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Abstract 21 

UV imaging is capable of providing spatially and temporally resolved absorbance measurements, 22 

which is highly beneficial in drug diffusion, dissolution and release testing studies. For optimal 23 

planning and design of experiments, knowledge about the capabilities and limitations of the 24 

imaging system is required. The aim of this study was to characterize the performance of two 25 

commercially available UV imaging systems, the D100 and SDI. Lidocaine crystals, lidocaine 26 

containing solutions, and gels were applied in the practical assessment of the UV imaging 27 

systems. Dissolution of lidocaine from single crystals into phosphate buffer and 0.5% (w/v) 28 

agarose hydrogel at pH 7.4 was investigated to shed light on the importance of density gradients 29 

under dissolution conditions in the absence of convective flow. In addition, the resolution of the 30 

UV imaging systems was assessed by the use of grids. Resolution was found to be better in the 31 

vertical direction than the horizontal direction, consistent with the illumination geometry. The 32 

collimating lens in the SDI imaging system was shown to provide more uniform light intensity 33 

across the UV imaging area and resulted in better resolution as compared to the D100 imaging 34 

system (a system without a lens). Under optimal conditions, the resolution was determined to be 35 

12.5 and 16.7 line pairs per mm (lp/mm) corresponding to line widths of 40 µm and 30 µm in the 36 

horizontal and vertical direction, respectively. Overall, the performance of the UV imaging 37 

systems was shown mainly to depend on collimation of light, the light path, the positioning of 38 

the object relative to the line of 100 micron fibres which forms the light source, and the distance 39 

of the object from the sensor surface. 40 

 41 
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 48 

1. Introduction 49 

Dissolution and release testing is conducted for various purposes in the pharmaceutical industry 50 

e.g., to guide the drug development process, in quality control, and as biowaivers [1]. In the early 51 

phases of drug development, miniaturized or micro-scale techniques requiring low-milligram 52 

quantities of the active pharmaceutical ingredient (API) or formulation are of particular value [2-53 

4]. Many dissolution and release testing methods are invasive methods and involve bulk solution 54 

concentration measurements by the withdrawal of test samples, which may disturb the 55 

subsequent release. In addition, the withdrawal of samples may also lead to delayed responses, 56 

due to the need for accumulation of the API in solution. Especially, in case of fast dissolution 57 

and release kinetics real-time analysis is advantageous. Better understanding of the dissolution or 58 

release behavior of an API or formulation may be attained using imaging techniques providing 59 

spatially, spectrally, and/or temporally resolved information. Imaging techniques used in 60 

pharmaceutical sciences for investigating drug dissolution and release processes include 61 

magnetic resonance imaging (MRI) [5-8], Fourier transform infrared (FTIR) imaging [4, 9-11], 62 

coherent anti-Stokes Raman Scattering Microscopy (CARS) imaging [12], fluorescence imaging 63 
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[13,14], and UV imaging [15,16]. UV imaging is compatible with a small scale format and has 64 

attracted attention as it offers insights into dissolution and release processes of drugs [17-27]. 65 

However, limited data are available regarding system performance of the commercially available 66 

UV imaging instrumentation. The current study was prompted by observations made during UV 67 

imaging experiments in our lab, and an associated wish to understand better the performance 68 

characteristics of the instrumentation, since this knowledge would be useful in the design, 69 

planning, and execution of future experiments. The purpose of the present study was to 70 

characterize two embodiments of a commercially-available UV imaging system in terms of 71 

analytical performance, including spatial resolution, linearity and noise. The instruments subject 72 

to study were an SDI (Sirius-Analytical, Forest Row, UK) and a D100 (Paraytec Ltd, York, UK) 73 

imaging system. 74 

 75 

2. Experimental 76 

2.1 Materials and sample preparations 77 

Agarose (type I) was obtained from Sigma-Aldrich (St. Louis, MO, USA). Sodium hydroxide 78 

and sodium dihydrogenphosphate monohydrate were obtained from Merck (Darmstadt, 79 

Germany). Lidocaine (Ph Eur (European Pharmacopoeia) 6th ed.) was obtained from Unikem 80 

(Copenhagen, Denmark). Lidocaine crystals were prepared as described previously [16].  81 

A 0.067 M phosphate buffered solution with an ionic strength of 0.15 M was prepared as 82 

follows. A weighed amount of sodium dihydrogenphosphate monohydrate (9.25 g) was 83 

transferred to a 1000 ml volumetric flask to which was then added de-ionized water to the neck 84 
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of the volumetric flask. The mixture was stirred at room temperature until the substance was 85 

dissolved, then the pH adjusted to 7.40 by adding 5 M NaOH.  86 

For preparing the agarose hydrogels, a weighed amount of agarose powder, corresponding to 87 

0.5% (w/v), was suspended in phosphate buffer at pH 7.4 followed by heating of the agarose 88 

suspensions to 98˚C for approximately 20 min to dissolve the agarose. The agarose solution 89 

(approximately 310 µl) was transferred to a quartz cell (8.0 mm × 1.0 mm × 38 mm (H × W × 90 

L)) (Starna Scientific Ltd, Hainault Essex, UK), and the lid of the cell placed on top of the 91 

agarose solution. Each quartz cell containing the agarose solution (the pre-gel) was left at room 92 

temperature for at least 0.5 h to ensure complete gelation of the agarose matrix.  93 

The grids used for estimation of the resolution consisted of a black image made of silver halides 94 

(5 µm print layer thickness) coated on one side of a plastic base of polyester (180 µm thickness). 95 

The grids were produced under conditions of 21 °C at 50% humidity (JD Photo-Tools, Oldham, 96 

UK). The grids were drawn in AutoCAD software (Autodesk Inc., San Rafael, CA, USA). The 97 

width of the lines and the distance between the lines were identical and varied in the range 10 - 98 

100 µm in 10 µm increments and then in 20 µm increments in the 100 to 400 µm range. 99 

 100 

2.2 Instrumentation 101 

The two imaging systems investigated, both utilizing ActiPix technology, were a D100 (Paraytec 102 

Ltd., York, UK) and an SDI (Sirius-Analytical, Forest Row UK). In terms of optical design 103 

[28,29], the Sirius SDI has improvements relative to the D100 through incorporating a lens for 104 

collimating the light in the direction parallel to the line of 90 x 100 m optical fibres which 105 
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provide the 9 mm x 100 m illumination source. The UV imaging systems are shown in 106 

Supplementary data Fig. S.1. The active pixel CMOS sensors have a total detection area of 9 mm 107 

