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Abstract 23 

The Ratcliff diffusion model is now arguably the most widely applied model for response time 24 

data. Its major advantage is its description of both response times and the probabilities for 25 

correct as well as incorrect responses. The model assumes a Wiener process with drift between 26 

two constant absorbing barriers. The first-passage times at the upper and lower boundary 27 

describe the responses in simple two-choice decision tasks, for example, in experiments with 28 

perceptual discrimination or memory search. In applications of the model, a usual assumption is 29 

a varying drift of the Wiener process across trials. This extra flexibility allows accounting for slow 30 

errors that often occur in response time experiments. So far, the predicted response time 31 

distributions were obtained by numerical evaluation as analytical solutions were not available. 32 

Here, we present an analytical expression for the cumulative first-passage time distribution in 33 

the diffusion model with normally distributed trial-to-trial variability in the drift. The solution is 34 

obtained with predefined precision, and its evaluation turns out to be extremely fast. 35 

Keywords 36 

Diffusion model; Response time modeling  37 
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Background 38 

The diffusion model for response times was proposed about 40 years ago (Ratcliff, 1978) as a 39 

continuous-time, continuous-state generalization of earlier discrete-time random walk models 40 

(Laming, 1968; Link & Heath, 1975). One of its major advantages over standard response time 41 

(RT) analyses (i.e., comparison of mean RTs) is the simultaneous analysis of both response time 42 

and accuracy. This avoids problems of speed-accuracy trade-offs that are possible confounders 43 

of the results and generally difficult to interpret (e.g., Pachella, 1974). 44 

The standard diffusion model assumes a Wiener process with drift � and diffusion 45 

coefficient �� (typically fixed either at �� = 1 or �� = 0.01 because it only scales the other 46 

parameters) evolving over time in the presence of two absorbing barriers (located at 0 and 47 

� > 0). Each barrier is associated with one response alternative. The barriers can be viewed as 48 

response criteria, that is, the distribution of the first passage time to either barrier produces the 49 

predicted response times distribution for the response alternative associated with the barrier.  50 

Although the model is well motivated and the approach is appealing, two issues remain 51 

that are often seen as major obstacles for a wider application of the model. Firstly, there is no 52 

closed-form solution available for the partial differential equation (PDE) of a diffusion process 53 

with the necessary boundary conditions. The available solutions (e.g., Feller, 1968) all require 54 

the evaluation of infinite series. These series can be shown to converge quite quickly (Navarro & 55 

Fuss, 2009; Blurton, Kesselmeier, & Gondan, 2012; Gondan, Blurton, & Kesselmeier, 2014). 56 

However, when fitting the model to data, the series has to be evaluated over and over again, 57 

which may take a considerable amount of time. This is especially true if more general versions 58 

of the model are fitted to data (see next section). In that case, several numerical integrations 59 

have to be carried out that are associated with their own (possibly unknown) approximation 60 
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errors. However, for parameter estimation it is useful to have an exact result to avoid numerical 61 

problems during estimation (e.g., rough likelihood surfaces). 62 

Secondly, the available solutions only cover the standard Wiener process with constant 63 

drift across trials. By analogy to the signal detection model (Tanner & Swets, 1954) and based 64 

on common sense arguments (the “resonance” metaphor), Ratcliff (1978) argued that the drift 65 

rate � shows inter-trial variability that can be described by a normal distribution: � ∼ ��, ���. 66 

For example, one direct consequence of this assumption is that in a response signal paradigm, 67 

perceptual sensitivity �′ asymptotes and does not reach infinity with signal time � (Ratcliff, 68 

1978, Eq. 10). However, this extra variability comes at the cost of a missing analytical form for 69 

the model predictions. Hence, model predictions must be obtained by numerical evaluation 70 

instead (Ratcliff & Tuerlinckx, 2002). Interestingly, the density function1 is known for the case of 71 

normally distributed drift rates (e.g., Horrocks & Thompson, 2004) and it has been used in the 72 

past for fitting the diffusion model to response time data (Ratcliff & Tuerlinckx, 2002; Wiecki, 73 

