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Dedicated to David A. Schmidt on the Occasion of his 60th Birthday

The linear-time simulation of2-way deterministic pushdown automata(2DPDA) by the Cook and
Jones constructions is revisited. Following the semantics-based approach by Jones, an interpreter
is given which, when extended with random-access memory, performs a linear-time simulation of
2DPDA. The recursive interpreter works without the dump list of the original constructions, which
makes Cook’s insight into linear-time simulation of exponential-time automata more intuitive and the
complexity argument clearer. The simulation is then extended to2-way nondeterministic pushdown
automata(2NPDA) to provide for a cubic-time recognition of context-free languages. The time
required to run the final construction depends on the degree of nondeterminism. The key mechanism
that enables the polynomial-time simulations is the sharing of computations by memoization.

1 Introduction

We revisit a result from theoretical computer science from aprogramming perspective. Cook’s surprising
theorem [4] showed thattwo-way deterministic pushdown automata(2DPDA) can be simulated faster on
a random-access machine (in linear time) than they may run natively (in exponential time). This insight
was utilized by Knuth [8] to find a linear-time solution for the left-to-right pattern-matching problem,
which can easily be expressed as a 2DPDA:

“This was the first time in Knuth’s experience that automata theory had taught him how to
solve a real programming problem better than he could solve it before.” [8, p. 339]

Cook’s original construction in 1971 is obscured by the factthat it does not follow the control flow of
a pushdown automaton running on some input. It traces all possible flows backward thereby examining
many unreachable computation paths, which makes the construction hard to follow. Jones clarified the
essence of the construction using a semantics-based simulator that interprets the automaton in linear
time while following the control flow forward thereby avoiding unreachable branches [6]. The simulator
models thesymbol stackof the automaton on itscall stackusing recursion in the meta-language and
maintains a local list of surface configurations (dump list)to record their common terminator in a table
when a pop-operation is simulated.

We follow Jones’ semantics-based approach and give a simplified recursive simulator that does not
require a local dump list and captures the essence of Cook’s speedup theorem in a (hopefully) intuitive
and easy to follow form. Furthermore, we then extend the construction from a simulation of deterministic
automata to a simulation oftwo-way nondeterministic pushdown automata(2NPDA). The simulations
are all realized by deterministic computation on a random-access machine.

Even though some time has passed since the theorem was originally stated, it continues to inspire
studies in complexity theory and on the computational powerof more practical programming paradigms,
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such as subclasses of imperative and functional languages (e.g.[2, 3, 7, 10]). It therefore appears worth-
while to capture the computational meaning of this classic result in clear and simple terms from a pro-
gramming perspective. It is hoped that the progression fromsimple interpreters to simulators with mem-
oization and termination detection makes these fundamental theoretical results more accessible.

We begin with a simple interpreter for two-way deterministic pushdown automata (Sect. 2) that we
extend to simulate deterministic PDA in linear time (Sect. 3). We then introduce a nondeterministic
choice operator (Sect. 4) and show the simulation of nondeterministic PDA (Sect. 5).

2 Deterministic PDA Interpreter

A two-way deterministic pushdown automaton(2DPDA) consists of a finite-state control attached to a
stack and an input tape with one two-way read-only head [4]. The statep, the symbol read at head
position i, and the symbolA on top of the stack determine the next action for a given tape,which is the
automaton’s input. Only when the stack top is popped does thesymbol below the top become relevant
for the following computation. The set of states, the set of input symbols and the set of stack symbols
are fixed for an automaton. A transition function chooses thenext action depending on the current
surface configuration c= (p, i,A), shortly referred to asconfiguration. The instantaneous description
(c,stack-rest) of an automaton includes the current configurationc and the stack below the top symbolA.