× 7 mm consisting of 1280 × 1024 pixels with a size of 7 µm × 7 µm. Band pass filters with a 108 

band width of 10 nm were sourced from various manufacturers. Images were recorded and 109 

analyzed using ActiPix D100 software version 1.4 (Paraytec Ltd.). Images were recorded with a 110 

rate of 0.2 images per second, and the integration time was 10 ms. Pixel intensities were 111 

converted into absorbance using the ActiPix D100 software.  112 

 113 

2.3 Methods and measurements 114 

2.3.1 Linearity 115 

Calibration curves of lidocaine in phosphate buffered solution at pH 7.4 in a concentration range 116 

of 5 × 10-6 - 1 × 10-2 M were constructed. Absorbance values of lidocaine solutions were 117 

measured in quartz cells with light paths of 1 and 4 mm at a wavelength of 214 or 254 nm using 118 

the SDI UV imaging system. The results were compared to results obtained using a conventional 119 

spectrophotometer (Shimadzu UV-1700, Shimadzu, Kyoto, Japan) and quartz cuvettes with a 10 120 

mm light path.  121 

 122 

2.3.2 Noise  123 

Assessment of noise was made from the data recorded while preparing the lidocaine calibration 124 

curves in phosphate buffered solution at pH 7.4 using the Sirius SDI imaging system. Lidocaine 125 
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solutions were flowed through the flow cell with an ActiPix flow-through type dissolution 126 

cartridge CADISS-3 (Paraytec Ltd.) at a flow rate of 1.0 ml/min. The pixels were binned 10 × 1 127 

(x × y), the images were obtained at a rate of 1.15 frames per second, and the absorbance was 128 

read from 5 effective pixel units positioned at different positions in the imaging area. 129 

 130 

2.3.3 Resolution measurement using grids 131 

Resolution measurements were carried out by placing the grid in an empty 1 mm quartz cell (8.0 132 

mm × 1.0 mm × 36.0 mm (H × W × L)) or a 1 mm quartz cell filled with 0.067 M phosphate 133 

buffered solution, pH 7.40, or 0.5% (w/v) agarose gel, pH 7.40. In these experiments, the grid is 134 

located 1.2 mm above the cover slip of the sensor surface. Additional measurements were carried 135 

out where the grid was placed directly on the cover slip of the sensor surface. Measurements 136 

were performed at 610 nm with the pixels binned 1 × 1 and 4 × 4 using the D100 and the SDI 137 

imaging systems. The resolution measured by the grids is given as the maximum number of line 138 

pairs per mm (lp/mm) [30] for which the correct number of line pairs can be resolved by eye. 139 

 140 

2.3.4 Resolution measured using lidocaine crystals 141 

Lidocaine crystals were arranged in a quartz cuvette and imaged at 254 and 610 nm with pixel 142 

binning of 1 × 1 or 4 × 4 using the SDI imaging system. The dimensions of the crystals were 143 

furthermore measured using a Dino-Lite Premier Digital microscope (AM-7013MZT, AnMo 144 

Electronics Corporation, Hsinchu, Taiwan) with a magnification of ×50. 145 



 8 

 146 

2.3.5 Density gradients 147 

Dissolution of lidocaine from single crystals was investigated in 0.067 M phosphate buffer, pH 148 

7.4, and 0.5% w/v agarose gel, pH 7.4, in 1 mm quartz cells (see section 2.3.3) at 254 nm using 149 

the SDI imaging system with pixels binned 4 × 4. To secure lidocaine single crystals during their 150 

dissolution into 0.067 M phosphate buffered solution, pH 7.4, they were fixed at one end with 151 

Bantex Tack-all removable adhesive (Bantex A/S, Lynge, Denmark) in the quartz cell. 152 

 153 

2.3.6 Lidocaine diffusion in hydrogel  154 

Diffusion of lidocaine from a 0.5% agarose gel at pH 7.4 loaded with 1 mM lidocaine into a 155 

blank 0.5% agarose gel, pH 7.4, was studied using the SDI and D100 UV imaging systems in 1 156 

mm quartz cells (see section 2.1). The D100 system was applied initially using the standard 157 

setting and subsequently with the illumination source, the line end of the round-to-line fibre optic 158 

cable, rotated by 90 ° (cf. section 2.2 for details on the line configuration of the fibre optic 159 

bundle). The imaging was performed at a wavelength of 254 nm. 160 

The diffusion coefficient (D) of lidocaine in the hydrogel matrix was determined from the UV 161 

absorbance maps as a function of time by applying the following derivation of Fick’s second law 162 

[21,31]: 163 

𝐶(𝑥,𝑡)

𝐶0
=

1

2
−

1

2
𝑒𝑟𝑓 (

𝑥−𝑥0

2√𝑡∙𝐷
)                                       (1) 164 
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where C(x,t) is the measured concentration as a function of distance and time, C0 is the initial 165 

analyte concentration in the donor gel, erf is the error function, x0 is the position of the interface 166 

between the gel phases and x is the distance from the gel-gel interface and t is the time. Eq. 1 is 167 

applicable for one-dimensional diffusion. In Eq. 1, the measured absorbance was used instead of 168 

the concentration, because the measured absorbance values were within the linear range 169 

according to Lambert Beer’s law. 170 

 171 

2.3.7 Diffusion coefficient of lidocaine in phosphate buffered solution 172 

The diffusion coefficient of lidocaine in phosphate buffer at pH 7.4 was determined by Taylor 173 

dispersion analysis (TDA) at 25 °C as previously described by Ye et al. [32]. A sample of 5.0 × 174 

10-3 M lidocaine in 0.067 M phosphate buffered solution was introduced into a fused silica 175 

capillary (75 µm (id) × 200 µm (od)) by pressure (50 mbar) for 7 s. The sample was forced 176 

through the capillary at a constant rate, and the broadening of the lidocaine sample plug due to 177 

convective diffusion was detected through two windows in the capillary by UV area imaging at 178 

214 nm. The diffusion coefficient of lidocaine was determined from the peak appearance times 179 

and the variances of the Gaussian shaped peaks as described by Ye et al. [32].  180 

  181 

3. Results and discussion 182 

3.1 Performance characteristics of the UV imaging systems 183 
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The D100 UV imaging system was initially designed for use as detector in separation science 184 

[29,33-36]. Subsequently, applications in drug dissolution and release testing have emerged [20]. 185 

Fig. 1 shows a schematic representation of the basic UV imaging setup for monitoring surface 186 

dissolution. The prototype systems have been described in some detail [29,34-36], and 187 

methodology for capillary imaging with the D100 is covered elsewhere [28]. The key 188 

components include a pulsed Xe lamp emitting light in the wavelength range 190 to 1100 nm, 189 

12.5 mm diameter band-pass filters with 10 nm bandwidth (22 nm at 214 nm) for wavelength 190 

selection, and a round-to-line fiber optical bundle, where the fibers are arranged in a line 191 

configuration at the end, presenting the light to the measurement zone (an array of 90 fibers with 192 

a diameter of 100 µm). The light is transmitted through the sample and reaches the detector part 193 

consisting of a cover slip, a layer of UV down-converting phosphor and an IBIS4 194 

complementary metal oxide semiconductor (CMOS) sensor (Cypress, Mechelen, Belgium) with 195 