Sofer, & Frank, 2013). For the lower barrier, it is  74 

 75 

��� | , ��, �, �� = �
���������� exp "#$��#�$%&����%&��

�������� ' ∑ �−1�*  +*  , -./
√�12*34  (1) 76 

 77 

where +* = 5� + �� for even 5 or +* = 5� + ��1 − �� for odd 5, and ,�7� denotes the standard 78 

normal density function evaluated at 7, and 0 < � < 1 is the relative starting point of the 79 

Wiener process between the two barriers. Without loss of generality the diffusion coefficient �� 80 

                                                      
1 Note that the distribution (density) is technically not a probability distribution (density) but a defective 

distribution (density) because it does not integrate to unity. One obtains a proper distribution (density) by summing 
the distributions (densities) from the upper and lower criteria or by normalizing through the respective absorption 
probability.  
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has been omitted in (1), as �′�� | , ��, ��, �, �� = ��� | /�, ��/��, �/�, ��. The density 81 

function is useful if maximum likelihood estimation is desired. However, if parameter estimates 82 

are to be obtained from binned data, for example by chi-square methods (e.g., Ratcliff & Smith, 83 

2004) or by the quantile maximum likelihood method (Heathcote, Brown, & Mewhort, 2002) 84 

one must rely on numerical integration of the first-passage time density to obtain the 85 

distribution function. 86 

Since its introduction additional parameters for inter-trial variability have been added to 87 

the model (Ratcliff & Rouder, 1998; Ratcliff & Tuerlinckx, 2002). Thus, the “full” Ratcliff diffusion 88 

model fit now requires the numerical evaluation of three integrals (see Tuerlinckx, 2004, Eq. 3). 89 

This can become time consuming as the computational complexity raises exponentially 90 

(Tuerlinckx, 2004) and all these integrals must be evaluated on infinite series. 91 

Here, we present an analytical solution for the first-passage time distribution of the 92 

Ratcliff (1978) model with drift variation. The solution is of theoretical interest and especially for 93 

applications of the model. For the application, it increases speed and establishes a pre-defined 94 

accuracy of the fitting procedure. It is readily available for use in existing software packages like 95 

DMAT (Vandekerckhove & Tuerlinckx, 2008). Researchers that have implemented or seek to 96 

implement their own fitting routines will also benefit from the solution as it guarantees a 97 

computationally efficient computation with accuracy up to some pre-defined level. 98 

The cumulative distribution function for the Ratcliff diffusion model 99 

Recently, Gondan and colleagues (2014) reported a solution of the PDE for a Wiener process 100 

with constant drift between two absorbing barriers that is using a representation stated in 101 

terms of the Mills ratio (Hall, 1997). We would like to remind the reader of some of the 102 
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favorable properties of this representation. Firstly, it is numerically very stable and no numerical 103 

problems arise during the calculation of the infinite series. Secondly, and contrasting its related 104 

representation (e.g., Blurton et al., 2012), it is defined for all real drift rates and does not suffer 105 

from a singularity at zero drift. Clearly, this is very important when integrating over drift rates. 106 

Thirdly, it gives the distribution function and not the survivor function so that the separate 107 

calculation of the overall absorption probability at a specific barrier is not necessary. In the most 108 

widely adapted representation of the first-passage time cumulative distribution, the survivor 109 

function is used. In that case, the series must be subtracted from the probability of terminating 110 

at the associated barrier to obtain the cumulative distribution (see Ratcliff, 1978, Eq. A12 and 111 

p. 105f, for the motivation of this approach). Obtaining the cumulative directly avoids problems 112 

in the derivation regarding this probability with drift variation over trials (see Tuerlinckx, 2004). 113 

Apart from the latter issue, these points also hold for the alternative solution that is available 114 

and usually used in fitting the diffusion model (Ratcliff, 1978; Ratcliff & Tuerlinckx, 2002). 115 