The automaton canpush andpop stack symbols, and perform an operationop that modifies the cur-
rent configuration without pushing or popping (e.g., move to a new tape position). The stack bottom and
the left and right tape ends are marked by distinguished symbols. The head positioni in a configuration
(p, i,A) is always kept within the tape bounds and one can determine anempty stack. The automaton
answers decision problems. It is said toacceptan input if, when started in initial statep0 with an empty
stack and the head at the left endmarker, it terminates withaccept, an empty stack and the head at the
right endmarker. It can justhalt with an empty stack without accepting an input. In the exposition below
we tacitly assume some fixed input tape.

Termination. A configuration in which a pop-operation occurs is aterminator [4]. Every configura-
tion c in a terminating computation has a unique terminator, that is the earliest terminator reached fromc
that returns the stackbelow the heightatc. This case is illustrated below(i): d is the terminator ofc. Ter-
minatord can be viewed as the result of configurationc. Configurationc will always lead tod regardless
of what is on the stack below. A configuration that accepts or halts the automaton is also a terminator.

If a configurationc is met againbeforethe terminator is reached, which means that the stack never
returned below the level at whichc occurred for the first time, then the automaton is in aninfinite loop.
The second occurrence ofc will eventually lead to a third occurrence ofc, ad infinitum. The only two
possible situations are illustrated below: eitherc repeats at the same level of the stack(ii) or at a higher
level after some stack-operations have been performed(iii ). In both cases, the contents of the stack
belowc (shaded) is untouched and irrelevant to the computation:c will always lead to an infinite loop.

(i) c −→∗ d ց

✁✁ ✁✁ ✁✁ ✁✁ ✁✁ ✁✁ ✁✁ ✁✁ ✁✁ e
(ii) c −→∗ c

✁✁ ✁✁ ✁✁ ✁✁ ✁✁ ✁✁ ✁✁ ✁✁ ✁✁ ✁✁

(iii ) c
ր∗

c
...

✁✁ ✁✁ ✁✁ ✁✁ ✁✁ ✁✁ ✁✁ ✁✁ ✁✁

Running Time. Thenumber of configurationsthat an automaton can enter during a computation de-
pends on the input tape. The states and symbols are fixed for anautomaton. The number of head positions
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on the input tape is bounded by thelength of the input tape. The number of configurations is therefore
linear in the length of the input tape,n = O(|tape|). We remark that the number of configurations of
an automaton withk independent heads on the input tape isn = O(|tape|k). Thek head positions are
easily accommodated by configurations of the formc= (p, i1, . . . , ik,A). An automaton can carry out an
exponential number of stepsbefore it terminates. For example, an automaton that duringits computation
forms all stacks consisting ofn zeros and ones takesO(2n) steps.

Interpreter. Figure 1 shows the interpreter for 2DPDA written in the styleof an imperative language
with recursion and call-by-value semantics. The interpreter Int can be run on arandom-access machine
(RAM). A call Int(c) = d computes the terminatord of a configurationc, wherepop(d). There is
no symbol stack and no loop in the interpreter. All operations are modeled on thecall stackof the
implementation language by recursive calls to the interpreter. A recursive call takes constant time, thus
a call stack just adds a constant-time overhead compared to adata stack. Statementsaccept andhalt
stop the interpreter and report whether the input was accepted or not. The automaton is assumed to be
correct and no special checks are performed by the interpreter. We will now discuss the interpreter in
more detail. It is the basis for the three interpreters and simulators in the following sections.

In the interpreter we abstract from the concrete push-, op- and pop-operations. We define predi-
catespush(c), op(c), pop(c), accept(c), halt(c) to be true if a configurationc causes the corresponding
operation in the automaton. Their actual effect on a configuration is not relevant as long as the next
configuration can be determined by the built-in operationsnext andfollow. We letnext(c) be the opera-
tion that yields in one step the next configuration, ifop(c) or push(c), andfollow(c,d) be the operation
that yields in one step the next configuration givenc andd, if pop(d).1 Each of these operations takes
constant time, includingnext andfollow that calculate the next configuration.

