
u n i ve r s i t y o f co pe n h ag e n

Scripting languages and frameworks

analysis and verification (Dagstuhl Seminar 14271)

Henglein, Fritz; Jhala, Ranjit; Krishnamurthi, Shriram; Thiemann, Peter

DOI:
10.4230/DagRep.4.6.84

Publication date:
2014

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Henglein, F., Jhala, R., Krishnamurthi, S., & Thiemann, P. (Eds.) (2014). Scripting languages and frameworks:
analysis and verification (Dagstuhl Seminar 14271). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. Dagstuhl
Reports, No. 6, Vol.. 4 https://doi.org/10.4230/DagRep.4.6.84

Download date: 08. Apr. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Copenhagen University Research Information System

https://core.ac.uk/display/269280472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4230/DagRep.4.6.84
https://doi.org/10.4230/DagRep.4.6.84

Report from Dagstuhl Seminar 14271

Scripting Languages and Frameworks: Analysis and
Verification
Edited by
Fritz Henglein1, Ranjit Jhala2, Shriram Krishnamurthi3, and
Peter Thiemann4

1 University of Copenhagen, DK, henglein@diku.dk
2 University of California – San Diego, US, jhala@cs.ucsd.edu
3 Brown University – Providence, US, sk@cs.brown.edu
4 Universität Freiburg, DE, thiemann@informatik.uni-freiburg.de

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 14271 “Scripting
Languages and Frameworks: Analysis and Verification”. The seminar brought together a broad
spectrum of researchers working on the semantics, analysis and verification of scripting languages.
In addition to talks describing the latest problems and research on the key issues, split roughly
into four overarching themes: semantics, types, analysis, contracts, languages, and security, the
seminar had breakout sessions devoted to crosscutting topics that were of broad interest across
the community, including, how to create shared analysis infrastructure, how to think about the
semantics of contracts and blame, and the role of soundness in analyzing real world languages,
as well as several “tutorial” sessions explaining various new tools and techniques.

Seminar July 1–4, 2014 – http://www.dagstuhl.de/14271
1998 ACM Subject Classification D.3.3 Programming Languages, F.3.1 Logics and Meanings

of Programs
Keywords and phrases Scripting Languages, Frameworks, Contracts, Types, Analysis, Semantics
Digital Object Identifier 10.4230/DagRep.4.6.84

1 Executive Summary

Fritz Henglein
Ranjit Jhala
Shriram Krishnamurthi
Peter Thiemann

License Creative Commons BY 3.0 Unported license
© Fritz Henglein, Ranjit Jhala, Shriram Krishnamurthi, and Peter Thiemann

In the past decade scripting languages have become more mature: the wild experimentation
and almost wilful embrace of obfuscation by Perl has been replaced by the level-headed
simplicity of Python and the embrace of programming language research roots by Ruby. As a
result, these languages have moved into the mainstream: every Web user relies on JavaScript.

The Challenges of Scripting Languages Though scripting languages have become more
mature, from the perspective of building robust, reliable software, they still suffer from
several distinct problems, each of which creates new challenges for the research community.

While these languages have textual definitions, they lack more formal descriptions, and
in practice the textual “definitions” are themselves often in conflict with the normative

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Scripting Languages and Frameworks: Analysis and Verification, Dagstuhl Reports, Vol. 4, Issue 6, pp. 84–107
Editors: Fritz Henglein, Ranjit Jhala, Shriram Krishnamurthi, and Peter Thiemann

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/14271
http://dx.doi.org/10.4230/DagRep.4.6.84
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Fritz Henglein, Ranjit Jhala, Shriram Krishnamurthi, and Peter Thiemann 85

nature of the implementations. This is in contrast to languages like Standard ML where
the formal definition comes first. How far can we go in creating formal semantics from a
combination of implementations and textual documents?
Tests – more than either implementations, textual definitions, or formal semantics –
are becoming the norm for specification. For instance, the latest JavaScript standard
explicitly embraces testing by publishing and regularly updating a conformance suite.
Similarly, a team trying to create an alternate implementation of one of these languages
may read the definition but what they really aspire to match is the test suite behavior.
How can we support test suites as a new avenue of programming language specification?
One of the reasons programmers find these languages enjoyable (initially) is that they
offer a variety of “convenient” features, such as overloading. As programs grow, however,
understanding the full – and unintended! – behaviors of programs becomes a non-trivial
effort. How can we design semantics and static and dynamic tools that can cope with the
heavily understated and overloaded behaviors that make scripting languages attractive?
Programmers increasingly do not program in languages but in high-level frameworks built
atop them. For instance, though “Ruby” is popular for Web programming, programmers
rarely write Web applications directly in Ruby, but rather atop the higher-level Ruby
on Rails platform. The result of imposing significantly higher-level interfaces is that
they necessitate new reasoning modes. For instance, while the jQuery library is a pure
JavaScript program, type-checking jQuery as if it were “merely” JavaScript would produce
types that are both unreadably compex and relatively useless. Can we build custom
reasoning at the level of the frameworks, then we can provide views of these frameworks
that are consistent with the level at which developers think of them, and can we check
that the implementations adhere to these interfaces?
These languages and frameworks are themselves not enough. They all reside in an
eco-system of a family of other languages and frameworks whose interdependencies are
necessary for proper understanding of program execution. For instance, in the client-side
Web, JavaScript – which has gotten significant attention from the research community –
only runs in response to stimuli, which are obtained from the DOM. In turn, the DOM
and JavaScript both depend on the style-sheets written in CSS. But in fact all three
of these components – the JavaScript code, the CSS styling, and the DOM events – all
depend on one another, because almost any one can trigger or modify the other. Can we
construct suitable abstractions such that each language can meaningfully talk about the
others without importing an overwhelming amount of detail?

This seminar brought together a wide variety of researchers working on the above questions.
The seminar was organized into a series of short and long talks on topics related to the
above overarching questions, and four breakout sessions focussing on broader questions and
challenges. Next, we briefly summarize the talks and sessions. The contributed talks focussed
on the following over arching themes – semantics, type systems, program analysis, contracts,
languages and security.

14271

86 14271 – Scripting Languages and Frameworks: Analysis and Verification

2 Table of Contents

Executive Summary
Fritz Henglein, Ranjit Jhala, Shriram Krishnamurthi, and Peter Thiemann 84

Overview of Talks: Semantics
Python, the Full Monty
Joe Gibbs Politz . 89

An Executable Formal Semantics of PHP
Daniele Filaretti . 89

JSCert, a two-pronged approach to JavaScript formalization
Alan Schmitt . 89

Overview of Talks: Type Systems
Progressive Types
Joe Gibbs Politz . 90

Safe TypeScript
Panagiotis Vekris . 90

Confined Gradual Typing
Éric Tanter . 90

Typing Scheme to Typing Racket
Sam Tobin-Hochstadt . 91

Type Systems for JavaScript: Variations on a Theme
Benjamin Lerner . 91

Flow Typing
Arjun Guha . 92

Types for Ruby
Jeffrey Foster . 92

Refinement Types for an Imperative Scripting Language
Panagiotis Vekris . 92

Late Typing for Loosely Coupled Recursion
Ravi Chugh . 93

Overview of Talks: Program Analysis
Abstract Domains for Analyzing Hash Tables
Matthew Might . 93