However, the analytic solution for this CDF with inter-trial variability in drift rates is yet 116 

unknown. 117 

Using the aforementioned representation (1), the cumulative distribution function :��� 118 

of the first-passage time of a Wiener process with drift � between two absorbing barriers placed 119 

at 0 and � > 0 and starting at �� (0 < � < 1) to the lower boundary can be expressed by the 120 

infinite series (Hall, 1997) 121 

 122 

:�� | �, �, �� = exp -−��� − ;��
� 1 ∑ �−1�*, -./

√�1 "< -./#;�
√� 1 + < -./�;�

√� 1'2*34  (2) 123 

 124 
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with +*  and ,�7� as defined above, and <�7� = �#=�>�
?�>�  denoting the inverse hazard function 125 

(the “Mills ratio”) for the standard normal distribution. 126 

In order to obtain a solution for the more general process with trial-to-trial variability in 127 

drift rate �, one must seek a solution of the integral @ A�7� ⋅ :�� | 7, �, �� �7, that is, one must 128 

integrate over the density A�7� of the assumed drift distribution and the first-passage time 129 

distribution :���. Because drift rates can take any real value and due to the correspondence 130 

with the signal detection model (Tanner & Swets, 1954), the normal distribution is usually 131 

chosen as a possible distribution for the drift rates (Ratcliff, 1978, Eqs. 8, A24, & A25). Thus, we 132 

replace A�7� by the normal density ,�7 | , ��� with mean  and variance ��. Let 133 

C�� | , ��, �, �� be the first-passage time distribution of such a process,  134 

 135 

C�� | , ��, �, �� ∶= @ ,�7 | , ��� ⋅ :�� | 7, �, ��2#2 �7  136 

= @ ,�7 | , ��� exp -−7�� − >��
� 1 ∑ �−1�*, -./

√�1 "< -./#>�
√� 1 + < -./�>�

√� 1'2*342#2 �7  137 

 138 

The series is absolutely convergent (see Appendix A) so that summation and integration can be 139 

exchanged and we may write 140 

 141 

C�� | , ��, �, �� = ∑ �*�� | , ��, �, ��2*34   142 

 143 

with 144 

 145 

�* ∶= �−1�*, -./
√�1 @ exp -−7�� − >��

� 1 ,�7 | , ��� "< -./#>�
√� 1 + < -./�>�

√� 1'2#2 �7. 146 
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Each term of the series is composed of two summands, so for simplicity let us define 147 

 148 

�*# ∶= �−1�*, -./
√�1 @ exp -−7�� − >��

� 1 ,�7 | , ��� < -./#>�
√� 12#2 �7  149 

 150 

and 151 

 152 

�*� ∶= �−1�*, -./
√�1 @ exp -−7�� − >��

� 1 ,�7 | , ��� < -./�>�
√� 12#2 �7. 153 

 154 

with �* = �*# + �*� (we omitted the arguments for notational compactness). We first derive �*#. 155 

Replacement of Mills ratio and application of 1 − Φ�7� = Φ�−7� leads to 156 

 157 

�*# = �#��/
��F�� @ exp "− �>#$��

��� − 7�� − >��
� ' exp G− ./���H Φ ->�#./

√� 1 exp IJ./#>�K�
�� L2#2 �7.  158 

 159 

Then, simplification and rearrangement according to powers of 7 results in 160 

 161 

�*# = �#��/
��F�� @ exp "− >�

��� + - $
�� − �� − +*1 7 − $�

���' Φ -7√� − ./
√�1 2#2 �7.  162 

 163 

For convenience, we define M ∶= $
�� − �� − +* . Next, by completing the square one obtains 164 

 165 

�*# = �#��/
��F�� exp -− $�

��� + ��
� M�1 @ exp I− �

� ->
� − �M1�L Φ -7√� − ./

√�1 2#2 �7  166 
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The required integral is of the form@ exp "− �
� �N7 − O��' Φ�P7 − Q�2#2 �7, to which the 167 

solution is @ exp "− �
� �N7 − O��' Φ�P7 − Q�2#2 �7 = √�F

R I1 − Φ G SR#TU
�U��R�HL (see Appendix B). 168 

With the obvious correspondence of Q, P, O, and N, this leads to 169 

 170 

�*# = �−1�* exp -− $�
��� + ��

� M�1 Φ G�V√�#.//����
����/�� H  171 

= �−1�* exp "��
� J�� + +*K� − J�� + +*K' Φ I$�#��J%&�./K�#./��������� L  172 

Similarly, 173 

 174 

�*� = �−1�* exp "��
� J�� − +*K� − J�� − +*K' Φ I$�#��J%&#./K��./��������� L. 175 

