors can potentially partly
remove existence and uniqueness issues, and result in additional sparsity properties that can benefit
numerical implementations. The effects of such priors have yet to be investigated.

In the k = d case, the number of degrees of freedom for the MPPs grows quadratically in the
dimension d. This naturally increases the variance of any MPP estimate given only one sample from its
trajectory. The low-rank cometric formulation reduces the growth to linear in d. The number of degrees
of freedom is however still k times larger than for Riemannian geodesics. With longitudinal data, more
samples per trajectory can be obtained, reducing the variance and allowing a better estimate of the
MPP. However, for the estimators (20) and (21) above, estimates of the actual optimal MPPs are not
needed—only their squared length. It can be hypothesized that the variance of the length estimates is
lower than the variance of the estimates of the corresponding MPPs. Further investigation regarding
this will be the subject of future work.

7.3. Conclusions

The underlying model of anisotropy used in this paper originates from the anisotropic normal
distributions formulated in [2] and the diffusion PCA framework [1]. Because many statistical models
are defined using normal distributions, this approach to incorporating anisotropy extends to models
such as linear regression. We expect that finding most probable paths in other statistical models such as
regressions models can be carried out with a program similar to the program presented in this paper.

The difference between MPPs and geodesics shows that the geometric and metric properties of
geodesics, zero acceleration, and local distance minimization are not directly related to statistical
properties such as maximizing path probability. Whereas the concrete application and model
determines if metric or statistical properties are fundamental, most statistical models are formulated
without referring to metric properties of the underlying space. It can therefore be argued that the direct
incorporation of anisotropy and the resulting MPPs are natural in the context of many models of data
variation in non-liner spaces.
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