Static Analysis for Open Objects
Arlen Cox . 93

Soft Contract Verification
David van Horn . 94

Type Refinement for Static Analysis of JavaScript
Ben Weidermann . 94

Dynamic Determinacy Analysis
Manu Sridharan . 95

Fritz Henglein, Ranjit Jhala, Shriram Krishnamurthi, and Peter Thiemann 87

Performance Analysis of JavaScript
Manu Sridharan . 95

Checking Correctness of TypeScript Interfaces for JavaScript Libraries
Anders Møller . 95

Analyzing JavaScript Web Applications in the Wild (Mostly) Statically
Sukyoung Ryu . 96

Overview of Talks: Contracts
Membranes as Ownership Boundaries
Tom Van Cutsem . 96

TreatJS: Higher-Order Contracts for JavaScript
Matthias Keil . 96

Contracts for Domain-Specific Languages in Ruby
Jeffrey Foster . 97

Overview of Talks: Languages
HOP: A Multi-tier Language For Web Applications
Tamara Rezk . 97

Perl: The Ugly Parts
Matthew Might . 98

So, What About Lua?
Roberto Ierusalimschy . 98

Regular Expression Parsing
Bjorn Bugge Grathwohl . 98

HTML5 Parser Specification and Automated Test Generation
Yasuhiko Minamide . 99

AmbientTalk: a scripting language for mobile phones
Tom Van Cutsem . 99

Glue Languages
Arjun Guha . 99

Overview of Talks: Security
Information Flow Control in WebKit’s JavaScript Bytecode
Christian Hammer . 100

Hybrid Information Flow monitoring against Web tracking
Thomas Jensen . 100

Intrusion Detection by Control Flow Analysis
Arjun Guha . 101

Multiple Facets for Dynamic Information Flow
Cormac Flanagan . 101

Shill: shell scripting with least authority
Christos Dimoulas . 102

14271

88 14271 – Scripting Languages and Frameworks: Analysis and Verification

Hybrid Information Flow Analysis for JavaScript
Tamara Rezk . 102

A Collection of Real World (JavaScript) Security Problems:
Achim D. Brucker . 102

Lightning Talks
Reasoning about membranes using separation logic
Gareth Smith . 103

Complexity Analysis of Regular Expression Matching Based on Backtracking
Yasuhiko Minamide . 103

PHPEnkoder: a Wordpress Plugin
Michael Greenberg . 103

SAST for JavaScript: A Brief Overview of Commercial Tools
Achim D. Brucker . 104

Breakout Sessions
Contracts and Blame
Cormac Flanagan . 104

On the Role of Soundness
Matthew Might, Jeffrey Foster . 104

Metrics for Programming Tools
Krishnamurthi, Shriram; Politz, Joe Gibbs . 105

JavaScript Analysis and Intermediate Representation
Thomas Jensen . 105

Participants . 107

Fritz Henglein, Ranjit Jhala, Shriram Krishnamurthi, and Peter Thiemann 89

3 Overview of Talks: Semantics

3.1 Python, the Full Monty
Joe Gibbs Politz (Brown University – US)

License Creative Commons BY 3.0 Unported license
© Joe Gibbs Politz

Joint work of Krishnamurthi, Shriram; Politz, Joe Gibbs

We present a small-step operational semantics for the Python programming language. We
present both a core language for Python, suitable for tools and proofs, and a translation pro-
cess for converting Python source to this core. We have tested the composition of translation
and evaluation of the core for conformance with the primary Python implementation, thereby
giving confidence in the fidelity of the semantics. We briefly report on the engineering of
these components. Finally, we examine subtle aspects of the language, identifying scope as a
pervasive concern that even impacts features that might be considered orthogonal.

3.2 An Executable Formal Semantics of PHP
Daniele Filaretti (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Daniele Filaretti

Joint work of Filaretti, Daniele; Maffeis, Sergio
Main reference D. Filaretti, S. Maffeis, “An Executable Formal Semantics of PHP,” in Proc. of the 28th Europ.

Conf. Object-Oriented Programming (ECOOP’14), LNCS, Vol. 8586, pp. 567–592, Springer, 2014.
URL http://dx.doi.org/10.1007/978-3-662-44202-9_23
URL https://dfilaretti.files.wordpress.com/2014/02/dagstuhl2014.pdf

We describe the first executable formal semantics of a substantial core of PHP – validated
by testing against the Zend Test suite.

3.3 JSCert, a two-pronged approach to JavaScript formalization
Alan Schmitt (INRIA Bretagne Atlantique – Rennes, FR)

License Creative Commons BY 3.0 Unported license
© Alan Schmitt

Main reference M. Bodin, A. Chargueraud, D. Filaretti, P. Gardner, S. Maffeis, D. Naudziuniene, A. Schmitt, G.
Smith, “A Trusted Mechanised JavaScript Specification,” in Proc. of the 41st ACM
SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL’14), pp. 87–100,
ACM, 2014.

URL http://dx.doi.org/10.1145/2535838.2535876

JSCert is a formalization of JavaScript that aims at being as close as possible to the
specification while having an executable component to run against test suites.

14271

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-662-44202-9_23
http://dx.doi.org/10.1007/978-3-662-44202-9_23
http://dx.doi.org/10.1007/978-3-662-44202-9_23
https://dfilaretti.files.wordpress.com/2014/02/dagstuhl2014.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2535838.2535876
http://dx.doi.org/10.1145/2535838.2535876
http://dx.doi.org/10.1145/2535838.2535876
http://dx.doi.org/10.1145/2535838.2535876
http://dx.doi.org/10.1145/2535838.2535876

90 14271 – Scripting Languages and Frameworks: Analysis and Verification

4 Overview of Talks: Type Systems

4.1 Progressive Types
Joe Gibbs Politz (Brown University – US)

License Creative Commons BY 3.0 Unported license
© Joe Gibbs Politz

Joint work of Krishnamurthi, Shriram

As modern type systems grow ever-richer, it can become increasingly onerous for programmers
to satisfy them. However, some programs may not require the full power of the type
system, while others may wish to obtain these rich guarantees incrementally. In particular,
programmers may be willing to exploit the safety checks of the underlying run- time system
as a substitute for some static guarantees. Progressive types give programmers this freedom,
thus creating a gentler and more flexible environment for using powerful type checkers. In
this paper we discuss the idea, motivate it with concrete, real-world scenarios, then show
the development of a simple progressive type system and present its (progressive) soundness
theorem.

4.2 Safe TypeScript
Panagiotis Vekris (University of California – San Diego, US)

License Creative Commons BY 3.0 Unported license
© Panagiotis Vekris

Joint work of Rastogi, Aseem; Swamy, Nikhil; Fournet, Cedric; Bierman, Gavin; Vekris, Panagiotis

Safe TypeScript is a gradual type system built on top of the TypeScript compiler framework
that achieves type soundness by means of stricter static typing rules and a runtime mechanism
for checks lying on the boundary between static and dynamic types. Safe TypeScript is geared
towards efficiency: it uses differential subtyping, whereby only a minimum amount of runtime
annotations are applied; and provides an erasure modality, which enables selective deletion
of type annotations for type constructs that are meant to be dealt with entirely statically.
The implemented Safe TypeScript compiler has been succefully used on hundreds of lines of
existing TypeScript code, incurring with a modest overhead on sufficiently annotated input
code.

4.3 Confined Gradual Typing
Éric Tanter (University of Chile, CL)

License Creative Commons BY 3.0 Unported license
© Éric Tanter

Joint work of Allende, Esteban; Fabry, Johan; Garcia, Ronald; Tanter, Éric
Main reference E. Allende, J. Fabry, R. Garcia, É. Tanter, “Confined Gradual Typing,” in Proc. of the 2014 ACM

Int’l Conf. on Object Oriented Programming Systems Languages & Applications (OOPSLA’14),
pp. 251–270, ACM, 2014; pre-print available from author’s webpage.