 176 

By combining the results for �*# and �*�, we get �*�� | , ��, �, �� of the series C�� | , ��, �, �� as 177 

the required analytical solution. However, we further develop the result to obtain a 178 

representation using the Mills ratio again because of its favorable numerical properties (see 179 

above).  180 

 181 

�*# = �−1�* exp "��
� J�� + +*K� − J�� + +*K' W1 − Φ I− $�#��J%&�./K�#./��������� LX  182 

= �#��/
√�F exp "#$��#�$%&����%&��

�������� ' exp I− ./�����./����������L < I./#$����J%&�./K�
��������� L  183 

= �−1�* exp "#$��#�$%&����%&��
�������� ' , -./

√�1 < I./#$����J%&�./K�
��������� L. 184 

 185 

 186 
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Similarly, we have 187 

 188 

�*� = �−1�* exp "#$��#�$%&����%&��
�������� ' , -./

√�1 < I./�$����J./#%&K�
��������� L. 189 

 190 

The cumulative distribution function then reads as 191 

 192 

C�� | , ��, �, �� = exp "#$��#�$%&����%&��
�������� ' × 193 

∑ �−1�*, -./
√�12*34 W< I./#$����J./�%&K�

��������� L + < I./�$����J./#%&K�
��������� LX.  (3) 194 

 195 

This is the analytic result of the model proposed by Ratcliff (1978). The absorption 196 

probability at the upper barrier is obtained by C�� | − , ��, �, 1 − ��. For non-unit variance ��, 197 

C′�� | , ��, ��, �, �� = C�� | /�, ��/��, �/�, ��. The above solution is interesting in several 198 

aspects. Firstly, it bears similarities with the already known density function (Eq. 1) and the 199 

solution for an unrestricted Wiener process with normally distributed drift (Ratcliff, 1978, Eq. 8). 200 

Secondly, for �� = 0, it simplifies to the distribution function :�� | �, �, �� of a standard Wiener 201 

process (Eq. 2) with constant drift �. In other words, it can be safely used in a fitting routine, 202 

regardless of the (empirical) question, whether there is inter-trial variability in the data or not. If 203 

no such variation is observed, the function safely converges to the no-variation case.  204 

Convergence 205 

Because the +*  are strictly increasing, and the Mills ratio is strictly decreasing in its argument, 206 

the function :�� | , �, �� in (2) is a strictly decreasing alternating series (Gondan et al., 2014). A 207 
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similar argument can be made for (3): Because C�� | , ��, �, �� is a weighted sum of different 208 

:�� | , �, ��, it is a strictly decreasing alternating series as well, so that its evaluation can be 209 

stopped as soon as the first summand �Z is below some pre-defined error tolerance [ > 0. 210 

Then, it is guaranteed that the truncation error—that is, the difference between the true 211 

distribution (3) and the truncated series evaluated up to some \—is not greater than the pre-212 

defined tolerance level. 213 

If a reasonable estimate for the number of required terms is known, the precision of the 214 

truncated solution is improved (e.g., by aggregating terms in increasing order). The number of 215 

required terms can be obtained by solving, for example, ��] ≤ [ for even \ = 2`. We first note 216 

that for sufficiently large +�] (such that the argument of , is positive), a simple upper bound 217 

