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Comparing culture and molecular methods
for the identification of microorganisms
involved in necrotizing soft tissue
infections
Vibeke Børsholt Rudkjøbing1, Trine Rolighed Thomsen1,2, Yijuan Xu1,2, Rachael Melton-Kreft3, Azad Ahmed3,
Steffen Eickhardt4, Thomas Bjarnsholt4,5, Steen Seier Poulsen6, Per Halkjær Nielsen1, Joshua P. Earl7,8,9,
Garth D. Ehrlich7,8,9,10 and Claus Moser5*

Abstract

Background: Necrotizing soft tissue infections (NSTIs) are a group of infections affecting all soft tissues. NSTI
involves necrosis of the afflicted tissue and is potentially life threatening due to major and rapid destruction of
tissue, which often leads to septic shock and organ failure. The gold standard for identification of pathogens is
culture; however molecular methods for identification of microorganisms may provide a more rapid result and may
be able to identify additional microorganisms that are not detected by culture.

Methods: In this study, tissue samples (n = 20) obtained after debridement of 10 patients with NSTI were analyzed
by standard culture, fluorescence in situ hybridization (FISH) and multiple molecular methods. The molecular
methods included analysis of microbial diversity by 1) direct 16S and D2LSU rRNA gene Microseq 2) construction of
near full-length 16S rRNA gene clone libraries with subsequent Sanger sequencing for most samples, 3) the Ibis
T5000 biosensor and 4) 454-based pyrosequencing. Furthermore, quantitative PCR (qPCR) was used to verify and
determine the relative abundance of Streptococcus pyogenes in samples.

Results: For 70 % of the surgical samples it was possible to identify microorganisms by culture. Some samples did
not result in growth (presumably due to administration of antimicrobial therapy prior to sampling). The molecular
methods identified microorganisms in 90 % of the samples, and frequently detected additional microorganisms
when compared to culture. Although the molecular methods generally gave concordant results, our results indicate
that Microseq may misidentify or overlook microorganisms that can be detected by other molecular methods.
Half of the patients were found to be infected with S. pyogenes, but several atypical findings were also made
including infection by a) Acinetobacter baumannii, b) Streptococcus pneumoniae, and c) fungi, mycoplasma and
Fusobacterium necrophorum.

Conclusion: The study emphasizes that many pathogens can be involved in NSTIs, and that no specific “NSTI
causing” combination of species exists. This means that clinicians should be prepared to diagnose and treat any
combination of microbial pathogens. Some of the tested molecular methods offer a faster turnaround time
combined with a high specificity, which makes supplemental use of such methods attractive for identification of
microorganisms, especially for fulminant life-threatening infections such as NSTI.

Keywords: Necrotizing soft tissue infections, Microorganisms, 16S rRNA, Cloning, Direct Sanger sequencing, Ibis
T5000 biosensor, 454 pyrosequencing, qPCR, FISH
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Background
The spectrum of diseases referred to as soft tissue infec-
tions is diverse. Their common characteristic is that they
involve infection of the skin, subcutaneous tissue, fascia or
muscle [1]. These infections range from common superfi-
cial epidermal infections to potentially life threatening
cases of necrotizing soft tissue infections (NSTI) [2]. The
incidence of NSTI has been estimated to be 4 cases per
100,000 person-years in the USA [3]; thus, an average
practitioner will only see one or two cases during their
career [4, 5], and may therefore not be sufficiently familiar
with the disease to ensure a rapid diagnosis and appropri-
ate treatment [5]. Treatment of NSTI involves immediate
aggressive surgical debridement and administration of
intravenous broad-spectrum antibiotics. Some centers also
use systemic administration of non-specific immuno-
globulin as well as hyperbaric oxygen treatment. Establish-
ing the diagnosis can be a challenge in managing NSTI,
because the early signs are non-specific and include local
erythema and swelling with warmth and pain out of
proportion to physical findings [5, 6]. As the disease
progresses, bullae filled with serous fluid are formed,
and eventually large hemorrhagic bullae, skin necrosis,
fluctuance, crepitus as well as sensory and motor deficits
become apparent [2, 6]. Despite many advances in the un-
derstanding of NSTI and great improvements in medical
care, the mortality associated with NSTI remains high
[2, 5]. Different mortality rates have been reported, but
are generally in the range of 16-24 % [4, 6, 7].
The etiology of necrotizing fasciitis is variable and not

fully understood. In some cases an antecedent penetrating
injury is present (such as skin trauma, varicella, or burns)
[6, 8, 9]. The skin trauma may be caused by surgery or
may even be caused by a trivial event such as an insect
bite, scratch, or abrasion [10, 11]. In many cases however,
no identifiable cause can be found [6, 8–10, 12]. In these
cases it is hypothesized that necrotizing fasciitis may result
from hematogeneous seeding from a reservoir in the
oropharynx or other anatomic site [9, 13]. Most patients
who develop necrotizing fasciitis have pre-existing condi-
tions that render them susceptible to infection, including
diabetes mellitus, advanced age, immune suppression,
peripheral vascular disease, obesity, smoking, drug and al-
cohol misuse [4–6, 11, 14]. The necrotizing changes asso-
ciated with NSTI lead to devitalization of the infected
tissue, which provides a suitable environment for further
microbial growth, setting the stage for major and rapid de-
struction of tissue [1, 2]. Infection can spread as fast as 1
in. per hour with little overlying skin change [5]. It is hy-
pothesized that rapid tissue destruction and severe pain
associated with NSTI is caused by the interaction of mi-
croorganisms and their toxins with the human coagulation
system, leading to hypercoagulation, vascular occlusion
and microvascular thrombosis as well as direct triggering