1280 × 1024 pixels with dimensions of 7 µm × 7 µm (total imaging area 9 × 7 mm2). The CMOS 196 

sensor is light sensitive in the range 400 to 1000 nm, thus the role of a UV down-converting 197 

phosphor layer (Gd2O2S:Tb) is to convert light in the UV wavelength range (190 - 290 nm) to 198 

the visible wavelength range (a line emission spectrum emitting at several wavelengths with the 199 

most prominent emission at 540 nm [37]), where the sensor is sensitive. The principles of UV 200 

converting phosphors are described elsewhere [38,39]. The associated electronics and software 201 

allow for the construction of images, which may be read in intensity or absorbance mode. 202 

The UV imaging systems allow real-time monitoring of the experiments subject to study. Light 203 

intensity maps are displayed on a PC using the ActiPix software, and illustrated in Fig. 2 for the 204 

D100 and the Sirius SDI. With the D100 (Fig. 2A), the intensity distribution in the xy plane 205 

showing a maximum at y ~ 3 mm for all x is consistent with the line of fibres positioned above 206 
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the imager at y ~ 3 mm and aligned in the x direction. In the SDI system (Fig. 2B), the light 207 

intensity is more uniform across the imaging area, particularly in y direction; however, the light 208 

intensity is comparatively lower. The relatively uniform light intensity across the imaging area is 209 

related to the incorporation of a collimating lens in the SDI system, leading to a change in how 210 

the light is presented to the sample and sensor surface (cf. Fig. 3). The collimating lens 211 

constitutes the major difference between the two systems. The presentation of the light to the 212 

sample cell and sensor surface is of importance. This is further corroborated by measuring the 213 

apparent height from the lower to the upper surface of the flow cell (Fig. 1) to quantify the 214 

shadowing effect (Fig. 3).  The directly measured height for the open section of this machined 215 

part was 3.44 mm. Apparent height values of 4.12 mm and 3.46 mm were reported from the 216 

ActiPix software from the images of the cell insert taken with the D100 and the Sirius SDI, 217 

respectively. The latter value is in good agreement with the true height, consistent with the light 218 

being fairly well collimated. The former value accords with a shadowing effect, in which light at 219 

any angle which hits the lower or upper surfaces of the insert is obscured.  220 

When using the D100, this may contribute to the difficulties in calculating dissolution rates from 221 

UV images and matching those to dissolution rates obtained from the collected effluent, as was 222 

the case for paracetamol dissolution studies [20,40]. Also, so called surface concentrations 223 

obtained using a D100 UV imaging system should be considered as concentration estimates, 224 

since the line of fibres is centred at a y distance greater than the location of the lower surface of 225 

the cell insert, the first unobscured ray to reach the imager is transmitted through a layer of fluid 226 

significantly elevated from the surface.  227 

 228 
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3.1.1 Linearity, noise and LOD 229 

UV imaging relies on the molecular absorbance of light. Pixel intensities are converted into 230 

absorbance using the instrument software according to: 231 




















dsig

dref

II

II
A log      (2) 232 

where Id, Iref and Isig are the ADC counts (a measure of intensity which will be referred to as 233 

pixel intensity in the following) due to the dark current (electronic noise measured with the lamp 234 

turned off), pixel intensity measured with the phosphate buffer (solvent) in the cell (reference 235 

signal), and pixel intensity measured during the experiment, respectively. The conversion into 236 

absorbance eliminates (to a large extent) the effects of non-uniformity of light intensity across 237 

the imaging surface as previously shown [41]. However, imaging artifacts have been observed, 238 

mainly in the edges of the images, which are related to low light intensity in this part of the 239 

imaging area (this has primarily been observed when using the D100 system). Examples of UV 240 

images showing such artifacts can be found in [42,43]. These imaging artifacts are most likely 241 

due to drift in the output of the light source over time, which will have the most predominant 242 

effect, when the light intensity is low. Drift in light intensity will mainly be an issue in release 243 

and diffusion studies, such as described in [42,43], where the self-referencing options of the 244 

software used in flow-through type dissolution studies cannot be applied.     245 

The absorbance measured by UV imaging may be converted into concentration using Lambert 246 

Beer’s law by the aid of a calibration curve. Deviations from Lambert Beer’s law may occur due 247 

to a number of effects: the use of polychromatic rather than monochromatic radiation; the 248 
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presence of stray light; refractive index changes; close proximity of the absorbing molecules 249 

affecting their charge distribution and thereby altering their absorptivity; the molecules taking 250 

part in reactions (such as self-association and chemical degradation) and scattering effects due to 251 

particles [44-46]. The linearity of the system should therefore be investigated prior to dissolution 252 

and release testing experiments. Calibration curves obtained using the SDI imaging system for 253 

lidocaine solutions in quartz cells with light paths of 1 and 4 mm, and in a conventional 254 

spectrophotometer with a light path of 10 mm are shown in Fig. 4. The use of different 255 

instrumentation for absorbance measurements leads to the following apparent molar absorption 256 

coefficients (ε254) at 254 nm: 6.2 × 102 M-1 cm-1, 6.5 × 102 M-1 cm-1, and 4.0 × 102 M-1 cm-1 257 

(RSD < 4%; n = 3), when the light paths were 1 mm (SDI), 4 mm (SDI), and 10 mm (double 258 

beam spectrophotometer), respectively. At 214 nm the following apparent molar absorption 259 

coefficients (ε214) were obtained: 4.7 × 103 M-1 cm-1, 4.1 × 103 M-1 cm-1 and 11.2 × 103 M-1 cm-1 260 

(RSD ≤ 7%; n = 3), when the light paths were 1, 4, and 10 mm, respectively. The calibration 261 

curves were constructed by averaging the absorbance values over a large part of the imaging area 262 

from absorbance readings over at least 1 min, in order to minimize the uncertainty and get the 263 

best estimate of the molar absorption coefficients. Fig. 4 shows that the calibration curves 264 

obtained by UV imaging bend off at absorbance values around 0.5 and 1 at light paths of 1 and 4 265 

mm, respectively, while the calibration curve was linear up to an absorbance of approximately 2 266 

at a light path of 10 mm using the conventional spectrophotometer. We have previously reported 267 

a ε254 of 4.36 × 102 M-1 cm-1 for lidocaine in the same phosphate buffer using a 3 mm light path 268 

quartz cell and an SDI300 imaging system (using a D100 sensor head configuration) [16]. The 269 

results show the importance of using a calibration curve that is constructed in the quartz cell, and 270 

using the band pass filter as well as the same system as the actual measurements will be 271 
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performed on. The performance of the total system is dependent on the light path, collimation of 272 

light and band pass width as well as the performance of the detector.   273 

During the absorbance measurements of the standard solutions for construction of the calibration 274 

curves, the noise of the SDI imaging system was assessed. The peak to peak noise was estimated 275 

to be ~18 and ~35 mAU at 214 and 254 nm, respectively (Supplementary data Fig. S2; quartz 276 

cell with 4 mm light path). A higher light intensity at 214 nm is the reason for the lower noise 277 

level at 214 nm as compared to 254 nm. From the data shown in Supplementary data Fig. S2 and 278 

the slope of the calibration curve, the LOD (S/N = 3) for lidocaine in phosphate buffer was 279 

calculated to 3.3 × 10-5 M and 4.0 × 10-4 M at 214 and 254 nm, respectively. These LOD values 280 

are based on readings with individual effective pixels (10 × 1 binning), which together with the 281 

low molar absorption coefficients provide the reason for the relatively high LODs.  282 