ℎ�] ≥ ��] is found with 218 

 219 

ℎ�] = 2 exp "#$��#�$%&����%&��
�������� ' × , I .�c#|$|�

���������L < I .�c#|$|�
���������L  220 

= 2 exp "#$��#�$%&����%&��
�������� ' W1 − Φ I .�c#|$|�

���������LX  221 

 222 

The inequality ℎ�] ≤ [ is then solved for \ = 2`, 223 

 224 

\ ≥ ���������
% ⋅ Φ#� d1 − �

� exp "$����$%&#���%&��
�������� + log ['h + |$|�

% − �.  (4) 225 

Positivity of the arguments of , is given for \ ≥ |$|�
% − �. 226 



12 
 

Efficiency 227 

The CDF in (3) can readily be used for parameter estimation in combination with a fitting 228 

function that relies on the CDF—such as chi-square methods or the quantile maximum 229 

likelihood estimation (Heathcote et al., 2002). Our first analyses using the solution on simulated 230 

data showed that it can be readily used with reasonable computational effort (Table 1): The 231 

number of terms needed for convergence up to a pre-defined tolerance [ is generally very low. 232 

The number of terms mainly depends on the barrier separation parameter � and the time � at 233 

which the function is evaluated: Similar to the constant drift case (Eq. 2), larger � and smaller � 234 

lead to slower convergence of the series. The other parameters , ��, and � have hardly any 235 

influence on the convergence behavior. Because no numerical integration is required, a 236 

tolerance of [ of approximately 1.5 × 10#j seems appropriate (i.e., around the square root of 237 

the smallest positive 32 bit floating-point number [ for which 1 is distinguishable from 1 + [). 238 

With this tolerance, none of the calculations shown in Table 1 needed more than ten terms to 239 

converge. It is also turned out that the upper bound for \ (Eq. 4) is overly conservative. In any 240 

case, the scenario in Table 1 is rather pessimistic as we assumed decision times up to 1200 ms 241 

and C�� | , ��, �, �� converges even quicker for lower values of �.  242 
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Table 1 

Number of terms needed to achieve pre-defined accuracy. 

Parameter  Number of terms 

�� � � 	 \ from Eq. 4 Needed 

0.01 0.08 .375   15 8 

  .500  15 8 

 0.11 .375  11 5 

  .500  11 6 

 0.14 .375  9 5 

  .500  9 4 

0.04 0.08 .375  23 7 

  .500  23 8 

 0.11 .375  17 5 

  .500  17 5 

 0.14 .375  13 4 

  .500  13 4 

0.09 0.08 .375  31 7 

  .500  31 7 

 0.11 .375  23 5 

  .500  23 5 

 0.14 .375  18 4 

  .500   18 4 

Note—Scaling parameter was set to �� = 0.01. The table shows the number of 

terms needed to achieve accuracy [ = 1.5 × 10#j at the lower barrier. The mean 

drift rate was also varied,  ∈ l0, ±0.1, ±0.2, ±0.3o, and the highest number was 

chosen. Time � was varied between 0.1 and 1.2 s; the values presented are for 

evaluation at 1.2 s as lower � generally lead to faster convergence. 

Discussion 243 

In this note we presented an analytical solution to the two-barrier diffusion model proposed by 244 

Ratcliff (1978). The solution is easily implemented (see online appendix) and allows for efficient 245 

and accurate calculation of the first-passage time CDF of a Wiener process with normally 246 

distributed drift rates across trials. The accuracy benefits of an analytic solution and except for 247 
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the truncation error which can be controlled for, no further inaccuracies occur in the calculation 248 

of model predictions. With regard to the efficiency of the calculation we consider the provided 249 

solution to lie between the computationally very efficient, but theoretically limited EZ-Diffusion 250 

model (Wagenmakers, van der Maas, & Grasman, 2007) and packages like fastDM (Voss & Voss, 251 

2007) and DMAT (Vandekerckhove & Tuerlinckx, 2007, 2008) which allow for a fit of the “full” 252 

Ratcliff diffusion model with all the other mixture parameters (variable starting point, variable 253 

residual component). The EZ-Diffusion model is computationally very efficient but uses only 254 

small portions of the data; namely, mean and variance as well as the proportion of correct 255 

responses. But it is computationally extremely efficient as explicit formulae of method of 256 

moment estimators exist for the standard case without inter-trial variability. The solution 257 

offered in this paper utilizes the full distribution and allows for trial-to-trial variation in drift 258 

rates. The additional assumptions of trial-to-trial variation in residual (i.e., non-decision) time 259 