In case a configurationc causes a pop-operation, that ispop(c) is true in the cond-statement (Fig. 1),
c is a terminator and the interpreter returns it as result. If aconfigurationc causes a push-operation, that
is push(c) is true, first the terminator of the next configuration is calculated byInt(next(c)) = d. The
terminator always causes a pop-operation and interpretation continues at configurationfollow(c,d) which
follows from c and terminatord. In caseop(c) is true, that is the operation neither pushes nor pops, the
terminator ofc is equal to the terminatorInt(next(c)) of the next configuration.

The effect of the operations on the configurations and the call stack can be summarized as follows.

c = (p,i,A)
...

push(c)
−→

(q,j,B) = next(c)

(p,i,A)
...

c = (p,i,A)
...

op(c)
−→ (q,j,B) = next(c)

...

d = (q,j,B)

c = (p,i,A)
...

pop(d)
−→ (r,k,C) = follow(c,d)

...

1The conventional ‘pop’ just removes the top symbol from the stack. Our generalization that defines the next configuration
by follow(c,d) does not affect the complexity arguments later and is convenient from a programming language perspective.
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procedure Int(c: conf): conf;
cond

push(c): d := Int(follow(c,Int(next(c))));
op(c): d := Int(next(c));
pop(c): d := c;
halt(c): halt;
accept(c): accept;

end;
return d

Figure 1: A recursive interpreter for deterministic PDA.

A push-operation may, for example, push a constant symbolB onto the stack or duplicate the current
top A. Likewise, an op-operation may replace the current topA by a new topB, but without pushing
or popping the stack, and move the tape head by changing position i into j. A pop-operation may just
remove the stack topA to uncoverB below or replace the uncovered symbol by a symbolC depending on
A andB. The abstract pop-operation covers many common binary stack-operations familiar from stack
programming languages (e.g., it may choose from symbolsA andB the one that is smaller according to
some order). Depending on the concrete set of binary operators and stack symbols this allows to express
a number of interesting functions as pushdown automata.

Properties. The body of the interpreter contains no loop, only sequential statements. The time it takes
to execute each of the statements is bounded by a constant (ignoring the time to evaluate a recursive
call to a result). No side-effects are performed and no additional storage is used except for the local
variabled. Even though written in an imperative style, the interpreter is purely functional. It terminates
if and only if the pushdown automaton terminates on the same input. The correctness of the interpreter
should be evident as it merely interprets the automaton one step at a time. Note the simplicity of the
construction by recursively calling the interpreter for each action of the automaton. Also an op-operation
that does not change the height of the symbol stack converts into a (tail-recursive) call on the call stack.

In a terminating computation, no callInt(c) can lead to a second callInt(c) as long as the first call
has not returned a result, which means that it is still on the call stack. If a second callInt(c) occurs while
the first one is still on the call stack, the interpreter is in an infinite recursion.

As a consequence, in a terminating computation the height ofthe call stack is bounded byn, the num-
ber of configurations, and the same call stack cannot repeat during the interpretation. After exhausting
all possible call stacks of height up ton, that is all permutations of up ton configurations, the interpreter
must terminate, that is withinO(nn) steps. The interpreter can have a running time exponential in the
number of configurations.

3 Linear-Time Simulation of Deterministic PDA

The 2DPDA-interpreter in Fig. 1 is purely functional and hasno persistent storage. Each time the termi-
natord of a configurationc is computed and the same configuration is reached again, the terminator has
to be recomputed by a callInt(c), which means the entire subcomputation is repeated. To store known
terminators and to share them across different procedure invocations, we extend the interpreter with
memoization[9]. This straightforward extension gives linear-time simulation of 2DPDA. The sharing of
terminators is the reason why Cook’s speedup theorem works.
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procedure Sim(c: conf): conf;
if defined(T[c]) then return T[c]; /* find shortcut */
cond

push(c): d := Sim(follow(c,Sim(next(c))));
op(c): d := Sim(next(c));
pop(c): d := c;
halt(c): halt;
accept(c): accept;

end;
T[c] := d; /* memoize result */
return d

Figure 2: A linear-time simulator for deterministic PDA.