Fig. 5 shows detector response (pixel intensity) as a function of wavelength for the band-pass 283 

filters available in our lab using the SDI imaging instrument. The pixel intensities were read 284 

from the same area (5.60 × 4.76 mm2) in all experiments to limit effects of the non-uniform 285 

intensity across the image surface. The detector response depends on the lamp intensity, 286 

transmittance of the band-pass filters, and efficiency of the UV down-converting phosphor in the 287 

UV range, and how these parameters vary as a function of the wavelength. Fig. 5 reveals a low 288 

pixel intensity/detector response in the wavelength interval 300 - 350 nm making UV imaging 289 

difficult in this range. The relatively poor performance in the range 300 - 350 nm results from the 290 

combination of a relatively low light output from the Xe lamp and poor efficiency of the UV 291 

down-converting phosphor (Gd2O2S:Tb [37]).  These issues have also been described for a CCD 292 

detector utilizing UV down-converting phosphors [38,39]. Fig. 5 highlights another interesting 293 
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feature requiring attention in, namely that the transmission efficiency of the individual band pass 294 

filters vary.  295 

 296 

3.1.2 Resolution of the UV imaging systems 297 

Previous studies in our lab have indicated that the resolution of the UV imaging system is 298 

different in the horizontal (x) and vertical (y) direction. In the following, studies were performed 299 

to shed light on the resolution of the UV imaging systems. The resolution was assessed using 300 

grids with line pairs (a black and transparent line constitute a line pair) having widths between 10 301 

and 400 µm. The line pair-width intervals were 10 µm below 100 µm, and 20 µm above 100 µm. 302 

The measurements were performed in the visible wavelength range, where the film is transparent 303 

and the grid lines absorb the light. Fig. 6 shows the absorbance maps of a grid with a line width 304 

of 100 µm placed on the cover slip of the sensor surface or in a quartz cell, leading to a position 305 

of the grid 1.2 mm above the cover slip of the sensor surface for the D100 and SDI imaging 306 

system due to the thickness of the quartz wall. High and low absorbance values are indicated by 307 

red and blue coloring, respectively, in the absorbance maps. A clear difference in the 308 

performance of the imaging systems in the x- and y-direction is seen from these images. This is 309 

due to the light coming from the fiber optic bundle with a line configuration above the CMOS 310 

chip (Fig. 3). An improved resolution is observed when the grid-lines are placed parallel to the 311 

light source line. In Table 1, the estimated resolution of the imaging systems is given as 312 

maximum line pairs per mm (lp/mm). In empty quartz cells and quartz cells filled with phosphate 313 

buffered solution or 0.5% (w/v) agarose hydrogel at pH 7.4, the resolution of the D100 and SDI 314 

imaging systems with pixels binned 4 × 4 (nominal resolution of 28 µm) were determined to be 315 
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1.7 and 2.5 lp/mm, respectively, in the x-direction and 10 and 12.5 lp/mm, respectively, in the y-316 

direction. A resolution of 12.5 lp/mm indicates that the system is able to separate and measure 317 

lines with a width of 40 µm. According to Table 1, the resolution is substantially better when the 318 

grid is placed directly on the cover slip of the sensor surface as compared to on the quartz cell. 319 

Thus, the resolution depends on the position of the object above the cover slip of the sensor 320 

surface, and it decreases as the object gets closer to the light emission slit. This can be seen as a 321 

result of a shadowing / optical lever effect (Fig. 3 and section 3.1). The pixel-binning (1 × 1 322 

versus 4 × 4) does not seem to have a large effect on the resolution. The results show that the 323 

minimum resolvable feature size is greater than the size of the effective pixel. This is primarily 324 

due to the optical lever effect combining the width of the light source (100 m diameter for the 325 

optical fibres) and the relatively short (9 mm) distance from fibre output to sensor surface. By 326 

comparison with the D100, Table 1 highlights an improved resolution for the SDI due to 327 

movement of the source to a greater distance away from the sensor surface and incorporation of a 328 

collimating lens. The highest resolution was observed using the SDI system without any pixel 329 

binning, when the grid was placed on the cover slip of the sensor surface, and was measured to 330 

be 12.5 and 16.7 lp/mm (corresponding to line widths of 40 and 30 µm) in the x- and y-direction, 331 

respectively.   332 

Since the grids were not transparent in the UV range, and because the resolution also depends on 333 

the level of contrast available, an alternative approach was developed to estimate resolution in 334 

this spectral region which is of primary interest for dissolution studies.  The dissolution of 335 

lidocaine from selected single crystals into stagnant phosphate buffered solution has earlier been 336 

investigated by UV imaging at 254 nm [16]. In order to show how the spatial resolution of the 337 

two imaging systems influences the size and shape of the imaged objects, such lidocaine crystals 338 
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were imaged at wavelengths of 254 and 610 nm in the absence of dissolution medium. 339 

Microscope photographs and UV images of selected lidocaine crystals are shown in Fig. 7A and 340 

B. Both Fig. 6 and 7 show that the resolution of the imaging systems is better in the y-direction 341 

as compared to in the x-direction. In the current project, the width of the lidocaine crystal was 342 

measured at a selected position under the microscope to be 185.6 µm (Fig. 7A). The UV-Vis 343 

systems were able to identify and detect lidocaine crystals, but the width of the crystal placed 344 

parallel or perpendicular to the emission slit was measured to 230 or 480 µm, respectively, by 345 

the SDI system with pixels binned 4 x 4 at 254 nm (Figs. 7B and C). It is evident that UV-Vis 346 

imaging overestimates the thickness of the lidocaine crystal; this is due to the optical lever and 347 

shadowing effects with the object (Fig. 7B).  348 

Absorbance - distance profiles were constructed from the absorbance maps of the lidocaine 349 

crystals, and the resolution of the imaging system was determined based on the sharpness of the 350 

interface, as previously described by Chan et al. [47], by measuring the distance over which the 351 

normalized absorbance fell from 95 to 5 % of the maximum value. The normalized absorbance - 352 

distance profiles of the selected lidocaine crystals are shown in Fig. 7D. Based on this procedure, 353 

the resolution of the SDI imaging system at 254 nm with the pixels binned 4 × 4 was estimated 354 

to be 250 and 75 µm in the x- and y-directions, respectively. Table 2 shows the estimated 355 

resolution from the crystals by the SDI system with pixels binned 1 × 1 and 4 × 4 at 254 and 610 356 

nm. Overall, these data indicate that pixel binning is not the limiting factor when it comes to 357 

resolution; the dimension of the light emitting slit and shadowing effects seem to be significant 358 

contributing factors.  359 

 360 
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3.2 Effects of hydrogels on density effects 361 