URL http://dx.doi.org/10.1145/2660193.2660222
URL http://pleiad.dcc.uchile.cl/papers/2014/allendeAl-oopsla2014.pdf

Gradual typing combines static and dynamic typing flexibly and safely in a single programming
language. To do so, gradually typed languages implicitly insert casts where needed, to ensure

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2660193.2660222
http://dx.doi.org/10.1145/2660193.2660222
http://dx.doi.org/10.1145/2660193.2660222
http://dx.doi.org/10.1145/2660193.2660222
http://pleiad.dcc.uchile.cl/papers/2014/allendeAl-oopsla2014.pdf

Fritz Henglein, Ranjit Jhala, Shriram Krishnamurthi, and Peter Thiemann 91

at runtime that typing assumptions are not violated by untyped code. However, the implicit
nature of cast insertion, especially on higher-order values, can jeopardize reliability and
efficiency: higher-order casts can fail at any time, and are costly to execute. We propose
Confined Gradual Typing, which extends gradual typing with two new type qualifiers that
let programmers control the flow of values between the typed and the untyped worlds, and
thereby trade some flexibility for more reliability and performance. We formally develop two
variants of Confined Gradual Typing that capture different flexibility/guarantee tradeoffs. We
report on the implementation of Confined Gradual Typing in Gradualtalk, a gradually-typed
Smalltalk, which confirms the performance advantage of avoiding unwanted higher-order
casts and the low overhead of the approach.

4.4 Typing Scheme to Typing Racket
Sam Tobin-Hochstadt (Indiana University – Bloomington, US)

License Creative Commons BY 3.0 Unported license
© Sam Tobin-Hochstadt

Joint work of Tobin-Hochstadt, Sam; Takikawa, Asumu; Felleisen, Matthias; Strickland, T. Stephen
Main reference A. Takikawa, T. S. Strickland, C. Dimoulas, S. Tobin-Hochstadt, M. Felleisen, “Gradual typing for

first-class classes,” in Proc. of the 27th Annual ACM SIGPLAN Conf. on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA’12), pp. 793–810, ACM, 2012;
pre-print available from author’s webpage.

URL http://www.ccs.neu.edu/racket/pubs/oopsla12-tsdthf.pdf

We have extended Typed Racket extensively to include support for features that go beyond
traditional Scheme, including first-class classes, delimited continuations, mixins, etc.

4.5 Type Systems for JavaScript: Variations on a Theme
Benjamin Lerner (Brown University, US)

License Creative Commons BY 3.0 Unported license
© Benjamin Lerner

Joint work of Lerner, Benjamin; Politz, Joe G.; Guha, Arjun; Krishnamurthi, Shriram
Main reference B. S. Lerner, J.G. Politz, A. Guha, S. Krishnamurthi, “TeJaS: retrofitting type systems for

JavaScript,” in Proc. of the 9th Symp. on Dynamic Languages (DLS ’13), pp. 1–16, ACM, 2013.
URL http://dx.doi.org/10.1145/2508168.2508170

When JavaScript programmers write code, they often target not just the base language but
also libraries and API frameworks that drastically change the style of their programs, to the
point where they might well be considered as written in domain-specific languages rather
than merely JS. Accordingly, the characteristic bugs for such applications varies by domain,
and so any tools designed to help developers catch these bugs ought to be tailored to the
domain. Yet these tools likely share a common core, since the underlying language is still JS.

We present a TeJaS, a framework for designing type systems for JavaScript that can be
customized to analyze the idiomatic errors of various domains, and we illustrate its utility
by describing systems for analyzing DOM-access errors in jQuery programs, and privacy
violations in Firefox browser extensions running in private-browsing mode.

14271

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2384616.2384674
http://dx.doi.org/10.1145/2384616.2384674
http://dx.doi.org/10.1145/2384616.2384674
http://dx.doi.org/10.1145/2384616.2384674
http://www.ccs.neu.edu/racket/pubs/oopsla12-tsdthf.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2508168.2508170
http://dx.doi.org/10.1145/2508168.2508170
http://dx.doi.org/10.1145/2508168.2508170

92 14271 – Scripting Languages and Frameworks: Analysis and Verification

4.6 Flow Typing
Arjun Guha (University of Massachusetts – Amherst, US)

License Creative Commons BY 3.0 Unported license
© Arjun Guha

Joint work of Guha, Arjun; Saftiou, Claudiu; Krishnamurthi, Shriram
Main reference A. Guha, C. Saftoiu, S. Krishnamurthi, “Typing Local Control and State Using Flow Analysis,” in

Proc. of the 20th Europ. Symp. on Programming (ESOP’11), LNCS, Vol. 6602, pp. 256–275,
Springer, 2011.

URL http://dx.doi.org/10.1007/978-3-642-19718-5_14

Programs written in scripting languages employ idioms that confound conventional type
systems. In this paper, we highlight one important set of related idioms: the use of local
control and state to reason informally about types. To address these idioms, we formalize
run-time tags and their relationship to types, and use these to present a novel strategy to
integrate typing with flow analysis in a modular way. We demonstrate that in our separation
of typing and flow analysis, each component remains conventional, their composition is
simple, but the result can handle these idioms better than either one alone.

4.7 Types for Ruby
Jeffrey Foster (University of Maryland, US)

License Creative Commons BY 3.0 Unported license
© Jeffrey Foster

This talk summarizes several years of work on ways to bring some of the benefits of static
typing to Ruby. We discuss Diamondback Ruby, a pure static type inference system for
Ruby; an extension that does profiling to account for highly dynamic language features; the
Mix system, which combines type checking and symbolic execution; and, briefly, RubyDust
and rtc, which use the ideas of Mix to provide type inference and checking, respectively, at
run time for Ruby.

4.8 Refinement Types for an Imperative Scripting Language
Panagiotis Vekris (University of California – San Diego, US)

License Creative Commons BY 3.0 Unported license
© Panagiotis Vekris

Joint work of Jhala, Ranjit

We present a refinement type checker for a scripting language employing various idioms of the
JavaScript/TypeScript language family. Our type system consists of a base type system that
includes, among others, object types, unions, intersection and higher order functions. On top
of this base system lies our refinement type system whose language spans linear arithmetic
and uninterpreted predicates. Subtyping on the base system is coercive and the casts added
during base typechecking are expressed in the form of refinement type constraints along
side value related constraints. These constraints are formulated into logical implications
and are discharged by means of Liquid Types inference/checking. Examples outlined in this
presentation include safe downcasts based on reflection and in-bounds array accesses.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-19718-5_14
http://dx.doi.org/10.1007/978-3-642-19718-5_14
http://dx.doi.org/10.1007/978-3-642-19718-5_14
http://dx.doi.org/10.1007/978-3-642-19718-5_14
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Fritz Henglein, Ranjit Jhala, Shriram Krishnamurthi, and Peter Thiemann 93

4.9 Late Typing for Loosely Coupled Recursion
Ravi Chugh (University of California – San Diego, US)

License Creative Commons BY 3.0 Unported license
© Ravi Chugh

URL http://goto.ucsd.edu/~ravi/research/dagstuhl-late.pptx.pdf

Flexible patterns of mutual recursion can be encoded in scripting languages by defining
component functions independently and then “tying the knot” either by mutation through
the heap or explicitly passing around receiver objects. We present a mechanism called late
typing to reason about such idioms. The key idea is to, first, augment function types with
constraints that may not be satisfied when functions are defined and, second, to check that
these constraints are satisfied by the time the functions are called.