of the nerves has been suggested recently [15, 16]. The
resulting poor tissue perfusion also has implications on
the treatment strategy, since the antibiotic concentration
at the infection site may be insufficient [12].
Historically, NSTI has been classified into specific types

based on anatomic location or microbial findings. How-
ever, it has been suggested that such classifications lead to
undue complication of the issue. It is argued that the most
important information to be established is the presence of
a necrotizing component, distinguishing NSTI from a
milder condition such as cellulitis that should respond to
antibiotics alone [2, 4, 10, 11, 17]. On the other hand, the
correct identification of involved microorganisms has im-
portant implications on the antibiotic treatment since S.
pyogenes and Clostridium perfringens need different treat-
ment modalities [2, 18, 19] than, for example, methicillin-
resistant Staphylococcus aureus [20], or Streptococcus
pneumoniae [21]. In addition, accurate microbial diagnosis
is pivotal for identifying the primary microbial entry site
or focus of the infection, which is also of substantial im-
portance for optimal handling of the NSTI. The multiple
microbial etiologies of NSTI support the empiric use of
broad-spectrum antibiotics in high doses until accurate
microbial diagnosis has been obtained.
The microbial communities involved in NSTI have previ-

ously been investigated by culture-dependent methods.
However, it is possible that additional microorganisms,
which may not be detectable by standard cultural methods,
are involved in the infections. Recent studies of numerous
infectious conditions using molecular diagnostics have re-
vealed that many of what were once thought to be mono-
microbial infections are in fact polymicrobial, although the
significance of the additional findings is not always com-
pletely understood [22–25]. Presently, various molecular
methods are available that may be able to identify additional
microorganisms and offer a more rapid identification than
routine culture-based methods. Because of the rapid pro-
gression of the disease it is of paramount importance that
the etiologic pathogens be rapidly and accurately identified.
The initial empiric antimicrobial treatment can be modified
in cases of rare or surprising microbial findings to target
the involved microorganisms to minimize extensive and/or
life-threatening damage to the patients. In other cases fast
and accurate diagnoses can be important for the clinician
to support the relevance of the antibiotic treatment initiated
and to prevent unnecessary and sometimes inadequate anti-
biotic treatments in these critically ill patients.
In this study, we investigated several molecular methods

for identification of microorganisms, including the Ibis
T5000 biosensor, quantitative polymerase chain reaction
(qPCR), and 16S rDNA and D2LSU gene analysis by direct
sequencing, near full length 16S rRNA clone libraries in-
cluding sequencing and 454 pyrosequencing. These findings
were then compared to those of routine cultural methods.
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Methods
Patients and samples
Samples in this study were obtained from NSTI patients
by debridement of the infected area, performed at Rig-
shospitalet (Copenhagen, Denmark). A total of 20 samples
from 10 patients were included (Table 1). Disposing fac-
tors included diabetes mellitus, adiposity and chronic leg
ulcur, inguinal hernia, leukemia, immunosuppression.
Limb defects and burn wounds. Several patients experi-
enced severe sepsis or septic shock including organ failure.
The debrided tissues were immediately transported to the
Department of Clinical Microbiology where each sample
was divided into three aliquots for standard culture exper-
iments, molecular analyses, and PNA-FISH experiments.
The samples for molecular analyses and the FISH experi-
ments were transferred to tubes containing glycerol or
ethanol respectively, and kept frozen until analysis. In
addition, other culture results were checked for in the pa-
tient’s files (e.g. positive blood cultures).

Ethics
In all cases the material for molecular diagnostics was
leftover debridement material from treatment and diag-
nosing the patients, which would have been discarded
otherwise. No extra sampling from the patients was per-
formed. In addition, patient files were only checked for
the purpose of treating the patients and correlating mi-
crobial findings to the clinical findings. Data from the
patient history is exclusively from internal notes in the
Department of Clinical Microbiology for that purpose.
Samples sent for further analysis were completely anon-
ymized except for the principal investigator (CM).
Samples have been destroyed after the study. Therefore,
the present study is considered as quality assessment in-
vestigating the potential contribution of novel molecular

techniques. Based on this, a written informed consent and
ethics committee approval were not needed and Danish
law was strictly complied.

Culture
All culture analyses of the debrided afflicted area were
performed at the Department of Clinical Microbiology
at Rigshospitalet. All biopsies were analyzed by Gram-
staining and culture. Both aerobic and anaerobic con-
ditions were used. Biopsies were plated on brain heart
infusion agar (BHIA, Statens Serum Institut (SSI),
Copenhagen Denmark), coagulated agar, and 5 % horse
blood agar (SSI) for cultures in 5 % CO2 atmosphere.
Aerobic conditions included plating on modified Conradi-
Drigalski (“Blue plates”, SSI), in serum bouillon, in thiogly-
collate media, and on tellurite agar (SSI) in a normal
atmosphere. Colonies were further identified by use of
Matrix-assisted laser desorption-ionization time of flight
mass spectroscopy (MALDI-TOF MS), (Bruker, Bremen,
Germany). Antibiotic resistance patterns were analyzed by
disc diffusion test on blood agar (SSI) using Neosensitabs
(Rosco Diagnostica, Taastrup, Denmark).