(pq.) and starting point r = �� could be added based the solution presented in this paper. This 260 

additional variation requires numerical evaluation of two integrals—which should be 261 

considerably faster than three integrals. Our solution is thereby fully compatible with the DMAT 262 

toolbox (Vandekerckhove & Tuerlinckx, 2007). It would be interesting to see how performance 263 

of DMAT improved if the provided solution was implemented. In any case, it should greatly 264 

improve the accuracy and the speed of the estimation in self-written implementations (e.g., a 265 

hierarchical Bayesian model of the Ratcliff diffusion model, see Wiecki et al., 2013). 266 

Conclusions 267 

Despite the obvious advantages of employing a computational model for response time and 268 

response accuracy (Smith & Ratcliff, 2004), psychologists have—for a long time—only 269 
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reluctantly employed formal models (e.g., the two-barrier diffusion model). Recently, there has 270 

been a surge in interest for the diffusion model and this article aims at further improving its 271 

computational and numerical basis. The analytical solution guarantees a fast and accurate 272 

calculation of model predictions for a diffusion model with normally distributed drift rates. 273 

Supplementary material 274 

The online supplement includes R (R core team, 2016) and Matlab code for Equation (3). 275 
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Appendix A: Exchangeability of summation and integration 329 

To exchange the integration and summation operators, one must show the absolute 330 

convergence of the series. First, consider the series 331 

 332 

s��, 7 | , ��, �, �� = ∑ ℎ*��, 7 | , ��, �, ��2*34   333 

 334 

with 335 

 336 

ℎ*: = �−1�* exp -−7�� − >��
� 1 ,�7 | , ���, -./

√�1 "< -./#>�
√� 1 + < -./�>�

√� 1'. 337 

 338 

That is, C�� | , ��, �, �� = @ s��, 7 | , ��, �, �� �72#2 . To establish exchangeability of 339 

integration and summation, we use the ratio test to prove absolute convergence. The ratio of 340 

consecutive terms in the series is: 341 

 342 

uv/wxv/ u = y?-z/wx√{ 1I|Gz/wx}~{
√{ H�|Gz/wxw~{

√{ HL
?-z/√{1I|Gz/}~{

√{ H�|Gz/w~{
√{ HL y. 343 

 344 

Then, lim*→2 uv/wxv/ u = � < 1 is a sufficient condition for absolute convergence. Hence, we must 345 

show that 346 

 347 

lim*→2 uv/wxv/ u = lim*→2 �?-z/wx√{ 1
?-z/√{1 ⋅ |Gz/wx}~{

√{ H�|Gz/wxw~{
√{ H

|Gz/}~{
√{ H�|Gz/w~{

√{ H � < 1. 348 
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because ,���, <��� > 0 for � ∈ ℝ. The arguments of the Mills ratio depend on 7 which may 349 

range from positive to negative infinity. Hence, we will not seek an explicit solution for the 350 

second factor. However, we know from the (log-) convexity of the Mills ratio for the standard 351 

normal distribution (Baricz, 2008) that <��� is strictly decreasing in � ∈ ℝ. As +*�� > +*  for all 5, 352 

we can conclude that the limit exists and that it is between zero and one: 353 

 354 

0 ≤ lim*→2
|Gz/wx}~{

√{ H�|Gz/wxw~{
√{ H

|Gz/}~{
√{ H�|Gz/w~{

√{ H ≤ 1. 355 

 356 

It remains to show convergence of the ratio of normal densities: 357 

 358 

lim*→2 ?-z/wx√{ 1
?-z/√{1 = lim*→2 ���-#./wx� 1

���-#./�1   359 

 360 

The arguments of the normal density function do not depend on 7. Because the +*  are 361 

differently defined for odd and even j, we must derive the limit for both cases. For 362 

simplification, use the compact notation �′ = 1 − �. Assume that 5 is even and that 5 + 1 is 363 

odd, thus, +* = 5� + �� and +*�� = �5 + 1�� + ��′. Then, 364 

 365 

lim*→2 ���-#��*���%�%&� ��1
����#�*%�%&��� = lim*→2 ���J#�%��*�������*���%�&��%�&���K