RAM extension. Figure 2 shows the interpreter with memoization, calledsimulator. It works in the
same way as the interpreter except that each time before a call Sim(c) returns the terminatord of c,
the terminator is stored in a tableT by assignmentT[c] := d. Next time the terminator is needed, it
can be retrieved fromT, avoiding its recomputation. Terminators are now shared dynamically at run
time and over the entire simulation. TableT can be implemented as a one-dimensional array indexed
by configurations and can hold one terminator for each of then configurations that can occur during a
computation. All table entries are initially undefined. It is easy to see that the shortcut (if-statement) and
the memoization (table assignment) do not change the resultof the automaton. Storing and retrieving
a terminator takes constant time on a RAM (see Cook for a charged RAM model instead of a unit-cost
model [4]). An “automatic storage management” also means that many terminators are recorded during
a computation that are not needed later, but we shall see thatthis does not affect the linearity argument.
A more thorough analysis would surely reveal that memoization points are only required at a few places
in an automaton (cf. [3,10]).

Linear-time simulation. In a terminating computation, before a second callSim(c) is made, the first
call must have returned and stored the terminatord of c atT[c]. Once the terminator is known, it need
not be recomputed and can be fetched from the table. Hence, the cond-statement, which is guarded by
a lookup inT, is executedat most oncefor any c. Recursive calls to the simulator occur only from
within the cond-statement, namely one call ifop(c) and two calls ifpush(c). Consequently,Sim can be
called at most 2n times, wheren is the number of possible configurations. This also limits how often the
if-statement guarding the cond-statement is executed. Hence, the total number of execution steps during
a terminating simulation is bounded linearly byn. Recall thatn is linear in the length of the input tape,
n= O(|tape|). This concludes the argument for the linear-time simulation of a 2DPDA on a RAM.

Discussion. Deterministic pushdown automata are the accepting device for deterministic context-free
languages. More precisely, they are exactly recognized by1-way deterministic pushdown automata
(1DPDA), that is, deterministic pushdown automata that never move their head to the left on the input.
The LR grammar of a deterministic context-free language is easy to convert into a 1DPDA (e.g. [5]).
Thus, recognition of this subclass of context-free languages using the memoizing simulatorSim (Fig. 2)
takes at most linear time (as does the classic LR-parsing algorithm by Knuth). In the following we extend
the simulator to recognize all context-free languages in cubic time.

The method by Ahoet al.[1] requiresO(n2) for simulating 2DPDA, a result which was then strength-
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procedure Int(c: conf): confset;
if visited(T[c]) then return {}; /* detect infinite branch */
T[c] := Visited; /* mark configuration */
cond

push(c): d :=
⋃
Int(follow(c,e)) where e ∈ Int(next(c));

op(c): d := Int(next(c));
choose(c): d := Int(nextleft(c)) ∪ Int(nextright(c));
pop(c): d := {c};
halt(c): d := {};
accept(c): accept;

end;
T[c] := Undef; /* unmark configuration */
return d

Figure 3: A recursive interpreter for nondeterministic PDA.

ened toO(n) by Cook [4]. Both methods work bottom-up. In contrast, the simulatorSim works top-down
following the forward control flow as does the one by Jones [6]. It clearly shows that the key mechanism
that turns a recursive pushdown interpreter into a linear-time simulator is memoization.

4 Interpretation of Nondeterministic PDA

In a two-waynondeterministicpushdown automaton (2NPDA) the computation path is not uniquely de-
termined. A deterministic automaton can be madenondeterministicby introducing an operationchoose
that allows the automaton to select any of two computation paths in a configurationc (cf. [7]). This
means that a configuration no longer has a unique terminator,but a set of possible terminators. We let
nextleft(c) andnextright(c) be the abstract operations that yield in one step the two nextconfigurations
that are possible ifchoose(c). For simplicity, the new operation can neither push nor pop stack symbols.
With a choose-operation two transitions are possible:

c = (p,i,A)
...

choose(c)

ր

ց

(q,j,B) = nextleft(c)
...

(r,k,C) = nextright(c)
...