DNA extraction
DNA was extracted from samples as described previ-
ously [26]. Briefly, the tissue samples were cut into small
pieces under sterile conditions. Approximately 1 mm3 of
tissue was transferred to a microcentrifuge tube contain-
ing tissue lysis buffer (ATL, Qiagen) and 20 mg/mL pro-
teinase K (Qiagen). The sample was incubated at 56 °C
until visual inspection indicated that lysis was achieved.
100 μL Zirconia/silica beads mixture (50 μL of 0.1 mm
diameter, Biospec, PN: 11079101z and 50 μL of 0.7 mm
diameter, Biospec, PN:11079107zx) was added to the
microcentrifuge tube and the sample was homogenized for

Table 1 Patient information and number (n) of surgical samples investigated by molecular methods in this study

Patient Anatomical site Age range Antibiotics Outcome

1 (n = 4) Femur 70–79 meropenem, ciprofloxacin and metronidazole
(supplemented with clindamycine after sampling).

Survival.

2 (n = 2) Crus 20–29 meropenem, ciprofloxacin and clindamycine. Survival.

3 (n = 1) Crus 60–69 meropenem, ciprofloxacin and clindamycine.
(Cefuroxime and Gentamicin before transferral)

Death within 24 h.

4 (n = 2) Arm 60–69 meropenem, ciprofloxacin and clindamycine. Survival.

5 (n = 1) Inguina 60–69 meropenem, ciprofloxacin and clindamycine
(suppl. metronidazole after sampling).

Survival.

6 (n = 1) Vulva 60–69 meropenem, ciprofloxacin and clindamycine. Death due to disposing disease.

7 (n = 2) Neck 70–79 PEN and metronidazole. After recurrence:
meropenem, metronidazole, linesolid and moxifloxacin.

Survival.

8 (n = 3) Shoulder 60–69 meropenem, ciprofloxacin and clindamycine. Survival.

9 (n = 2) Shoulder 40–49 meropenem, ciprofloxacin and clindamycine. Survival.

10 (n = 2) Arm 50–59 meropenem, ciprofloxacin, clindamycine, metronidazole Survival.

Antibiotics abbreviations: MEPM meropenem, CPFX ciprofloxacin, MNZ metronidazol, CLDM clindamycin, PEN penicillin
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10 min at 25 Hz using a Qiagen Tissuelyser (Model
MM300, cat# 85210). DNA from the lysed samples was ex-
tracted using the Qiagen DNeasy Tissue kit, according to
the manufacturer’s protocol. The DNA was eluted in
200 μL AE buffer (10 mM Tris · Cl; 0.5 mM EDTA, pH 9.0).

Identification using MicroSeq® microbial Identification
System
PCR was performed with primers that targeted the first
500 bases of the bacterial 16S rRNA gene or the D2LSU
region of the fungal 28S rRNA gene. The resulting PCR
products were sequenced using the MicroSeq® 500 kit (Ap-
plied Biosystems, Carlsbad, California) according to the
manufacturer’s guidelines. The resulting DNA sequences
were compared to the sequence library included in the
MicroSeq® ID analysis software. In cases where sequencing
resulted in mixed chromatograms due to 16S rRNA gene
products from multiple species, these chromatograms
were analyzed using RipSeq Mixed at www.ribseq.com.

Construction and analysis of clone libraries
Clone libraries were constructed for all samples except
4A, 6A, 7A, 8A, 8B and 8C (due to insufficient volumes
of DNA extract). The libraries consisted of near full
length 16S rRNA genes (E. coli position 26–1390) which
were obtained as described previously [27, 28]. Briefly,
PCR amplicons were cloned using the TOPO TA Cloning ®
kit (Invitrogen) according to the manufacturer’s in-
structions. For each surgical sample, 48 clones were
subjected to plasmid purification and sequencing were
performed by Macrogen Inc. (Korea) using M13F pri-
mer (and M13R primer in some cases). Manual refine-
ment of sequences and construction of consensus
sequences were done in CLC Main Workbench (CLC
bio, Aarhus, Denmark). Sequences were checked for
chimeras using the Mallard software package [29],
aligned using SINA Web Aligner [30] and imported
into the ARB software package [31] for taxonomic
lineage assignment, using the non-redundant (NR) SSU
Ref database from SILVA Release 106 as reference data-
base. Operational taxonomic units (OTUs) were con-
structed across all patient samples for clones having a
sequence similarity of more than 97 % since these se-
quences are typically assigned to the same species. One
clone from each OTU was sequenced with both M13F
and M13R primers. The resulting consensus sequences
and their closest relatives in the database were selected
to construct phylogenetic trees using neighbor joining,
maximum parsimony and maximum likelihood methods.
The non-redundant, near full-length 16S rRNA gene se-
quences, representing each OTU obtained in this study,
were deposited in GenBank under the accession numbers
(KP114666-KP114679).