5 Overview of Talks: Program Analysis

5.1 Abstract Domains for Analyzing Hash Tables
Matthew Might (University of Utah, US)

License Creative Commons BY 3.0 Unported license
© Matthew Might

Hash-table-like abstractions pervade scripting languages as fundamental data structures.
(Consider objects in JavaScript, dictionaries in Python and hashes in Ruby.) Attempts to
model these abstractions with the same abstract domains used to model abstractions of
objects in languages like Java (in which fields and methods are fixed upon allocation) breaks
these domains so as to cause catastrophic loss in precision or unsoundness. This talk looks
at what is required to retain soundness while more precisely modeling the flexible nature of
these structures.

5.2 Static Analysis for Open Objects
Arlen Cox (Colorado University – Boulder, US)

License Creative Commons BY 3.0 Unported license
© Arlen Cox

Joint work of Rival, Xavier

In dynamic languages, objects are open – they support iteration over and dynamic addi-
tion/deletion of their attributes. Open objects, because they have an unbounded number
of attributes, are difficult to abstract without a priori knowledge of all or nearly all of the
attributes and thus pose a significant challenge for precise static analysis. To address this
challenge, this talks presents the HOO (Heap with Open Objects) abstraction that can
precisely represent and infer properties about open-object-manipulating programs without
any knowledge of specific attributes. It achieves this by building upon a relational abstract do-
main for sets that is used to reason about partitions of object attributes. An implementation
of the resulting static analysis is used to verify specifications for dynamic language framework
code that makes extensive use of open objects, thus demonstrating the effectiveness of this
approach.

14271

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://goto.ucsd.edu/~ravi/research/dagstuhl-late.pptx.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

94 14271 – Scripting Languages and Frameworks: Analysis and Verification

5.3 Soft Contract Verification
David van Horn (University of Maryland – College Park, US)

License Creative Commons BY 3.0 Unported license
© David van Horn

Behavioral software contracts are a widely used mechanism for governing the flow of values
between components. However, run-time monitoring and enforcement of contracts imposes
significant overhead and delays discovery of faulty components to run-time.

To overcome these issues, we present soft contract verification, which aims to statically
prove either complete or partial contract correctness of components, written in an untyped,
higher-order language with first-class contracts. Our approach uses higher-order symbolic
execution, leveraging contracts as a source of symbolic values including unknown behavioral
values, and employs an updatable heap of contract invariants to reason about flow-sensitive
facts. We prove the symbolic execution soundly approximates the dynamic semantics and
that verified programs can’t be blamed.

The approach is able to analyze first-class contracts, recursive data structures, unknown
functions, and control-flow-sensitive refinements of values, which are all idiomatic in dynamic
languages. It makes effective use of an off-the-shelf solver to decide problems without heavy
encodings. The approach is competitive with a wide range of existing tools—including type
systems, flow analyzers, and model checkers—on their own benchmarks.

5.4 Type Refinement for Static Analysis of JavaScript
Ben Weidermann (Harvey Mudd College, US)

License Creative Commons BY 3.0 Unported license
© Ben Weidermann

Static analysis of JavaScript has proven useful for a variety of purposes, including optimization,
error checking, security auditing, program refactoring, and more. A technique called type
refinement that can improve the precision of such static analyses for JavaScript without any
discernible performance impact. Refinement is a known technique that uses the conditions
in branch guards to refine the analysis information propagated along each branch path. The
key insight of this paper is to recognize that JavaScript semantics include many implicit
conditional checks on types, and that performing type refinement on these implicit checks
provides significant benefit for analysis precision.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Fritz Henglein, Ranjit Jhala, Shriram Krishnamurthi, and Peter Thiemann 95

5.5 Dynamic Determinacy Analysis
Manu Sridharan (Samsung Research, US)

License Creative Commons BY 3.0 Unported license
© Manu Sridharan

Joint work of Schäfer, Max; Sridharan, Manu; Dolby, Julian; Tip, Frank
Main reference M. Schäfer, M. Sridharan, J. Dolby, F. Tip, “Dynamic determinacy analysis,” in Proc. of the 34th

ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI’13),
pp. 165–174, ACM, 2013.

URL http://dx.doi.org/10.1145/2499370.2462168

Programs commonly perform computations that refer only to memory locations that must
contain the same value in any program execution. Such memory locations are determinate
because the value they contain is derived solely from constants. We present a dynamic
program analysis that computes a safe approximation of the determinacy of the memory
locations referenced at each program point. We implemented this determinacy analysis for
JavaScript on top of the node.js environment. In two case studies, we demonstrate how the
results of determinacy analysis can be used for improving the accuracy of a standard static
pointer analysis, and for identifying calls to eval that can be eliminated.

5.6 Performance Analysis of JavaScript
Manu Sridharan (Samsung Research, US)

License Creative Commons BY 3.0 Unported license
© Manu Sridharan

Performance analysis for JavaScript is increasingly important, but difficult due to fragile
interactions with JIT compilers and complex native APIs like the DOM. We propose
an approach to profiling memory behavior of JavaScript code via heavyweight, platform-
independent dynamic tracing and offline analysis, and we outline open challenges with this
approach.

5.7 Checking Correctness of TypeScript Interfaces for JavaScript
Libraries

Anders Møller (Aarhus University, DK)

License Creative Commons BY 3.0 Unported license
© Anders Møller

Joint work of Møller, Anders; Feldthaus, Asger
Main reference A. Feldthaus, A. Møller, “Checking correctness of TypeScript interfaces for JavaScript libraries,” in

Proc. of the 2014 ACM Int’l Conf. on Object Oriented Programming Systems Languages &
Applications (OOPSLA’14), pp. 1–16, ACM, 2014.

URL http://dx.doi.org/10.1145/2660193.2660215

The TypeScript programming language adds optional types to JavaScript, with support for
interaction with existing JavaScript libraries via interface declarations. Such declarations
have been written for hundreds of libraries, but they can be difficult to write and often
contain errors, which may affect the type checking and misguide code completion for the
application code in IDEs.

We present a pragmatic approach to check correctness of TypeScript declaration files
with respect to JavaScript library implementations. The key idea in our algorithm is that

14271

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2499370.2462168
http://dx.doi.org/10.1145/2499370.2462168
http://dx.doi.org/10.1145/2499370.2462168
http://dx.doi.org/10.1145/2499370.2462168
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2660193.2660215
http://dx.doi.org/10.1145/2660193.2660215
http://dx.doi.org/10.1145/2660193.2660215
http://dx.doi.org/10.1145/2660193.2660215

96 14271 – Scripting Languages and Frameworks: Analysis and Verification

many declaration errors can be detected by an analysis of the library initialization state
combined with a light-weight static analysis of library function code.

Our experimental results demonstrate the effectiveness of the approach: it has found
142 errors in the declaration files of 10 libraries, with an analysis time of a few minutes
per library and with a low number of false positives. Our analysis of how programmers use
library interface declarations furthermore reveals some practical limitations of the TypeScript
type system.

5.8 Analyzing JavaScript Web Applications in the Wild (Mostly)
Statically

Sukyoung Ryu (KAIST – Daejeon, KR)

License Creative Commons BY 3.0 Unported license
© Sukyoung Ryu

Analyzing real-world JavaScript web applications is a challenging task. On top of understand-
ing the semantics of JavaScript, it requires modeling of web documents, platform objects,
and interactions between them. Not only JavaScript itself but also its usage patterns are
extremely dynamic. Most of web applications load JavaScript code dynamically, which makes
pure static analysis approaches inapplicable. We present our attempts to analyze JavaScript
web applications in the wild mostly statically using various approaches to analyze libraries.