A nondeterministic automaton is said toacceptan input if it has at least one accepting computation when
started in the initial statep0 with an empty stack and the head at the left tape end. It has theability to
guess the right choice that leads to the shortest accepting computation. In an interpreter this “angelic
nondeterminism” can be thought of as searching through a tree of all possible computation sequences,
some of which may be infinite or non-accepting, to find at leastone accepting sequence. Branching in
the computation tree is due to nondeterministic choose-operations in the automaton.

Interpreter. The interpreter fornondeterministicPDA that can be run on a RAM is shown in Fig. 3.
Two main changes to the original interpreter in Fig. 1 are necessary to accommodate the “guessing”: (1) a
set of terminatorsinstead of a single terminator is returned, and (2) atermination check(“seen before”)
that stops interpretation along an infinite computation sequence. We detail the two modifications below.
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1. Terminator sets: A choose-operation requires the union of the terminator sets obtained from the
two next configurations,nextleft(c) and nextright(c). In case of a push-operation, and this is
the most involved modification, each configuratione in the terminator set obtained by the inner
call Int(next(c)) must be followed by an outer call. The big set union used for this purpose is a
shorthand for a while-loop over the inner terminator set. A pop-operation now returns a singleton
set{c} instead ofc. Finally, instead of making a full stop at a halt-operation,an empty set is
returned in order not to miss an accepting computation alonganother possible branch.

2. Termination check: As discussed before, non-termination occurs when the interpreter is called a
second time with the same configurationc as argument while the first call has not yet returned.
This situation can be detected by markingc in a table when a callInt(c) is made and unmarking
c when the call returns. If a call with a markedc as argument is made, an infinite computation is
detected and the interpreter returns an empty terminator set. The same tableT as before can be
used, but can now hold the additional valueVisited. Initially all table entries are set toUndef.

The cardinality of a terminator set is bounded byn, the number of configurations that can occur in a
computation. The most costly set operation in the interpreter is the union of terminator sets. Assuming a
suitable choice of data structures, a union operation takestime linear in the total cardinality of the sets,
that is the union of two sets with cardinalitiesu andv takes timeO(u+v). All remaining set-operations
needed in the interpreter are straightforward and take constant time: creating a set (empty, singleton),
and picking and removing an arbitrary element from a set (in the set comprehension). In the discussion
below we assume such an implementation of the set operations.2

A choose-operation, which unites two terminator sets each of cardinality up ton, takes linear time
O(n). A push-operation, where the inner callInt(next(c)) returns a set of at mostn terminators, each
of which, when followed by the outer callInt(follow(c,e)), can again return a set of up ton terminators,
requires the union ofn sets each of cardinality up ton, which then takes quadratic timeO(n2). This is
the most expensive set-operation in the cond-statement.

In the case of a deterministic automaton, that is, an automaton without choose-operation, the new
interpreter in Fig. 3 operates with singleton sets only, andthe set-operations introduce at most a constant-
time overhead compared to the original interpreter in Fig. 1. This is useful because the new interpreter
“falls back” to its original behavior and, except for a constant time overhead in the new interpreter, there
is no penalty in using it to run deterministic PDA and, as an extra benefit, it always terminates.

There is a major pitfall. If a nondeterministic automaton isleft-recursive, then the termination check
may stop left-recursion too early and miss useful branches contributing to a terminator set. In the case
of 1NPDA there always exists a non-left-recursive version (presumably the same for 2NPDA). Alterna-
tively, one might bound the unfolding of a left-recursion interms of the input assuming some normal-
form automaton (the termination check in Fig. 3 limits left-recursion unfolding to one).