454 pyrosequencing
Four hundred fifty four-based pyrosequencing was per-
formed largely as described previously [32]. Briefly, the
bar-coded FLX-titanium amplicon pyrosequencing tar-
geted the V1–V2 region of the 16S rRNA gene (using
27 F and 338R primers). The DNA fragments were amp-
lified using Platinum Hi-Fi taq polymerase (Invitrogen)
with 800 μM dNTP, 2 mM MgCl2 and 400 nM of each
primer. To each reaction 5 μL of template DNA was
added and the volume was adjusted to 50 μL. The PCR
incubation conditions were 94 °C for 2 min followed by
30 cycles of 94 °C for 30 s, 55 °C for 30 s, and 68 °C for
60 s, with a final extension at 72 °C for 7 min. Tag-
encoded FLX amplicon pyrosequencing analyses utilized
the Roche 454 FLX instrument with titanium reagents
and titanium procedures (Roche).
Analysis of 16S rRNA gene amplicon sequences was

performed using Quantitative Insights Into Microbial
Ecology (QIIME v.1.3.0) pipeline [33]. The sequencing
data was processed initially with AmpliconNoise [34] to
remove noise. Then the QIIME pipeline separated the
sequences into individual specimen communities based
on the unique 5’ barcode sequence and utilized a suite
of external programs to make taxonomic assignments
and estimate phylogenetic diversity. These data were
used to generate taxonomic summaries. The default set-
tings in QIIME were employed for analysis, except that
the sequences were grouped into operational taxonomic
units using 99 % sequence similarity for clustering; taxo-
nomic assignments were done using Greengenes tax-
onomy [35].

Ibis T5000 assay
An aliquot of each DNA extract was loaded into each of
16 wells of an Ibis 96-well BAC (bacteria, antibiotic
resistance genes, candida) detection plates (Abbott
Molecular) and processed as described previously [36].
Briefly, PCR amplifications were carried out, and the
resulting PCR products were then desalted in a 96-well
format and sequentially electrosprayed into the TOF
MS as described by the manufacturer. The spectral sig-
nals were processed to determine the mass of each
strand of the PCR products, which in turn were used
to derive the base compositions that were then com-
pared to the Ibis database to obtain species level deter-
minations for all microorganisms [37].

Quantitative PCR
Quantification of S. pyogenes [38] and 16S rRNA genes
[39] was performed using hydrolysis probe chemistry.
The S. pyogenes assay is commercially available from Bio-
search Technologies (Novato, CA). For each sample dupli-
cate 25 μL reactions were run, each containing: 12.5 μL
Brilliant® qPCR Master mix (Agilent Technologies, Santa
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Clara, California), 25 μg BSA (Sigma-Aldrich, Brøndby,
Denmark), appropriate concentration of primers and
TaqMan® probes (S. pyogenes: 400 nM primers and 100
nM probe, 16S rRNA: 900 nM primers and 200 nM
probe), 0.75 μM ROX reference dye (Agilent Technologies)
and 2 μL of template DNA. Measurements were obtained
by absolute quantification using genomic DNA isolated
from S. pyogenes (DSM 20565) and P. aeruginosa (DSM
1253) for total bacteria quantification. The number of
isolated genomes was calculated based on DNA con-
centration (Quant-iT™ dsDNA Assay Kit (Invitrogen)) and
genome size estimated to be 1.8 Mbp for S. pyogenes and
6.5 Mbp for P. aeruginosa (http://img.jgi.doe.gov/cgi-bin/
pub/main.cgi). Dilution series of the genomic DNA cov-
ered a range of 106-100 genome copies. Reactions were
run on an Mx3005P (Agilent Technologies) with the fol-
lowing program: 10 min at 95 °C, followed by 40 cycles of
30 s at 95 °C, 1 min at 60 °C.

Analysis of quantitative data
The number of gene copies measured by qPCR was
converted to number of CFU per gram sample using

CFU=g ¼ Cmeasured=Cgenome � Vtotal=Vusedð Þ
�

msample
: Here

Cmeasured is the number of copies measured and Cgenome

is the number of gene copies in the genome of one CFU.
The standard deviation of all measurements above the
detection limit of the assays was calculated. In cases
where both the S. pyogenes and 16S rRNA assay were
above the limits of detection, a two tailed t-test was used
to provide a hypothesis test of the difference between
population means. A statistical value of ≤ 0.05 was con-
sidered significant.

Visualization of samples
The samples were prepared for visualization by imbed-
ding in paraffin, which was sectioned (4 μm) and mounted
on microscope slides and stored at room temperature. Be-
fore staining or hybridization, the slides were deparafi-
nated by using 2x 5 min xylene, 2x 3 min 99.9 % EtOH, 2x
3 min 96 % EtOH, and washed 3x 3 min in sterile water.
The deparafinated NSTI sections were analyzed by FISH
using a mixture of Cy3-labeled “Strept probe” targeting
Streptococcaceae [40] and a Cy5-labeled broad range bac-
teria probe (EUB-338) [41]. Hybridization was performed
by covering the slide with 12 μL of hybridization buffer
containing 0.9 M NaCl, 0.02 M Tris/HCl (pH 8), 0.01 %
SDS, and 30 % formamide and probe mix (5 ng/μL of the
respective probes) followed by incubation at 46 °C in a
humid chamber. After 90 min. slides were rinsed with
washing buffer (0.102 M NaCl, 0.02 M TRIS/HCl, 0.01 %
SDS) preheated to 48 °C and then incubated in the wash-
ing buffer for 15 min at 48 °C. Subsequently, DNA of both

bacteria and host cells was stained with 50 μg/ml 4’,6-
diamidino-2-phenylindole (DAPI) and incubated for
15 min in darkness at RT after which the slides were
washed with dH20 and air dried. The slides were mounted
with Vectashield (Vector labs) and a cover slip was added.
Slides were investigated using a LSM 710 confocal laser
scanning microscope (Zeiss, Germany).