����#��*%����*%�&��%&����   366 

= lim*→2 exp�−25���1 + �� − �� − ���1 + �� + ��� − ����  367 

= 0, 368 

 369 
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since �, �� ∈ �0, 1�. For the alternative case, that is, 5 is odd and 5 + 1 is even, exchange �� 370 

with � which does not change the result. Consequently, lim*→2 uv/wxv/ u = 0 < 1. 371 

Appendix B: Derivation of the definite integral 372 

As stated in the text, we seek a solution of the integral 373 

 374 

��Q, P, O, N� ≔ @ exp�−�N7 − O��/2�Φ�P7 − Q� 2#2 �7,  375 

 376 

that is, a parametric function which suggests a solution by differentiation under the integral 377 

sign: 378 

 379 

�
�S  ��Q, P, O, N� = @ �

�S exp�−�N7 − O��/2�Φ�P7 − Q� �72#2 =  380 

�−1� @ exp�−�N7 − O��/2�,�P7 − Q� �72#2   381 

 382 

Replacing ,�7� = �
√�F exp -− >�

� 1 and simplification yields: 383 

 384 

��S�Q, P, O, N� = − �
√�F @ exp I− U��R�

� -7 − TR�SU
U��R� 1� − �SR#TU��

��U��R��L �7 2#2   385 

 386 

Integration with respect to 7 gives 387 

 388 
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��S�Q, P, O, N� = − �
�U��R� exp "− �SR#TU��

��U��R��' @ , � >#��w����w��x��w�� � �7 2#2   389 

= − �
�U��R� exp "− �SR#TU��

��U��R��' = −√2� , G SR#TU
�U��R�H . 390 

 391 

Then, the indefinite integral with respect to Q is given by: 392 

 393 

��Q, P, O, N� = −√2� @ , G SR#TU
�U��R�H �Q = − √�F

R Φ G SR#TU
�U��R�H + �. 394 

 395 

To obtain �, we may note that by definition of ��Q, P, O, N� it holds that  396 

limS→2 ��Q, P, O, N� = 0. Thus, 397 

 398 

limS→2 I− √�F
R Φ G SR#TU

�U��R�H + �L = 0 ⇔ − √�F
R + � = 0 ⇔ � = √�F

R   399 

 400 

Finally, we have that 401 

 402 

��Q, P, O, N� = √�F
R I1 − Φ G SR#TU

�U��R�HL. 403 

 404 

This solution is a more general version of a known result (for N = 1 and O = 0, the above 405 

solution corresponds to Eq. 10,010.8 in Owen, 1980). 406 



Online supplement: R code 

Tested with R version 3.3.1 

# Distribution at lower barrier (Eq. 3 of the article) 

#   t: time (vector) 

#   nu: average drift 

#   eta2: variance of the drift distribution 

#   sigma2: variance of Wiener process 

#   a: upper barrier 

#   w: relative position of X(0) = z, w = z/a 

#   eps: required precision 

# 

G_0 = function(t=1.2, nu=0.1, eta2=0.01, sigma2=0.01, a=0.08, w=.375,  

  eps=sqrt(.Machine$double.eps)) 

{ 

  nu   = nu / sqrt(sigma2) 

  a    = a / sqrt(sigma2) 

  eta2 = eta2 / sigma2 

  sqt  = sqrt(t) 

  sqet = sqt * sqrt(1 + eta2*t) 

  G = numeric(length(t)) 

  j = 0 

  repeat 

  { 

    rj = j*a + a*w 

    logphi = dnorm(rj/sqt, log=TRUE) 

    logM1  = logMill((rj - nu*t + eta2*(rj + a*w)*t) / sqet) 

    logM2  = logMill((rj + nu*t + eta2*(rj - a*w)*t) / sqet) 

    gj = exp(logphi + logM1) + exp(logphi + logM2) 