The dissolution behavior of lidocaine from selected single crystals into stagnant phosphate buffer 362 

has previously been investigated by UV imaging. The study showed that the dissolved lidocaine 363 

seems to gather at the bottom of the quartz cell, which may be explained by the formation of a 364 

density gradient as lidocaine dissolves leading to natural convection [16]. Hydrogel matrixes 365 

have been shown to suppress natural convection due to density gradients [43,48-50]. In the 366 

current study, the effect of introducing a 0.5% (w/v) agarose hydrogel at pH 7.4 as a dissolution 367 

medium on the dissolution behavior of a single lidocaine crystal under stagnant conditions was 368 

visualized. Fig. 8 shows the absorbance maps of the dissolution behavior of lidocaine. The image 369 

resolution is not affected by introduction of the gel (Fig. 8), which is understandable in the light 370 

of the discussion in section 3.1, and the crystals are still readily apparent. During dissolution of 371 

lidocaine in the hydrogel matrix, the absorbance contours mapped around the crystals were 372 

almost symmetrical (Fig. 8A). This contrasts with the irregular contours around the crystals in 373 

the phosphate buffered solution (Fig. 8B). The symmetrical absorbance maps formed in the 374 

hydrogel matrix indicate that the natural convection seen in aqueous solution has been 375 

effectively suppressed in the hydrogel matrix. The mass transport of dissolved lidocaine in the 376 

hydrogel is solely due to diffusion whereas transport of dissolved lidocaine the solution is due to 377 

convective currents as well as diffusion.  378 

 379 

3.3 Lidocaine diffusion in hydrogel 380 
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Diffusion coefficients of drug compounds in hydrogel matrixes have previously been determined 381 

by fitting data to equations based on Fick’s second law [21,42]. In these studies, the samples are 382 

placed in a manner such that the diffusion can be assumed to occur only in the x-direction. The 383 

determined diffusion coefficients are influenced by the defined position of the interface, x0 (cf. 384 

Eq. 1), and the precision with which the position of the interface can be determined may 385 

therefore be important for the results obtained. In our previous diffusion studies using a D100 386 

imaging system [21,42], the interface between the sample and the release (acceptor) medium was 387 

perpendicular to the fibre optic line source, i.e. oriented such that diffusion occur in x-direction 388 

where the imaging system has the lowest resolution. The results in section 3.1.2 showed that the 389 

orientation of the objects relative to the line light source has a significant impact on the 390 

resolution. Tests were therefore undertaken to check whether rotation of the output end of the 391 

round-to-line fibre optic cable by 90° influenced the initial appearance and sharpness of the 392 

interface between a hydrogel loaded with lidocaine and a blank hydrogel. Interestingly, no 393 

difference in the sharpness of the boundary between the hydrogels was observed (data not 394 

shown), and the slopes of the tangent to the curves at the interface were similar at time zero. 395 

However, the curves were associated with more scatter when the line source was rotated 90°, 396 

which may be attributed to the higher resolution in this direction. By applying Eq. 1 to the 397 

normalized absorbance-distance profiles (Fig. 9A), diffusion coefficients of lidocaine in the 398 

hydrogel matrixes were determined. The apparent diffusion coefficients were found to decrease 399 

with time (10 - 180 min). By plotting the diffusion coefficient as a function of the reciprocal of 400 

time (Fig. 9B), the apparent diffusion coefficient was obtained from the intercept of the straight 401 

line with the y-axis [21,51]. The diffusion coefficient was determined to be (6.3 ± 0.05) × 10-10 402 

m2/s, (6.9  ± 0.05) × 10-10  m2/s and (7.5 ± 0.11) × 10-10  m2/s (n = 3 × 3) at 22.0 ± 1.0 °C using 403 
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the D100, SDI and D100 system with the line rotated 90°, respectively. Brouneus and co-404 

workers have determined the diffusion coefficient of lidocaine hydrochloride to be (7.49  ± 0.43) 405 

× 10-10 m2/s (n = 8) in 1% (w/w) agarose gel at 25 °C by measuring the amount of lidocaine 406 

diffusing from a well stirred solution of 25 mM lidocaine into the gel at specified time points 407 

[52]. The diffusion coefficient of lidocaine in phosphate buffered solution was determined to be  408 

(5.8 ± 0.2) × 10-10 m2/s using TDA, which is in accordance with the previously determined 409 

diffusion coefficient of lidocaine in buffer solution at pH 7.4 ((5.5 ± 0.2) × 10-10 m2/s) [32]. Due 410 

to the unhindered diffusion of small molecules in the agarose hydrogel matrix, the diffusion 411 

coefficient of lidocaine obtained in the hydrogel was expected to be comparable to the value 412 

obtained in aqueous solution. The observed variation in the obtained diffusion coefficients for 413 

lidocaine in agarose gels and in solution is within the normal range, when different methods are 414 

applied. Using the current UV imaging instrumentation, where the effective height in the y-415 

direction is 3.9 mm and the length in the x-direction is ~ 8 mm for the setup used for the 416 

diffusion experiments, it is advantageous to study diffusion in the x-direction due to a longer 417 

potential diffusion distance allowing the process to be followed for longer periods of time. The 418 

effective imaging area in the x-direction is 7 - 9 mm in the D100 and SDI system, while it is 4 - 6 419 

mm in the D100 system with the line of fibres rotated 90° and the fall of intensity with distance 420 

as noted in Fig. 2A. The reason why a difference with respect to sharpness of the interface was 421 

not observed using the different UV imaging setups may be due to the immediate diffusion of 422 

lidocaine as the lidocaine loaded gel is placed side by side with the blank hydrogel matrix. The 423 

time for the quartz cell containing the sample to be placed under the UV imaging sensor head 424 

varies between experiments and is generally in the order of 1 to 5 min. The root-mean-square 425 

distances (<x2>½) of lidocaine at 1 and 5 min were calculated to be 300 and 670 µm, 426 
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respectively, using the formula for one-dimensional diffusion <x2>½ = √(2 × D × t) and a 427 

diffusion coefficient of 7.5 × 10-10 m2/s. These are relatively large distances, in comparison to the 428 

resolution which is in the order of 20 to 200 µm. Thus, the experimental procedure rather than 429 

instrument performance appears to be the limiting factor in these diffusion assays. 430 

 431 

4. Conclusion 432 

The present study showed that the apparent absorption coefficients depend on the spectroscopic 433 

instrumentation used, highlighting the importance of investigating the linearity prior to 434 

dissolution imaging. For quantitative results, the apparent molar absorption coefficient should be 435 

determined using the UV imaging system rather than a conventional spectrophotometer.  436 