Results
Identification of microorganisms by routine culture
The findings by routine culture at the Department of
Clinical Microbiology, Rigshospitalet (Copenhagen, Denmark),
mostly revealed the presence of one type of pathogenic
bacteria in the surgical samples (in 7 of the 10 patients)
(Table 2). These monomicrobial infections were primarily
caused by streptococci (71 % of the monomicrobial in-
fections), specifically S. pyogenes, S. pneumoniae and non-
hemolytic streptococci. The remaining monomicrobial
culture findings were identified as Acinetobacter baumanii
(patient 3) and fungal infection (patient 7). Furthermore,
two patients were found to harbor more than one micro-
organism (patients 5 and 6), where Bacteroides fragilis
with Clostridium paraputrificum and S. pyogenes with
Escherichia coli were found. One fourth of the samples in-
vestigated by culture did not result in growth of microor-
ganisms. Three of these surgical samples originated from
patients where other samples taken from the site of infec-
tion resulted in growth of microorganisms. The remaining
culture-negative samples originated from a patient, where
none of the samples resulted in growth of microorganisms
(patient 10).

Identification of microorganisms by molecular methods
Generally, the molecular methods confirmed the findings
by culture (Table 2 and Table 3). However, using the mul-
tiple molecular methods, microorganisms were found in
all samples including those that were culture-negative,
and in most culture-positive cases additional microorgan-
isms were identified by the molecular methods (Table 3,
Fig. 1). Overall, the different molecular methods gave con-
cordant results (although the16S rRNA clone libraries
were only constructed for 16 of the samples). There were,
however, cases where different microorganisms could only
be detected by one molecular method. This was either
due to misidentification or identification of additional spe-
cies (Fig. 1). For patient 10, the results were difficult to in-
terpret since the molecular methods gave differing results
(S. pyogenes by Microseq, while Ibis found S. pneumoniae,
Clostridium septicum and CoNS, and clone library and
454-pyrosequencing did not give results).
Of the molecular methods applied, only the Ibis T5000

biosensor could identify Candida albicans in sample 7B
and Cladosporium cladosporioides in sample 6A.
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Verification of findings by qPCR and quantitative data
The findings of S. pyogenes by molecular methods could
generally be confirmed by qPCR (Fig. 2). Based on the
measurements of bacterial 16S rRNA genes, S. pyogenes
was the dominant microorganism in most of the sam-
ples, except 6A and 7B. This corresponds with the trend
seen in the 454-pyrosequencing data (Fig. 1).

Visualization of samples
Using FISH it was possible to visualize bacteria in the
NSTI samples. The bacteria observed were generally
clustered together, and did not appear to penetrate into
the lipid droplet of the fat cells, but were instead found
in the matrix surrounding the fat cells (illustrated on
the representative images obtained for samples from
patient 1A, Fig. 3). In a few cases neither of the FISH
probes resulted in visualization of cells, including samples
5A, 10A and 10B. Generally, the Streptococcaceae-specific
FISH probe confirmed the cases where the bacteria were
found by molecular methods.

Discussion
NSTI is a serious, potentially lethal condition induced
by microorganisms. The gold standard for identification
of microorganisms involved in NSTI is culture and a
number of studies have described microbiological find-
ings during NSTI. However, newer molecular techniques
hold the promise of providing additional information re-
lating to the detection of unculturable organisms, with
the added benefit of a shortened turnaround time. There-
fore, the present study was designed to investigate the
potential of adding molecular diagnostics to cultural
studies in the diagnosis of NSTI. For the majority (15/
20: 75 %) of samples included in this study, pathogens
could be identified by culture (Table 2) with monomi-
crobial infections caused by S. pyogenes being the most
frequent finding. The incidence of monomicrobial S.
pyogenes NSTIs identified by culture in this study is
higher than reported elsewhere, with an accordingly de-
creased incidence of polymicrobial infections [5, 6, 42, 43],
although one patient (patient 6) was found by culture
to harbor additional microorganisms. This difference in

Table 2 Microorganisms detected by culture methods in surgical and other (often previous) samples from NSTI patients

Other samples Surgical samples

Patient Culture Sample Culture Molecular methods

1 - A Streptococcus pyogenes ✓

B Streptococcus pyogenes ✓

C Streptococcus pyogenes ✓

D Streptococcus pyogenes ✓

2 Streptococcus pyogenes (blood culture) A Streptococcus pyogenes ✓

B Streptococcus pyogenes ✓

3 No growth A Acinetobacter baumannii (Gram positive cocci
in chains by light microscopy)

✓a

4 Streptococcus pyogenes and CNS (Gram negative
rods by light microscopy)

A Non-hemolytic streptococci ✓

B No growth a

5 - A Bacteroides fragilis, Clostridium paraputrificum ✓a

6 Streptococcus pyogenes, Staphylococcus aureus
and Enterobacteriaceae

A Streptococcus pyogenes, Escherichia coli ✓a

7 Fusobacterium necrophorum A Fungus ✓a

B No growth a

8 Streptococcus pneumoniae A Streptococcus pneumoniae ✓

B Streptococcus pneumoniae ✓

C No growth a

9 Streptococcus pyogenes A Streptococcus pyogenes ✓

B Streptococcus pyogenes ✓

10 Staphylococcus aureus A No growth ✓

B No growth ✓

In many cases the findings by culture were confirmed by the molecular methods (✓), or the molecular methods identified additional microorganisms (a). Text in
brackets indicate relevant findings by light microscopy
-Indicates that no previous samples were taken for culture
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findings may be due to the relative few samples in-
cluded in the present study.