6 Overview of Talks: Contracts

6.1 Membranes as Ownership Boundaries
Tom Van Cutsem (Alcatel-Lucent Bell Labs – Antwerp, BE)

License Creative Commons BY 3.0 Unported license
© Tom Van Cutsem

We discuss the similarities and differences between membranes and higher-order contracts,
give a brief overview of proxies in JS (which are the basic building block for membranes) and
then show how membranes can be used to express the use cases typically expressed using
ownership type systems.

6.2 TreatJS: Higher-Order Contracts for JavaScript
Matthias Keil (Universität Freiburg, DE)

License Creative Commons BY 3.0 Unported license
© Matthias Keil

Joint work of Keil, Matthias; Thiemann, Peter
URL http://www2.informatik.uni-freiburg.de/~keilr/talks/talk_dagstuhl2014-treatjs.pdf

TreatJS is a language embedded, dynamic, higher-order contract system for JavaScript.
Beyond the standard abstractions for building higher-order contracts (base, function, and
object contracts), TreatJS’ novel contribution is its support for boolean combinations of

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www2.informatik.uni-freiburg.de/~keilr/talks/talk_dagstuhl2014-treatjs.pdf

Fritz Henglein, Ranjit Jhala, Shriram Krishnamurthi, and Peter Thiemann 97

contracts and for the creation of parameterized contracts, which are the building blocks for
dependent contracts and more generally run-time generated contracts.

TreatJS is implemented using JavaScript proxies to guarantee full interposition for
contracts and it exploits JavaScript’s reflective features to run contracts in a sandbox
environment. This sandbox guarantees that contracts do not interfere with normal program
execution. It also facilitates that all aspects of a contract are specified using the full JavaScript
language. No source code transformation or change in the JavaScript run-time system is
required.

TreatJS including sandboxing, is formalized and the impact of contracts on execution
speed is evaluated in terms of the Google Octane benchmark.

6.3 Contracts for Domain-Specific Languages in Ruby
Jeffrey Foster (University of Maryland, US)

License Creative Commons BY 3.0 Unported license
© Jeffrey Foster

Joint work of Foster, Jeffrey; Strickland, T. Stephen; Ren, Bree

This talk concerns object-oriented embedded DSLs, which are popular in the Ruby community
but have received little attention in the research literature. Ruby DSLs implement language
keywords as implicit method calls to self; language structure is enforced by adjusting which
object is bound to self in different scopes. We propose RDL, a new contract checking system
that can enforce contracts on the structure of Ruby DSLs, attributing blame appropriately.
We describe RDL and RDLInfer, a tool that infers RDL contracts for existing Ruby DSLs.

7 Overview of Talks: Languages

7.1 HOP: A Multi-tier Language For Web Applications
Tamara Rezk (INRIA Sophia-Antipolis, FR)

License Creative Commons BY 3.0 Unported license
© Tamara Rezk

We present HOP a multi-tier language to write web applications. We propose a small-step
operational semantics to support formal reasoning in HOP. The semantics covers both server
side and client side computations, as well as their interactions, and includes creation of web
services, distributed client-server communications, concurrent evaluation of service requests
at server side, elaboration of HTML documents, DOM operations, evaluation of script nodes
in HTML documents and actions from HTML pages at client side.

14271

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

98 14271 – Scripting Languages and Frameworks: Analysis and Verification

7.2 Perl: The Ugly Parts
Matthew Might (University of Utah, US)

License Creative Commons BY 3.0 Unported license
© Matthew Might

Let there be no mistake: Perl is extremely useful. Every programmer needs Perl in their
arsenal. Thanks to many implicit behaviors, some complex programs can be specified with
alarming brevity. Perl excels at extracting and transforming data. But, Perl is as dangerous
as it is ugly. This talk looks at the ugly.

7.3 So, What About Lua?
Roberto Ierusalimschy (Pontifical University – Rio de Janeiro, BR)

License Creative Commons BY 3.0 Unported license
© Roberto Ierusalimschy

Lua is a programming language developed at the Catholic University in Rio de Janeiro
that came to be the leading scripting language in video games. Lua is also used extensively
in embedded devices, such as set-top boxes and TVs, and other applications like Adobe
Lightroom and Wikipedia. This talk presents a quick overview of some unconventional
aspects of the language.

7.4 Regular Expression Parsing
Bjorn Bugge Grathwohl (University of Copenhagen – DK)

License Creative Commons BY 3.0 Unported license
© Bjorn Bugge Grathwohl

Joint work of Henglein, Fritz and Terp-Rasmussen, Ulrik

Regular expressions (REs) are usually interpreted as languages. For many programming
tasks, this is an inadequate interpretation, as it only provides the programmer with a means
for testing language membership. Facilities for submatch extraction in tools such as sed and
Perl-style REs have been developed to let programmers do data extraction and manipulation
with REs. However, the submatch extraction approach is severely limited in its expressibility,
as it only allows for a fixed number of submatches, independent of the input size.

Instead, we interpret REs as types. Testing language membership is replaced by a parsing
problem: Given an RE E and string s, produce the value (parse tree) in the type T(E) whose
flattening is s. With this interpretation, data extraction and manipulation can be performed
by writing functional programs that operate on the data types represented by the REs.

We present two automata-based algorithms producing the greedy leftmost parse tree: The
two-pass algorithm requires one pass over the input data and an extra pass over an auxiliary
data structure; the streaming algorithm implements an optimally streaming parser, in the
sense that as soon as the input read so far determines a prefix of all possible parse trees, this
prefix is output. This is guaranteed given a PSPACE-complete analysis of the automaton,
which can be performed independently of any input strings. However, we conjecture that for
“realistic”, non-pathological, REs, this analysis is not needed.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Fritz Henglein, Ranjit Jhala, Shriram Krishnamurthi, and Peter Thiemann 99

7.5 HTML5 Parser Specification and Automated Test Generation
Yasuhiko Minamide (University of Tsukuba, JP)

License Creative Commons BY 3.0 Unported license
© Yasuhiko Minamide

Joint work of Minamide, Yasuhiko; Mori, Shunsuke
Main reference Y. Minamide, S. Mori, “Reachability Analysis of the HTML5 Parser Specification and Its

Application to Compatibility Testing,” in Proc. the 18th Int’l Symp. on Formal Methods (FM’12),
LNCS, Vol. 7436, pp. 293–307, 2012.

URL http://dx.doi.org/10.1007/978-3-642-32759-9_26

The HTML5 specification includes the detailed specification of the parsing algorithm for
HTML5 documents, including error handling. We develop a reachability analyzer for the
parsing specification of HTML5 and automatically generate HTML documents to test
compatibilities of Web browsers. The set of HTML documents are extracted using our
reachability analysis of the statements in the specification. In our preliminary experiments,
we generated 353 HTML documents automatically from a subset of the specification and
found several compatibility problems by supplying them to Web browsers.

7.6 AmbientTalk: a scripting language for mobile phones
Tom Van Cutsem (Alcatel-Lucent Bell Labs – Antwerp, BE)

License Creative Commons BY 3.0 Unported license
© Tom Van Cutsem

We introduce the AmbientTalk programming language, which was designed to script collab-
orative distributed applications on mobile phones. We give an overview of the language’s
features and historical roots. We discuss how AmbientTalk is embedded on the JVM, with
particular attention to maintaining concurrency invariants.