5 Cubic-Time Simulation of Nondeterministic PDA

To turn the new interpreter (Fig. 3) into a fast simulator (Fig. 4) we use the same memoization method
as in Sect. 3. The use of tableT parallels its use in the deterministic case except that for each of then
possible configurations the table can now hold a set of up ton terminators and the valueVisited. The
body of the simulator is again guarded by an if-statement (first line) that returns the terminator set of a

2A straightforward implementation of such a set data structure might be a Boolean array of lengthn to indicate membership
of a configurationc in a set together with an unsorted list of all configurations contained in that set.
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procedure Sim(c: conf): confset;
if defined(T[c]) then return T[c]; /* find shortcut */
if visited( T[c]) then return {}; /* detect infinite branch */
T[c] := Visited; /* mark configuration */
cond

push(c): d :=
⋃
Sim(follow(c,e)) where e ∈ Sim(next(c));

op(c): d := Sim(next(c));
choose(c): d := Sim(nextleft(c)) ∪ Sim(nextright(c));
pop(c): d := {c};
halt(c): d := {};
accept(c): accept;

end;
T[c] := d; /* memoize result */
return d

Figure 4: A cubic-time simulator for nondeterministic PDA.

configurationc, if it is available in tableT. Otherwise, and if no infinite computation path is detected,c
is marked asVisited in T and its terminator set is computed.

Before returning, terminator setd of c is stored inT, which overwrites the markVisited. The cond-
statement is executed at most once for each configuration. The markVisited is only needed the first time
the procedure is called, when the table does not yet contain aterminator set forc. Thus, the same table
can be used for marking configurations and for storing their terminator sets. A terminator set may be
empty if none of the branches rooted inc is accepting. Otherwise, the interpreter is unchanged.

Cubic-time simulation. As before, the cond-statement is executed at most once for each of then
configuration due to the guards at the beginning ofSim. Up ton+1 calls toSim may occur in the case of
a push-operation, namely one inner call and at mostn outer calls, one for eache ∈ Sim(next(c)). Hence,
Sim can be called at mostO(n2) times during a simulation. This also limits how often the if-statements
guarding the cond-statement are executed.

In the cond-statement, as before, the simulation of the op-,pop-, halt-, accept-operations takes con-
stant time,O(1). The union of two sets of at mostn terminators in case of a choose-operation may take
linear time,O(n). The union of the terminator sets in a push-operation is the most costly operation and
may take quadratic time,O(n2). A push is simulated at most once per execution of a cond-statement,
which is at mostn times. Hence, the total number of execution steps during a simulation is cubic in the
number of configurations,O(n3). Recall thatn is linear in the length of the input tape,n = O(|tape|).
This ends the argument for the cubic-time simulation of (non-left-recursive) 2NPDA on a RAM.

Discussion. We observe that the “complexity generator” in the cond-statement isnot the choose-
operation, even though it introduces two computation branches, rather the handling of up ton con-
tinuations and the union of their terminator sets in case of apush-operation. If the cardinality of each
terminator set that can occur during a simulation is boundedby aconstant, that is, not dependent on the
input, the simulation time islinear in the input as before. Deterministic automata, where the cardinality
of each terminator set is at most one, and a class of nondeterministic automata, where the cardinality is
bounded by somek, are all simulated in linear time bySim. The top-down method is useful because the
same simulator runs them in the time corresponding to their degree of nondeterminism.
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One-waynondeterministic pushdown automata (1NPDA) are the accepting device forcontext-free
languages. Every context-free language has a grammar without left recursion and it is straightforward
to convert the grammar into a 1NPDA. This means that recognition of context-free languages using the
simulator (Fig. 4) has the same worst-case time complexity as the classic parsing algorithms that can
handle the full class of context-free languages (Earley, Cocke-Younger-Kasami), that isO(|string|3). As
discussed before, the performance of the simulator is determined by the degree of nondeterminism in
the automaton. Recognition of deterministic context-freelanguages using the simulator takes, again, at
most linear time. In practice, of course, specialized parsing algorithms will have better run times (due to
the constant term hidden in theO-notation) and use less space than the recursive simulator.Again, the
mechanism that enables polynomial-time simulation is the sharing of computations by memoization.

Acknowledgements. Thanks are due to Nils Andersen, Holger Bock Axelsen, Julia Lawall, Torben
Mogensen, Chung-chieh Shan, and the anonymous reviewers for various insightful comments, to Neil
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