Culture vs. molecular methods
Microorganisms could be identified by the molecular
methods in all samples with the exception of samples from
patient 10. Thus molecular methods identified microorgan-
isms in cases where no growth was observed by culture.
Overall, there were a total of 17 samples where culture and
molecular methods were in agreement, giving either con-
cordant (13 samples) or partially concordant results (four
samples). The partial concordance is attributable to the
greater diversity found by the molecular methods vs. cul-
ture (Tables 2 and 3 and Fig. 1), which is consistent with
similar comparative studies of other clinical conditions
evaluating microbial detection methods [25, 44–48]. In the

remaining three cases (4B, 7B and 8C) the disagreement be-
tween culture and molecular methods were caused by lack
of culturability. Antibiotic therapy may be the cause of this
discrepancy, since other samples taken from patients earlier
in the course of disease did show growth of microorgan-
isms, which were in agreement with the findings by mo-
lecular methods (Table 2). Interestingly, these three cases
originated from three different patients where multiple
samples were taken and only a single sample gave negative
results by culture, illustrating that spatial distribution of
pathogenic microorganisms may be an issue that must be
taken into account during interpretation of results.

Molecular methods - agreement to a certain extent
Four different molecular methods were used to identify
microorganisms: 1) Microseq (direct Sanger sequencing);

Table 3 Comparison of findings by molecular methods

Patient Sample Microseq Sanger sequencing of clone libraries Ibis T5000 biosensor 454-pyrosequencing

1 A Streptococcus pyogenes ✓ Streptococcus pyogenes ✓ Streptococcus pyogenes ✓ Streptococcus pyogenes ✓

B Streptococcus pyogenes ✓ Streptococcus pyogenes ✓ Streptococcus pyogenes ✓ Streptococcus pyogenes ✓

C Streptococcus pyogenes ✓ Streptococcus pyogenes ✓ Streptococcus pyogenes ✓ Streptococcus pyogenes ✓

D Streptococcus pyogenes ✓ Streptococcus pyogenes ✓ Streptococcus pyogenes ✓ Streptococcus pyogenes ✓

2 A Streptococcus pyogenes ✓ Streptococcus pyogenes ✓ Streptococcus pyogenes ✓ Streptococcus pyogenes ✓

B Streptococcus pyogenes ✓ Streptococcus pyogenes ✓ Streptococcus pyogenes ✓ Streptococcus pyogenes ✓

3 A (Streptococcus pyogenes) Acinetobacter baumannii ✓ Acinetobacter baumannii ✓ Acinetobacter sp.✓

4 A Streptococcus pyogenes ✓ Not performed Streptococcus pyogenes ✓
Streptococcus didelphis ✓

Streptococcus pyogenes ✓

B Streptococcus pyogenes Streptococcus pyogenes Streptococcus pyogenes Streptococcus pyogenes

5 A (Streptococcus pyogenes) Clostridium paraputrificum ✓
Uncultured bacterium

Clostridium paraputrificum ✓
Bacteroides fragilis ✓
(Streptococcus agalactiae)

Clostridium sp. ✓
Bacteroides fragilis ✓

6 A Streptococcus pyogenes ✓
(Mycoplasma hominis)

Not performed Streptococcus pyogenes ✓
Escherichia coli ✓
Bacteroides fragilis
(Staphylococcus hominis)
(Staphylococcus epidermidis)
(Cladosporium cladosporioides)

Streptococcus pyogenes ✓
Bacteroides fragilis

7 A Mycoplasma spp.
Fusobacterium necrophorum

Not performed Mycoplasma sp.
Fusobacterium necrophorum
Candida albicans ✓

Mycoplasma sp.
Fusobacterium necrophorum

B Mycoplasma salivarium Mycoplasma salivarium
Fusobacterium necrophorum

Mycoplasma sp.
Fusobacterium necrophorum

Mycoplasma sp.
Fusobacterium necrophorum

8 A Streptococcus pneumoniae ✓ Not performed Streptococcus pneumoniae ✓ Streptococcus pneumoniae ✓

B Streptococcus pneumoniae ✓ Not performed Streptococcus pneumoniae ✓ Streptococcus pneumoniae ✓

C Streptococcus pneumoniae Not performed Streptococcus pneumoniae Streptococcus pneumoniae

9 A Streptococcus pyogenes Streptococcus pyogenes Streptococcus pyogenes Streptococcus pyogenes

B Streptococcus pyogenes Streptococcus pyogenes Streptococcus pyogenes Streptococcus pyogenes