7.7 Glue Languages
Arjun Guha (University of Massachusetts – Amherst, US)

License Creative Commons BY 3.0 Unported license
© Arjun Guha

Joint work of Guha, Arjun; Gupta, Nimish

Puppet is a configuration management system used by thousands of organizations to manage
thousands of machines. It is designed to automate tasks such as application configuration,
service orchestration, VM provisioning, and more. The heart of Puppet is a declarative
domain specific language that, to a first approximation, specifies a collection of resources
(e. g., packages, user accounts, files, etc.) to install and the dependencies between them.

Although Puppet performs some static checking, there are many opportunities for errors
to occur in Puppet configurations. These errors are very difficult to detect and debug. Even
if a configuration is itself bug-free, when a machine is upgraded to a new configuration, it is
easy for the machine state and its specified configuration in Puppet to be inconsistent.

14271

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-32759-9_26
http://dx.doi.org/10.1007/978-3-642-32759-9_26
http://dx.doi.org/10.1007/978-3-642-32759-9_26
http://dx.doi.org/10.1007/978-3-642-32759-9_26
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

100 14271 – Scripting Languages and Frameworks: Analysis and Verification

8 Overview of Talks: Security

8.1 Information Flow Control in WebKit’s JavaScript Bytecode
Christian Hammer (Universität des Saarlandes, DE)

License Creative Commons BY 3.0 Unported license
© Christian Hammer

Joint work of Bichhawat, Abhishek; Rajani, Vineet; Garg, Deepak; Hammer, Christian
Main reference A. Bichhawat, V. Rajani, D. Garg, C. Hammer, “Information Flow Control in WebKit’s JavaScript

Bytecode,” in Proc. of the 3rd Int’l Conf. on Principles of Security and Trust (POST’14), LNCS,
Vol. 8414, pp. 159–178, Springer, 2014.

URL http://dx.doi.org/10.1007/978-3-642-54792-8_9

Websites today routinely combine JavaScript from multiple sources, both trusted and
untrusted. Hence, JavaScript security is of paramount importance. A specific interesting
problem is information flow control (IFC) for JavaScript. In this paper, we develop, formalize
and implement a dynamic IFC mechanism for the JavaScript engine of a production Web
browser (specifically, Safari’s WebKit engine). Our IFC mechanism works at the level of
JavaScript bytecode and hence leverages years of industrial effort on optimizing both the
source to bytecode compiler and the bytecode interpreter. We track both explicit and implicit
flows and observe only moderate overhead. Working with bytecode results in new challenges
including the extensive use of unstructured control flow in bytecode (which complicates
lowering of program context taints), unstructured exceptions (which complicate the matter
further) and the need to make IFC analysis permissive. We explain how we address these
challenges, formally model the JavaScript bytecode semantics and our instrumentation, prove
the standard property of termination-insensitive non-interference, and present experimental
results on an optimized prototype.

8.2 Hybrid Information Flow monitoring against Web tracking
Thomas Jensen (INRIA Bretagne Atlantique – Rennes, FR)

License Creative Commons BY 3.0 Unported license
© Thomas Jensen

Joint work of Bielova, Nataliia; Besson, Frederic; Jensen, Thomas

Motivated by the problem of stateless web tracking (fingerprinting), we propose a novel
approach to hybrid information flow monitoring by tracking the knowledge about secret
variables using logical formulae. This knowledge representation helps to compare and improve
precision of hybrid information flow monitors.

We define a generic hybrid monitor parametrised by a static analysis and derive sufficient
conditions on the static analysis for soundness and relative precision of hybrid monitors.

We instantiate the generic monitor with a combined static constant and dependency
analysis. Several other hybrid monitors including those based on well-known hybrid techniques
for information flow control are formalised as instances of our generic hybrid monitor. These
monitors are organised into a hierarchy that establishes their relative precision. The whole
framework is accompanied by a formalisation of the theory in the Coq proof assistant.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-54792-8_9
http://dx.doi.org/10.1007/978-3-642-54792-8_9
http://dx.doi.org/10.1007/978-3-642-54792-8_9
http://dx.doi.org/10.1007/978-3-642-54792-8_9
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Fritz Henglein, Ranjit Jhala, Shriram Krishnamurthi, and Peter Thiemann 101

8.3 Intrusion Detection by Control Flow Analysis
Arjun Guha (University of Massachusetts – Amherst, US)

License Creative Commons BY 3.0 Unported license
© Arjun Guha

Joint work of Guha, Arjun; Krishnamurthi, Shriram; Jim, Trevor
Main reference A. Guha, S. Krishnamurthi, T. Jim, “Using Static Analysis for Ajax Intrusion Detection,” in Proc.

of the 18th Int’l Conf. on World Wide Web (WWW’09), pp. 561–570, ACM, 2009.
URL http://dx.doi.org/10.1145/1526709.1526785

We present a static control-flow analysis for JavaScript pro- grams running in a web browser.
Our analysis tackles numerous challenges posed by modern web applications including
asynchronous communication, frameworks, and dynamic code generation. We use our
analysis to extract a model of expected client behavior as seen from the server, and build an
intrusion-prevention proxy for the server: the proxy intercepts client requests and disables
those that do not meet the expected behavior. We insert random asynchronous requests to
foil mimicry attacks. Finally, we evaluate our technique against several real applications and
show that it protects against an attack in a widely-used web application.

8.4 Multiple Facets for Dynamic Information Flow
Cormac Flanagan (University of California – Santa Cruz, US)

License Creative Commons BY 3.0 Unported license
© Cormac Flanagan

Joint work of Flanagan, Cormac; Austin, Thomas H.
Main reference T.H. Austin, C. Flanagan, “Multiple facets for dynamic information flow,” in Proc. of the 39th

Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL’12),
pp. 165–178, ACM, 2012; pre-print available from author’s webpage.

URL http://dx.doi.org/10.1145/2103656.2103677
URL http://users.soe.ucsc.edu/~cormac/papers/popl12b.pdf

JavaScript has become a central technology of the web, but it is also the source of many
security problems, including cross-site scripting attacks and malicious advertising code.
Central to these problems is the fact that code from untrusted sources runs with full
privileges. We implement information flow controls in Firefox to help prevent violations of
data confidentiality and integrity. Most previous information flow techniques have primarily
relied on either static type systems, which are a poor fit for JavaScript, or on dynamic
analyses that sometimes get stuck due to problematic implicit flows, even in situations where
the target web application correctly satisfies the desired security policy. We introduce faceted
values, a new mechanism for providing information flow security in a dynamic manner that
overcomes these limitations. Taking inspiration from secure multi-execution, we use faceted
values to simultaneously and efficiently simulate multiple executions for different security
levels, thus providing non-interference with minimal overhead, and without the reliance on
the stuck executions of prior dynamic approaches.

14271

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/1526709.1526785
http://dx.doi.org/10.1145/1526709.1526785
http://dx.doi.org/10.1145/1526709.1526785
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2103656.2103677
http://dx.doi.org/10.1145/2103656.2103677
http://dx.doi.org/10.1145/2103656.2103677
http://dx.doi.org/10.1145/2103656.2103677
http://users.soe.ucsc.edu/~cormac/papers/popl12b.pdf

102 14271 – Scripting Languages and Frameworks: Analysis and Verification

8.5 Shill: shell scripting with least authority
Christos Dimoulas (Harvard University, US)

License Creative Commons BY 3.0 Unported license
© Christos Dimoulas

Joint work of Moore, Scott; Dimoulas, Christos; King, Dan; Chong, Stephen

The Principle of Least Authority suggests that software should be executed with no more
authority than it requires to accomplish its task. Current security tools make it difficult to
apply this principle: they either require significant modifications to applications or do not
facilitate reasoning about combining untrustworthy components.