    G = G + gj 

    if(all(gj < eps)) 

      return(exp((-nu*nu*t - 2*nu*a*w + eta2*a*a*w*w)/2/(1 + eta2*t)) * G) 

 

    j = j + 1 

    rj = j*a + a*(1-w) 

    logphi = dnorm(rj/sqt, log=TRUE) 

    logM1  = logMill((rj - nu*t + eta2*t*(rj + a*w)) / sqet) 

    logM2  = logMill((rj + nu*t + eta2*t*(rj - a*w)) / sqet) 

    gj = exp(logphi + logM1) + exp(logphi + logM2) 

    G = G - gj 

    j = j + 1 

  } 

} 

 



# Distribution at upper barrier 

# 

G_a = function(t=1.2, nu=0.1, eta2=0.01, sigma2=0.01, a=0.08, w=.375,  

  eps=sqrt(.Machine$double.eps)) 

{ 

  G_0(t, -nu, eta2, sigma2, a, 1-w, eps) 

} 

 

# log of Mill's ratio for the normal distribution 

# 

logMill = function(x) # log of Mill's ratio 

{ 

  m = numeric(length(x)) 

  m[x >= 10000] = -log(x[x >= 10000]) # limiting case for x -> Inf 

  m[x <  10000] = pnorm(x[x < 10000], lower=FALSE, log=TRUE) -  

    dnorm(x[x < 10000], log=TRUE) 

  m 

} 

 

# Example 

# 

plot(seq(0.001, 1.200, 0.001),  

     G_a(t=seq(.001, 1.200, .001), nu=0.1, eta2=.01, sigma2=.01, a=0.08, w=.375),  

     type='l', xlab='Time (s)', ylab=expression(italic(G)(italic(t))),  

     main='', ylim=c(0, 1)) 

 



function F = ratcliff_cdf(t, v, a, w, eta2, sigma2, err) 
%ratcliff_cdf: calculate CDF of FPT in a Ratcliff DDM to the lower barrier 
%  v is mean drift rate 
%  a is barrier separation 
%  w is relative starting point 
%  eta2 is drift rate variance; 
%  sigma2 is diffusion constant (usually 0.01) 
%  err is error tolerance of the infinite series truncation 

  
  F = zeros(1, length(t)); 
  if(nargin < 7); err = sqrt(eps); end 

   
  if(any(t>0)) 
    sigma = sqrt(sigma2); 
    F(t>0) = ratcliff_cdf1(t(t>0), v/sigma, a/sigma, w, eta2/sigma2, err); 
  end 
return 

  
function F = ratcliff_cdf1(t, v, a, w, eta2, err) 

  
  F = zeros(1, length(t)); 
  sqt = sqrt(t); 
  denomMR = sqt.*sqrt(1+t*eta2); 

   
  j = 0; 
  while true %loop through pairs of even and odd j 

  
    %even j 
    rj = j*a + a*w; 
    S1 = normpdf(rj./sqt) .* (M((rj - t*v + t*eta2*(rj + a*w)) ./ denomMR) + ... 
      M((rj + t*v + t*eta2*(rj - a*w)) ./ denomMR)); 

  
    if(all(abs(S1) < err)); break; end 
    j = j + 1; 

     
    %odd j 
    rj = j*a + a*(1-w); 
    S2 = normpdf(rj./sqt) .* (M((rj - t*v + t*eta2*(rj + a*w)) ./ denomMR) + ... 
      M((rj + t*v + t*eta2*(rj - a*w)) ./ denomMR)); 
    F = F + S1 - S2; 

     
    if(all(abs(S2) < err)); break; end 
    j = j + 1; 
  end 
  F = F .* exp((-t*v^2-2*v*a*w+eta2*a^2*w^2) ./ (2+2*t*eta2)); %prefactor 
return 

  
%calculate Mill's ratio 
function M = M(x) 
  M = erfcx(x/sqrt(2)) / sqrt(2) * sqrt(pi); 
return 

 