10 A (Streptococcus pyogenes) No PCR (Streptococcus pneumoniae)
(Clostridium septicum)

Low read count

B (Streptococcus pyogenes) No PCR (Staphylococcus capitis/caprae) Low read count

Cases where the microorganisms were identified by culture are marked by ✓. For the 454-pyrosequencing only the concordant results are listed here (additional
species are seen in Fig. 1)
() indicates that microorganism could only be found by one molecular method and not by culture
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2) 16S rRNA gene clone libraries and Sanger sequencing
(except for samples 4A, 6A, 7A, 8A, 8B and 8C due to
insufficient amounts of DNA sample); 3) the Ibis T5000
biosensor; and 4) 454-based 16S rRNA gene pyrose-
quencing. Although all of the molecular methods gener-
ally provided concordant results, there were some cases
where a microorganism was only detected by one of the
four methods (Table 3, Fig. 1). Only microorganisms
found by at least two molecular methods were considered
to be present in the sample. For a single patient (patient
10) the various molecular methods gave discrepant or
negative results. The number of sequence reads obtained
by 454-pyrosequencing was very low, and it was not
possible to construct clone libraries due to negative PCR
for patient 10. These findings indicates that the obtained
results (Table 3) may be contaminants or background,
which is supported by the fact that neither of the FISH
probes used in this study gave a detectable signal for the
samples obtained from patient 10.
Discrepancies among the molecular methods were

primarily associated with the Microseq method, which
misidentified or missed the microorganisms that could

be found by the other three molecular methods and
(most often) culture. In the Microseq reactions the differ-
ent DNA strands from different species are competing for
the same (and limiting) reagents. The method uses only
one primer set in contrast to the redundant strategy of the
Ibis T5000 biosensor. Furthermore, the Microseq has a
limited resolution compared to clone library where dif-
ferent DNA strands are physically picked out and indi-
vidually sequenced and the 454-pyrosequencing where
different DNA molecules are automatically separated
before amplification and sequencing. It is therefore pos-
sible that the method is oversensitive toward some species
of special interest with high affinity for the primers.
In three cases (3A, 5A and 10A) Microseq identified S.

pyogenes that were not detected by any other method
(except possibly by light microscopy for sample 3A as
discussed below). Findings of S. pyogenes in NF can only
in really rare cases be interpreted as a false positive result.
Concerning the relative sensitivity of the techniques, all
applied methods in this study have various biases e.g. dif-
ferential amplification, primer choice. The chromatograms
as well as the intensity of the raw files from Microseq are

Fig. 1 Taxa identified by pyrosequencing. The stacked graph illustrates the relative abundance of each taxon identified by pyrosequencing from
the six samples (color coded according to the key)
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of sufficient quality to deem the results as correct. There
are no indications as to the Microseq results being false
positives or cross contaminations, however we do ac-
knowledge that this may be the case.

Microseq quantitative results
Interpretation of quantitative results can reveal some in-
teresting aspects of the NSTIs. By qPCR, the presence of
S. pyogenes was quantified and related to the total num-
ber of bacteria in the sample (estimates of cell numbers
based on 16S rRNA gene measurements). When com-
paring results by qPCR it is important to keep in mind
that small variations should not take on assumed rele-
vance, since it has been documented that at best there is
a 0.5 log10 variance between repeats of the same tem-
plate concentrations [49]. Based on the qPCR results
(Fig. 2), S. pyogenes generally appears to be the dominant
pathogen when it is present in patients, except samples
6A and 7B, where the total number of bacteria seemed
to exceed the number of S. pyogenes. These samples con-
tained a number of different species, which supports the
findings by qPCR. In the cases where S. pyogenes was
dominant (and sample 6A), all the applied methods were
able to detect and identify the pathogen. For sample 6A,
the relative abundance of S. pyogenes is around 1-2 % ac-
cording to 454 pyrosequencing and qPCR (Figs. 1 and 2).
It is noteworthy that culture identified such a relatively
low abundance species, compared to for instance Bacter-
oides fragilis (detected by both Ibis T5000 biosensor and

Fig. 2 Relative abundance of S. pyogenes. Results by taqman qPCR for S. pyogenes (grey) and the 16S rRNA gene of all bacteria (black) given as
CFU/mg sample. Only results where S. pyogenes were detected by qPCR are shown

Fig. 3 Visualization of NSTI samples obtained from patient 9. Images
show Streptococcaceae (red), bacteria (green) and cells targeted by
both Strept and EUB probe (yellow/orange). Background level for the
EUB probe was intentionally set high to illustrate the structure of the
debrided tissue. An area of sample 1A. Scale bar represents 10 μm
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constituted approximately half of the 454 pyrosequencing
reads).
An unexpected finding by qPCR was the presence of

S. pyogenes in sample 7B (approximately 7000 CFUs/mg
sample). The only other method to detect the pathogen
was 454 pyrosequencing (Fig. 1), where the species con-
stituted less than 0.01 % of the reads (and is therefore
not reported in Table 2). Seen in this light, the number
of CFUs/mg sample quantified by qPCR seems relatively
high, and indicates the importance of relating qPCR
measurements to other data (here both qPCR mea-
surements of other species and broad-range methods).
Without this comparison, it would be easy to mistakenly
focus on S. pyogenes, when all the other molecular
methods indicate that Mycoplasma species and Fusobac-
terium necrophorum are the problem.
The use of qPCR support our criteria of detection of

bacteria by at least two methods, since S. pyogenes could
not be quantified in samples 3A, 5A, 10A and 10B where
Microseq had indicated the presence of the pathogen.
This is further strengthened by the fact that it was not
possible to visualize Streptococcaceae in these samples
by FISH, although it is possible that cells are present but
not visible due to the high detection limit generally asso-
ciated with FISH. For the remaining samples where
streptococci were detected by multiple methods, it was
possible to visualize the organisms by FISH (Fig. 3).