The main difference between the D100 and SDI imaging systems is the introduction of a 437 

collimating lens in the latter system. This leads to several improvements in instrument 438 

performance. The SDI imaging system showed an increased uniformity of the light intensity 439 

across the imaging area as well as an improved resolution, which may be explained by a reduced 440 

shadowing effect. Both systems have as light source a line of 100 m fibres aligned in the x-441 

direction, which means that resolution is greatest in the y-direction. The main parameter 442 

influencing the resolution was found to be the distance of the object above the cover slip and the 443 

sensor surface, consistent with the optical lever effect.  Under the most favorable conditions, 444 

with a grid placed directly on the cover slip, the resolution was estimated to 12.5 and 16.7 lp/mm 445 

in the x- and y-directions, respectively. Effects related to positioning of objects should therefore 446 

be taken into account during designing of experiments and image interpretation.  447 
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UV imaging offers detailed insights into dissolution processes as shown for lidocaine crystals. In 448 

aqueous solution, natural convection leads to dense lidocaine solution accumulating at the 449 

bottom of the cell. Agarose gels are shown to be able to suppress the effect of natural convection 450 

arising from density gradients, in accordance with previous studies [16]. Hydrogels may thus be 451 

suitable matrixes for visualizing and characterizing dissolution (and release) processes under 452 

stagnant conditions. In relation to studying diffusion processes in hydrogels, the positioning of 453 

the diffusion boundary relative to the fibre optic line source (parallel versus perpendicular) did 454 

not improve the sharpness of the interface even at the shortest measurement time.  Calculations 455 

of root-mean-square distances for diffusion showed that this could have been due to diffusion 456 

occurring as the experiment was being setup, rather than the instrument limiting the sharpness of 457 

the diffusion boundary.  458 

The knowledge obtained in the current study about the instrument performance characteristics 459 

will be helpful in the design and interpretation of UV imaging based release and dissolution 460 

studies. 461 

 462 

Acknowledgements  463 

This project has received funding from the European Union’s Horizon 2020 research and 464 

innovation program under the Marie Sklodowska-Curie grant agreement No 644056. The authors 465 

alone are responsible for the content and writing of this paper. 466 

  467 



 23 

References 468 

 [1] J. Emami, In vitro - in vivo correlation: from theory to applications, J. Pharm. Pharmc. Sci. 469 

9 (2006) 169-189. 470 

 [2] M. Windbergs, D.A. Weitz, Drug dissolution chip (DDC): A microfuidic approach for drug 471 

release. Small 7 (2011) 3011-3015. 472 

 [3] M. Kuentz, Analytical technologies for real-time drug dissolution and precipitation testing 473 

on a small scale, J. Pharm. Pharmacol. 67 (2014) 143-159. 474 

 [4] A.V. Ewing, G.S. Clarke, S.G. Kazarian, Attenuated total reflection-Fourier transformed 475 

infrared spectroscopic imaging of pharmaceuticals in microfluidic devices, Biomicrofluidics 476 

10 (2016) 024125. 477 

 [5] K. Mäder, G. Bacic, A. Domb, O. Elmalak, R. Langer, H.M. Swartz, Noninvasive in vivo 478 

monitoring of drug release and polymer erosion from biodegradable polymers by EPR 479 

spectroscopy and NMR imaging, J. Pharm. Sci. 86 (1997) 126-134. 480 

 [6] J.C. Richardson, R.W. Bowtell, K. Mäder, C.D. Melia, Pharmaceutical applications of 481 

magnetic resonance imaging (MRI), Adv. Drug Deliv. Rev. 57 (2005) 1191-1209. 482 

 [7] K.P. Nott, Magnetic resonance imaging of tablet dissolution, Eur. J. Pharm. Biopharm. 74 483 

(2010) 78-83. 484 

 [8] C. Chen, L.F. Gladden, M.D. Mantle, Direct visualization of in vitro drug mobilization from 485 

lescol XL tablets using two-dimensional 19F and 1H magnetic resonance imaging, Mol. 486 

Pharm. 11 (2013) 630-637. 487 

 [9] S.G. Kazarian, J. van der Weerd, Simultaneous FTIR spectroscopic imaging and visible 488 

photography to monitor tablet dissolution and drug release, Pharm. Res. 25 (2008) 853-860. 489 

[10] J.A. Kimber, S.G. Kazarian, F. Stepanek, Microstructure-based mathematical modelling and 490 

spectroscopic imaging of tablet dissolution, Comput. Chem. Eng. 35 (2011) 1328-1339. 491 

[11] S.G. Kazarian, A.V. Ewing, Applications of Fourier transform infrared spectroscopic 492 

imaging to tablet dissolution and drug release, Expert Opin. Drug Deliv. 10 (2013) 1207-493 

1221. 494 

[12] M. Windbergs, M. Jurna, H.L. Offerhaus, J.L. Herek, P. Kleinebudde, C.J. Strachan, 495 

Chemical imaging of oral solid dosage forms and changes upon dissolution using coherent 496 

anti-stokes Raman scattering microscopy, Anal. Chem. 81 (2009) 2085-2091. 497 

[13] G.S. Bajwa, K. Hoebler, C. Sammon, P. Timmins, C.D. Melia, Microstructural imaging of 498 

early gel layer formation in HPMC matrices, J. Pharm. Sci. 95 (2006) 2145-2157. 499 



 24 

[14] F. Brandl, F. Kastner, R.M. Gschwind, T. Blunk, J. Tessmar, A. Göpferich, Hydrogel-based 500 

drug delivery systems: Comparison og drug diffusivity and release kinetics, J. Control. 501 

Release 142 (2010) 221-228. 502 

[15] J.P. Boetker, M. Savolainen, V. Koradia, F. Tian, T. Rades, A. Müllertz, C. Cornett, J. 503 

Rantanen, J. Østergaard, Insights into the early dissolution events of amlodipine using UV 504 

imaging and Raman spectroscopy, Mol. Pharm. 8 (2011) 1372-1380. 505 

[16] J. Østergaard, F. Ye, J. Rantanen, A. Yaghmur, S.W. Larsen, C. Larsen, H. Jensen, 506 

Monitoring lidocaine single-crystal dissolution by ultraviolet imaging, J. Pharm. Sci. 100 507 

(2011) 3405-3410. 508 

[17] W.L. Hulse, J. Gray, R.T. Forbes, A discriminatory intrinsic dissolution study using UV area 509 

imaging analysis to gain additional insights into the dissolution behaviour of active 510 

pharmaceutical ingredients, Int. J. Pharm. 434 (2012) 133-139. 511 

[18] M. Li, N. Qiao, K. Wang, Influence of sodium lauryl sulfate and tween 80 on carbamazepine-512 

nicotinamide cocrystal solubility and dissolution behaviour, Pharmaceutics 5 (2013) 508-513 