We propose Shill, a secure shell scripting language. Shill scripts enable compositional
reasoning about security through declarative security policies that limit the effects of script
execution, including the effects of programs invoked by the script. These security policies
are a form of documentation for consumers of Shill scripts, and are enforced by the Shill
execution environment.

We have implemented a prototype of Shill for FreeBSD. Our evaluation indicates that
Shill is a practical and useful system security tool, and can provide fine-grained security
guarantees.

8.6 Hybrid Information Flow Analysis for JavaScript
Tamara Rezk (INRIA Sophia-Antipolis, FR)

License Creative Commons BY 3.0 Unported license
© Tamara Rezk

We propose a novel type system for securing information flow in JavaScript that takes into
account the defining features of the language, such as prototypical inheritance, extensible
objects, and constructs that check the existence of object properties. The type system infers
a set of assertions under which a program can be securely accepted and instruments it so as
to dynamically check whether these assertions hold. By deferring rejection to run-time, the
hybrid version can typecheck secure programs that purely static type systems cannot accept.

8.7 A Collection of Real World (JavaScript) Security Problems:
Achim D. Brucker (SAP Research – Karlsruhe, DE)

License Creative Commons BY 3.0 Unported license
© Achim D. Brucker

URL http://www.brucker.ch/bibliography/abstract/talk-brucker-js-challenges-2014.en.html

JavaScript is gaining more and more popularity as an implementation language for various
applications types such as Web applications (client-side), mobile applications, or server-side
applications.

We outline a few security challenges that need to be prevented in such applications and,
thus, for which there is a demand for analysis methods that help to detect them during
during development.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.brucker.ch/bibliography/abstract/talk-brucker-js-challenges-2014.en.html

Fritz Henglein, Ranjit Jhala, Shriram Krishnamurthi, and Peter Thiemann 103

9 Lightning Talks

9.1 Reasoning about membranes using separation logic
Gareth Smith (Imperial College – UK)

License Creative Commons BY 3.0 Unported license
© Gareth Smith

URL http://www.dagstuhl.de/mat/Files/14/14271/14271.SmithGareth.Other.pdf

We propose an extension to separation logic which would make it possible to statically prove
security properties of an implementation of a membrane program.

9.2 Complexity Analysis of Regular Expression Matching Based on
Backtracking

Yasuhiko Minamide (University of Tsukuba, JP)

License Creative Commons BY 3.0 Unported license
© Yasuhiko Minamide

Joint work of Sugiyama Satoshi; Minamide, Yasuhiko
Main reference S. Sugiyama, Y. Minamide, “Checking Time Linearity of Regular Expression Matching Based on

Backtracking,” to appear in IPSJ Transactions on Programming.

Regular expression matching is implemented with backtracking in most programming lan-
guages. Its time complexity is exponential on the length of a string in worst case. This high
complexity causes significant problems in practice. It causes DoS vulnerabilities in server-side
applications. It may also affect the result of matching in some implementation with a limit
on the number steps in matching, e. g. PCRE. We present a decision procedure to check
whether for a given regular expression matching based on backtracking runs in linear time.

9.3 PHPEnkoder: a Wordpress Plugin
Michael Greenberg (Princeton University, US)

License Creative Commons BY 3.0 Unported license
© Michael Greenberg

URL http://wordpress.org/plugins/php-enkoder/

PHPEnkoder encodes mailto: links and e-mail addresses with JavaScript to stifle webcrawlers.
It works by automatically turning plaintext e-mails into (enkoded) links.

Interesting facts:
Wordpress plugins are installed by being placed in a directory; the files are run at the
top level.
Wordpress plugins are automatically released by tagging in subversion.
PHPEnkoder parses the page with regular expressions, since Wordpress ’hooks’ don’t
give PHPEnkoder an AST to process, just text.
Wordpress has an extremely stable API.

For more on this plugin, see http://www.weaselhat.com/phpenkoder/.

14271

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/mat/Files/14/14271/14271.SmithGareth.Other.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
S. Sugiyama, Y. Minamide, ``Checking Time Linearity of Regular Expression Matching Based on Backtracking,'' to appear in IPSJ Transactions on Programming.
S. Sugiyama, Y. Minamide, ``Checking Time Linearity of Regular Expression Matching Based on Backtracking,'' to appear in IPSJ Transactions on Programming.
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://wordpress.org/plugins/php-enkoder/
http://www.weaselhat.com/phpenkoder/

104 14271 – Scripting Languages and Frameworks: Analysis and Verification

9.4 SAST for JavaScript: A Brief Overview of Commercial Tools
Achim D. Brucker (SAP Research – Karlsruhe, DE)

License Creative Commons BY 3.0 Unported license
© Achim D. Brucker

URL http://www.brucker.ch/bibliography/abstract/talk-brucker-sast-js-2014.en.html

Static application security testing (SAST) is a widely used technique that helps to find
security vulnerabilities in program code at an early stage in the software development life-
cycle. Since a few years, JavaScript is gaining more and more popularity as an implementation
language for large applications. Consequently, there is a demand for SAST tools that support
JavaScript.

We report briefly on our method for evaluating SAST tools for JavaScript as well as
summarize the results of our analysis.

References
1 Achim D. Brucker and Uwe Sodan. Deploying static application security testing on a large

scale. In Stefan Katzenbeisser, Volkmar Lotz, and Edgar Weippl, editors, GI Sicherheit
2014, volume 228 of Lecture Notes in Informatics, pages 91–101. GI, March 2014.

10 Breakout Sessions

In addition to the contributed talks, the seminar had four breakout sessions focussing on
cross-cutting issues deemed important by the participants.

10.1 Contracts and Blame
Cormac Flanagan

License Creative Commons BY 3.0 Unported license
© Cormac Flanagan

We discussed some of the counter-intuitive ways in which contracts can fail in systems with
multiple modules, and the ways in which blame may be assigned in a manner that may not
point at the component that is truly at fault.

10.2 On the Role of Soundness
Matthew Might, Jeffrey Foster

License Creative Commons BY 3.0 Unported license
© Matthew Might, Jeffrey Foster

We debated the merits and importance of soundness of tools and analyses for scripting
languages. On the one hand, while soundness is essential for relying upon the results of the
analysis, on the other, some constructs may be pathologically hard to analyze soundly and
even unsound tools may provide extremely invaluable feedback to the developer.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.brucker.ch/bibliography/abstract/talk-brucker-sast-js-2014.en.html
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Fritz Henglein, Ranjit Jhala, Shriram Krishnamurthi, and Peter Thiemann 105

10.3 Metrics for Programming Tools
Krishnamurthi, Shriram; Politz, Joe Gibbs

License Creative Commons BY 3.0 Unported license
© Krishnamurthi, Shriram; Politz, Joe Gibbs

URL https://drive.google.com/file/d/0B32bNEogmncORS1sN0YtaXZ3V1k/edit?usp=sharing

We gathered metrics for measuring the utility of programming language tools (focused on
scripting language applications), prompted by considering alternatives and complements to
soundness. See sketch on the blackboard below.