Visual interpretation of the infected tissue
Compared to the aggressive nature of the infection, the
relative low number of bacteria generally detected in the
debrided tissue samples is somewhat surprising. We specu-
late that successful antimicrobial treatment is the cause of
this, both by reducing the number of pathogens, but pos-
sibly also by rendering the pathogens metabolically in-
active, which will impede detection by FISH. This seems
plausible since the majority of patients in this study sur-
vived the NSTI. We cannot, however, rule out that some
pathogens were present in the tissue but not detected due
to problems during transport and storage of samples for
FISH or because they were present in concentrations below
the limit of detection for FISH (Fig. 3-A and -B).

Microbial findings - the (un)usual suspects
The most common finding by molecular methods was S.
pyogenes as the sole or dominant pathogen (patients 1,
2, 4 and 9). Some cases of polymicrobial infections were
found and included E. coli, streptococci and the anaerobes
Bacteroides fragilis, Fusobacterium spp. and Clostridium
spp. These findings correspond with bacteria previ-
ously reported to be present in polymicrobial NSTIs
[13, 42, 50]. Furthermore, fungal NSTI due to Can-
dida albicans has also been reported [6, 42]. The de-
tection of Mycoplasma spp. in polymicrobial NSTI

(patient 7 by all molecular methods), is to the best of
our knowledge unique. However, animal studies have
shown that ulcerative dermal necrosis can be induced
in mice by Mycoplasma arthritidis [51]. Mycoplasmas
are associated with the mucosa and reside primarily in
the respiratory tract and rarely penetrate the submucosa,
except in cases of immunosuppression or instrumentation.
The lack of cell wall makes the mycoplasmas very sensi-
tive to environmental conditions and isolation of myco-
plasmas is complicated due specific nutrient requirements
and lack of a single optimal media formulation [52], which
may explain why they have not been isolated in NSTI pa-
tients before. Interestingly, the localization of infection in
patient 7 where mycoplasmas were detected was the neck,
but originated and spread from a dental focus, corre-
sponds with the association of mycoplasmas with the re-
spiratory tract.
Infections by species such as A. baumannii (patient 3)

and S. pneumoniae (patient 8) as the sole or dominant
species are unusual findings. However, A. baumanii is
an emergent pathogen and has increasingly been recog-
nized as a prevalent and significant nosocomial pathogen
associated with sepsis, wound infections, and pneumonia
[53]. A. baumannii and other Acinetobacter sp. have
been described as participants in polymicrobial NSTIs
[4, 14, 54] and some reports have identified A. bauman-
nii as the sole agent in NSTIs. [53, 55–57]. Light micros-
copy of the tissue revealed Gram-positive cocci in chains,
which may be involved in the initial phases of the infec-
tion. The Gram-positive cocci may either be S. pyogenes as
suggested by Microseq (not confirmed by qPCR) or low
abundance staphylococci, which were detected by 454-
pyrosequencing. The A. baumanii involvement in this
case is probably explained by the presence of chronic
leg ulcers which could be either colonized or harbor
the A. baumanii as biofilms deep in the ulcer [36, 58, 59].
S. pneumoniae, which was dominant in samples from pa-
tient 8, is a widespread pathogen that displays enormous
heterogeneity with respect to phenotype and pathogen-
icity, and has been implicated in community-acquired
pneumonia, sinusitis, otitis media, orthopaedic infections
and meningitis [44, 60–62]. NSTI due to S. pneumoniae is
rare and has primarily been reported in cases where pa-
tients were immunosuppressed or had other underlying
conditions [21, 63–67], which does not correspond to the
patient history in this case (Table 1). However, serious in-
fections upon septic spread of the S. pneumoniae includ-
ing to joints and bursas, as in this case, is not unusual.
The realization that many pathogens can cause NSTIs,

and that no specific combination of species are found in
all cases means that clinicians should be prepared to
treat any combination of microbial pathogens [4, 42]. Al-
though appropriate antimicrobial treatment cannot cure
NSTI, it can help during the acute phase of the infection
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[4], which highlights the importance of rapid and
comprehensive identification of the pathogens involved.

Conclusion
In conclusion, the results of this study indicate that mo-
lecular diagnostic tools would be suitable supplements for
culture, particularly the Ibis technology in order to pro-
vide fungal coverage. This would allow for rapid identifica-
tion of NSTI pathogens and help in cases where culture
remains negative or the response to the treatment is not
sufficiently satisfying. The much faster turnaround time
for the diagnostic molecular methods (particularly the Ibis
T5000 biosensor and qPCR) makes the use of these
methods attractive for pathogen identification in diseases
that have rapid progression such as NSTI, since appropri-
ate initial antibiotic treatment is of pivotal significance.
The various new next generation sequencing methods
have the ability to generate sequence analysis on complex
samples in few hours. Furthermore, rapid accurate diag-
nostics has the potential to prevent unnecessary changes
of the antibiotic treatment if the initiated antibiotic
treatment is sufficiently covering the findings. The use
of molecular methods may increase the risk of identify-
ing colonizers or contaminants to a higher degree, but
this may be an acceptable trade to be able to identify
the pathogens in all samples, including samples where
routine culture tests did not lead to growth of microor-
ganisms. Identification of microorganisms in patients
samples by any method has to be followed by an inter-
pretation of the clinical significance of such finding and
this is procedure is always individual.
With easier access to the newer diagnostic techniques

due to reduced acquisition costs, easier use, increased
knowledge of usefulness and interpretation, increased in-
clusion of identifying resistance genes and virulence fac-
tors these newer diagnostic tools will continue to increase
in deployment as an indispensable supplement to more
traditional diagnostic methods.
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