524. 514 

[19] N. Qiao, K. Wang, W. Schlindwein, A. Davies, M. Li, In situ monitoring of carbamazepine-515 

nicotinamide cocrystal intrinsic dissolution behaviour, Eur. J. Pharm. Biopharm. 83 (2013) 516 

415-426. 517 

[20] J. Østergaard, J. Lenke, S.S. Jensen, Y. Sun, Y. Fengbin, UV imaging for in vitro dissolution 518 

and release studies: Initial experiences, Dissolut. Technol. 22 (2014) 27-38. 519 

[21] F. Ye, A. Yaghmur, H. Jensen, S.W. Larsen, C. Larsen, J. Østergaard, Real-time UV imaging 520 

of drug diffusion and release from Pluronic F127 hydrogels, Eur. J. Pharm. Sci. 43 (2011) 521 

236-243. 522 

[22] J. Østergaard, E. Meng-Lund, S.W. Larsen, C. Larsen, K. Petersson, J. Lenke, H. Jensen, 523 

Real-time UV imaging of nicotine release from transdermal patch, Pharm. Res. 27 (2010) 524 

2614-2623. 525 

[23] J. Østergaard, J.X. Wu, K. Naelapaa, J.P. Boetker, H. Jensen, J. Rantanen, Simultaneous UV 526 

imaging and raman spectroscopy for the measurement of solvent-mediated phase 527 

transformations during dissolution testing, J. Pharm. Sci. 103 (2014) 1149-1156. 528 

[24] F. Ye, S.W. Larsen, A. Yaghmur, H. Jensen, C. Larsen, J. Østergaard, Drug release into 529 

hydrogel-based subcutaneous surrogates studied by UV imaging, J. Pharm. Biomed. Anal. 530 

71 (2012) 27-34. 531 

[25] Y. Lu, L. Mingzhong, Simultaneous rapid determination of the solubility and diffusion 532 

coefficients of poorly water-soluble drug based on a novel UV imaging system, J. Pharm. 533 

Sci. 105 (2016) 131-138. 534 



 25 

[26] N. Gautschi, P.V. Hoogevest, M. Kuentz, Amorphous drug dispersions with mono- and 535 

diacyl lecithin: On molecular categorization of their feasibility and UV dissolution imaging, 536 

Int. J. Pharm. 491 (2015) 218-230. 537 

[27] S.S. Jensen, H. Jensen, E.H. Møller, C. Cornett, F. Siepmann, J. Siepmann, In vitro release 538 

studies of insulin from lipid implants in solution and in a hydrogel matrix mimicking the 539 

subcutis, Eur. J. Pharm. Sci. 81 (2016) 103-112. 540 

[28] F. Oukacine, L. Garrelly, B. Romestand, D.M. Goodall, T. Zou, H. Cottet, Focusing and 541 

mobilization of bacteria in capillary electrophoresis, Anal. Chem. 83 (2011) 1571-1578. 542 

[29] P.L. Urban, D.M. Goodall, E.T. Bergström, N.C. Bruce, Electrophoretically mediated 543 

microanalysis of a nicotinamide adenine dinucleotide-dependent enzyme and its facile 544 

multiplexing using an active pixel sensor UV detector, J. Chromatogr. A 1162 (2007) 132-545 

140. 546 

[30] ISO 12233:2014(en) Photography - Electronic still picture imaging - Resolution and spatial 547 

frequency responses. International Organization for Standardization, Geneva, Switzerland. 548 

https://www.iso.org/obp/ui/#iso:std:iso:12233:ed-2:v1:en. 2015 (Accessed 25-06-2015). 549 

 550 

[31] J. Crank The mathematics of diffusion, Oxford University Press, Oxford, 1975. 551 

[32] F. Ye, H. Jensen, S.W. Larsen, A. Yaghmur, C. Larsen, J. Østergaard, Measurement of drug 552 

diffusivities in pharmaceutical solvents using Taylor dispersion analysis, J. Pharm. Biomed. 553 

Anal. 61 (20112012) 176-183. 554 

[33] M. Kulp, P.L. Urban, M. Kaljurand, E.T. Bergström, D.M. Goodall, Visualization of 555 

electrophoretically mediated in-capillary reactions using a complementary metal oxide 556 

semiconductor-based absorbance detector, Anal. Chim. Acta 570 (2006) 1-7. 557 

[34] P.L. Urban, D.M. Goodall, E.T. Bergstrom, N.C. Bruce, Electrophoretic assay for 558 

penicillinase: Substrate specificity screening by parallel CE with an active pixel sensor, 559 

Electrophoresis 28 (2007) 1926-1936. 560 

[35] P.L. Urban, D.M. Goodall, A.Z. Carvalho, E.T. Bergström, A. Van Schepdael, N.C. Bruce, 561 

Multi-compound electrophoretic assays for tyramine oxidase with a UV area detector 562 

imaging multiple windows on a looped capillary, J. Chromatogr. A 1206 (2008) 52-63. 563 

[36] J. Østergaard, H. Jensen, Simultaneous evaluation of ligand binding properties and protein 564 

size by electrophoresis and Taylor dispersion in capillaries, Anal. Chem. 81 (2009) 8644-565 

8648. 566 

[37] S. Chatterjee, V. Shanker, P.K. Ghosh, Trapping parameters and kinetics in Gd2O2S:Tb 567 

phosphor, Solid state Commun. 80 (1991) 877-880. 568 

[38] M.M. Blouke, M.W. Cowens, J.E. Hall, J.A. Westphal, A.B. Christensen, Ultraviolet 569 

downconverting phosphor for use with silicon CCD imagers, Appl. Opt. 19 (1980) 3318-570 

3321. 571 

http://www.iso.org/obp/ui/#iso:std:iso:12233:ed-2:v1:en


 26 

[39] M.W. Cowens, M.M. Blouke, T. Fairchild, J.A. Westphal, Coronene and liumogen as VUV 572 

sensitive coatings for Si CCD imagers: a comparison, Appl. Opt. 19 (1980) 3727-3728. 573 

[40] J.P. Boetker, J. Rantanen, T. Rades, A. Müllertz, J. Østergaard, H. Jensen, A new approach 574 

to dissolution testing by UV imaging and finite element simulations, Pharm. Res. 30 (2013) 575 

1328-1337. 576 

[41] J. Østergaard, E. Meng-Lund, S. Larsen, C. Larsen, K. Petersson, J. Lenke, H. Jensen, Real-577 

Time UV imaging of nicotine release from transdermal patch, Pharm. Res. 27 (2010) 2614-578 

2623. 579 

[42] S.S. Jensen, H. Jensen, C. Cornett, E.H. Møller, J. Østergaard, Insulin diffusion and self-580 

association characterized by real-time UV imaging and Taylor dispersion analysis, J. Pharm. 581 

Biomed. Anal. 92 (2014) 203-210. 582 

[43] M.H. Gaunø, T. Vilhelmsen, C.C. Larsen, J.P. Boetker, J. Wittendorff, J. Rantanen, J. 583 

Østergaard, Real-time in vitro dissolution of 5-aminosalicylic acid from single ethyl 584 

cellulose coated extrudates studied by UV imaging, J. Pharm. Biomed. Anal. 83 (2013) 49-585 

56. 586 

[44] S. Görög Ultraviolet-visible spectrophotometry in pharmaceutical analysis, CRC Press, 587 

Boca Raton, 1995. 588 

[45] L. Sommer Analytical absorption spectrophotometry in the visible and ultraviolet: The 589 

principles, Elsevier Science Publishers, Amsterdam, 1989. 590 

[46] D.S. Hage, J.D. Carr Analytical chemistry and quantitative analysis, Prentice Hall, Boston, 591 

2011. 592 

[47] K.L. Chan, S.G. Kazarian, New opportunities in micro- and macro-attenuated total reflection 593 

infrared spectroscopic imaging: spatial resolution and sampling versatility, Appl. Spectrosc. 594 

57 (2003) 381-389. 595 

[48] S.S. Jensen, H. Jensen, C. Cornett, E.H. Møller, J. Østergaard, Real-time UV imaging 596 

identifies the role of pH in insulin dissolution behavior in hydrogel-based subcutaneous 597 

tissue surrogate, Eur. J. Pharm. Sci. 69 (2015) 26-36. 598 

[49] B. Lorber, C. Sauter, A. Theobald-Dietrich, A. Moreno, P. Schellenberger, M.C. Robert, B. 599 

Capelle, S. Sanglier, N. Potier, R. Giege, Crystal growth of proteins, nucleic acids, and 600 

viruses in gels, Prog. Biophys. Mol. Biol. 101 (2009) 13-25. 601 

[50] J.M. Garcia-Ruiz, M.L. Novella, R. Moreno, J.A. Gavira, Agarose as crystallization media 602 

for proteins I: transport processes, J. Cryst. Growth 232 (2001) 165-172. 603 

[51] V.F. Felicetta, A.E. Markham, Q.P. Peniston, J.L. McCarthy, A study of diffusion in agar 604 

gels by a light absorption method, J. Am. Chem. Soc. 71 (1949) 2879-2885. 605 



 27 

[52] F. Brouneus, K. Karami, P. Beronius, L.O. Sundelöf, Diffusive transport properties of some 606 

local anesthetics applicable for iontophoretic formulation of the drugs, Int. J. Pharm. 218 607 

(2001) 57-62.  608 



 28 

Figures: 609 

 610 

Fig. 1. Schematic representation of the UV imaging setup (reprinted from [22] with permission 611 

from Springer).  612 
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 613 

Fig. 2. Light intensity maps of the imaging area in the x- and y-direction of the A) ActiPix D100 614 

UV area imaging system (Paraytec Ltd, York, UK) and B) Sirius SDI (Sirius Analytical Ltd, East 615 

Sussex, UK) imaging system with pixels binned 1 × 1 at 254 nm.  616 
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 617 

Fig. 3. Schematic illustration of sensor head components and light paths for the D100 (A) and 618 

SDI (B) imaging systems. The drawings are not to scale, and the linear slit height is 16 mm 619 

above the cylinder lens. Note the change in sensor head orientation relative to Fig. 1.  620 
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 621 

Fig. 4. A) UV scan of 1.0 × 10-4 M lidocaine in 0.067 M phosphate buffered solution, pH 7.4, 622 

obtained using a conventional spectrophotometer. Calibration curves of lidocaine in phosphate 623 

buffered solution at pH 7.4 obtained in quartz cells with a light path of 1 (♦,   ) and 4 mm (■, □) 624 

using the SDI UV imaging and 10 mm (▲, Δ) by a conventional spectrophotometer at B) 214 625 

and C) 254 nm. The lines are the linear regression using only the closed symbols, and the open 626 

symbols represent the points that are deviating from linearity.  627 
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 628 

Fig. 5. Pixel intensities as a function of wavelength for the interference band-pass filters using the 629 

SDI UV imaging instrument (○), and the measured intensities (the dark current), when the lamp 630 

was turned off (▬). The pixel intensities plotted were average values read from a selected image 631 

area (5.60 × 4.76 mm2). At some wavelengths, the pixel intensity was measured by several filters, 632 

some of which had different transmission efficiency. All filters were measured on the same system 633 

in a single experimental session. 634 
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 635 

Fig. 6. Absorbance maps of the grids obtained by the ActiPix D100 UV Area Imaging (Paraytec 636 

Ltd, York, UK) and Sirius SDI (Sirius Analytical Ltd, East Sussex, UK) imaging system with 637 

pixels binned 1 × 1 at 610 nm, when the bar pattern grids (100 µm line width, 100 m vacancy 638 

before repeat) were placed on the cover slip of the sensor surface (A and B) and on quartz cells, 639 

placing the grid 1.2 mm above the cover slip of the sensor surface (C and D). Images are 9.0 × 640 

7.2 mm2 and the absorbance values range between 0 mAU (dark blue) and ~1400 mAU (red). 641 
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 642 

Fig. 7. A) Microscope photograph (the image is 8.3 × 6.4 mm2) and B) absorbance maps of the 643 

lidocaine crystals arranged in a quartz cell obtained by the Sirius SDI imaging system with pixels 644 

binned 4 × 4 at 254 nm. The image is 10.4 × 4.6 mm2. C) Absorbance – y-distance profile of the 645 

lidocaine crystal placed in the x-direction (▬) and absorbance – x-distance profile for crystal 646 

placed in the y-direction (▬) for determining the width of the crystals from the absorbance maps 647 

and D) normalized absorbance - distance profile of one side of a lidocaine crystal placed in the x-648 

direction (▬) and y-direction (▬) for estimating the resolution of the Sirius SDI imaging 649 

system.  650 
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 651 

Fig. 8. Time-dependent absorbance contour maps of the dissolution of lidocaine crystals in A) 652 

0.5% (w/v) agarose gel, pH 7.4 and B) 0.067 M phosphate buffered solution, pH 7.4. The 653 

dissolution was performed in quartz cells with 1 mm light path using the Sirius SDI UV imaging 654 

system with the pixels binned 4 × 4 at 254 nm and the sensor head placed in the upright position. 655 
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 656 

Fig. 9. A) Absorbance – distance profiles for lidocaine diffusion in 0.5% (w/v) agarose hydrogel 657 

matrix, pH 7.4, after 0 (●), 10 (■), 30 (▲), 60 (▼), 120 (♦) and 180 min (+) obtained using the 658 

Sirius SDI system. The black lines represent the fits to Eq. (1). B) Fitted diffusion coefficients of 659 

lidocaine in 0.5% (w/v) agarose hydrogel matrix, pH 7.4, as a function of the inverse of time. 660 