10.4 JavaScript Analysis and Intermediate Representation
Thomas Jensen (INRIA Bretagne Atlantique – Rennes, FR)

License Creative Commons BY 3.0 Unported license
© Thomas Jensen

Joint work of Jensen, Thomas; Sridharan, Manu

Two issues were discussed:
how to share models of libraries,
can we come up with a common intermediate representation for JS analyzers.

The overall goal is to support a re-usable, shared effort. Modeling libraries is not very
publishable, hence the need for a collective effort. Another issue is that different kind of
models are needed, depending on the analysis. Nevertheless, it was deemed worth to have a
common starting point. Models could be written in JS or in an IR or in a formalism that
allows integrating elements of abstract domains. One point of view was that it would be
valuable to have models satisfying that everything is translatable to the IR, so that different
library models can co-exist.

Concerning the IR, several points were discussed:
Should it accommodate pre/post annotations to model libraries?
Should it be executable (could enable re-injecting into JS to do dynamic analysis)? There
is a certain amount of common structure in existing IR so why not just pick one of those.

Some shortcomings were discussed: WALA: not serializable, which is necessary, S5 :
should be OK, can be ANF-ed and CPS-ed, MSR IR: has existing formats but prepared to
do a clean slate Two different kind of formats were identified: a CFG or something close

14271

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://drive.google.com/file/d/0B32bNEogmncORS1sN0YtaXZ3V1k/edit?usp=sharing
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

106 14271 – Scripting Languages and Frameworks: Analysis and Verification

to the AST. Perhaps there is a need for a series of IR that end in the common format but
maximum two seems reasonable to standardize. The discussion ended with a presentation of
a proposal for a common IR. The current version can be found at the URL above.

Fritz Henglein, Ranjit Jhala, Shriram Krishnamurthi, and Peter Thiemann 107

Participants

Achim D. Brucker
SAP Research – Karlsruhe, DE

Niels Bjoern Bugge Grathwohl
University of Copenhagen, DK

Ravi Chugh
University of California – San
Diego, US

Arlen Cox
Univ. of Colorado – Boulder, US

Christos Dimoulas
Harvard University, US

Julian Dolby
IBM TJ Watson Research Center
– Hawthorne, US

Matthias Felleisen
Northeastern University –
Boston, US

Daniele Filaretti
Imperial College London, GB

Cormac Flanagan
University of California – Santa
Cruz, US

Jeffrey Foster
University of Maryland – College
Park, US

Ronald Garcia
University of British Columbia –
Vancouver, CA

Philippa Gardner
Imperial College London, GB

Michael Greenberg
Princeton University, US

Arjun Guha
University of Massachusetts –
Amherst, US

Shu-Yu Guo
MOZILLA – Mountain View, US

Christian Hammer
Universität des Saarlandes, DE

Fritz Henglein
University of Copenhagen, DK

Roberto Ierusalimschy
PUC – Rio de Janeiro, BR

Thomas Jensen
INRIA Bretagne Atlantique –
Rennes, FR

Ranjit Jhala
University of California –
San Diego, US

Matthias Keil
Universität Freiburg, DE

Shriram Krishnamurthi
Brown University, US

Benjamin Lerner
Brown University, US

Benjamin Livshits
Microsoft Res. – Redmond, US

Sergio Maffeis
Imperial College London, GB

Matt Might
University of Utah, US

Yasuhiko Minamide
University of Tsukuba, JP

Anders Møller
Aarhus University, DK

Joe Gibbs Politz
Brown University, US

Ulrik Terp Rasmussen
University of Copenhagen, DK

Tamara Rezk
INRIA Sophia Antipolis –
Méditerranée, FR

Tiark Rompf
EPFL – Lausanne, CH

Sukyoung Ryu
KAIST – Daejeon, KR

Alan Schmitt
INRIA Bretagne Atlantique –
Rennes, FR

Jeremy G. Siek
Univ. of Colorado – Boulder, US

Gareth Smith
Imperial College London, GB

Manu Sridharan
Samsung Research, US

Éric Tanter
University of Chile, CL

Peter Thiemann
Universität Freiburg, DE

Sam Tobin-Hochstadt
Indiana University –
Bloomington, US

Tom Van Cutsem
Alcatel-Lucent Bell Labs –
Antwerp, BE

David Van Horn
University of Maryland – College
Park, US

Panagiotis Vekris
University of California – San
Diego, US

Ben Wiedermann
Harvey Mudd College –
Claremont, US

Kwangkeun Yi
Seoul National University, KR

14271

	Executive Summary Fritz Henglein, Ranjit Jhala, Shriram Krishnamurthi, and Peter Thiemann
	Table of Contents
	Overview of Talks: Semantics
	Python, the Full Monty Joe Gibbs Politz
	An Executable Formal Semantics of PHP Daniele Filaretti
	JSCert, a two-pronged approach to JavaScript formalization Alan Schmitt

	Overview of Talks: Type Systems
	Progressive Types Joe Gibbs Politz
	Safe TypeScript Panagiotis Vekris
	Confined Gradual Typing Éric Tanter
	Typing Scheme to Typing Racket Sam Tobin-Hochstadt
	Type Systems for JavaScript: Variations on a Theme Benjamin Lerner
	Flow Typing Arjun Guha
	Types for Ruby Jeffrey Foster
	Refinement Types for an Imperative Scripting Language Panagiotis Vekris
	Late Typing for Loosely Coupled Recursion Ravi Chugh

	Overview of Talks: Program Analysis
	Abstract Domains for Analyzing Hash Tables Matthew Might
	Static Analysis for Open Objects Arlen Cox
	Soft Contract Verification David van Horn
	Type Refinement for Static Analysis of JavaScript Ben Weidermann
	Dynamic Determinacy Analysis Manu Sridharan
	Performance Analysis of JavaScript Manu Sridharan
	Checking Correctness of TypeScript Interfaces for JavaScript Libraries Anders Møller
	Analyzing JavaScript Web Applications in the Wild (Mostly) Statically Sukyoung Ryu

	Overview of Talks: Contracts
	Membranes as Ownership Boundaries Tom Van Cutsem
	TreatJS: Higher-Order Contracts for JavaScript Matthias Keil
	Contracts for Domain-Specific Languages in Ruby Jeffrey Foster

	Overview of Talks: Languages
	HOP: A Multi-tier Language For Web Applications Tamara Rezk
	Perl: The Ugly Parts Matthew Might
	So, What About Lua? Roberto Ierusalimschy
	Regular Expression Parsing Bjorn Bugge Grathwohl
	HTML5 Parser Specification and Automated Test Generation Yasuhiko Minamide
	AmbientTalk: a scripting language for mobile phones Tom Van Cutsem
	Glue Languages Arjun Guha

	Overview of Talks: Security
	Information Flow Control in WebKit's JavaScript Bytecode Christian Hammer
	Hybrid Information Flow monitoring against Web tracking Thomas Jensen
	Intrusion Detection by Control Flow Analysis Arjun Guha
	Multiple Facets for Dynamic Information Flow Cormac Flanagan
	Shill: shell scripting with least authority Christos Dimoulas
	Hybrid Information Flow Analysis for JavaScript Tamara Rezk
	A Collection of Real World (JavaScript) Security Problems: Achim D. Brucker

	Lightning Talks
	Reasoning about membranes using separation logic Gareth Smith
	Complexity Analysis of Regular Expression Matching Based on Backtracking Yasuhiko Minamide
	PHPEnkoder: a Wordpress Plugin Michael Greenberg
	SAST for JavaScript: A Brief Overview of Commercial Tools Achim D. Brucker

	Breakout Sessions
	Contracts and Blame Cormac Flanagan
	On the Role of Soundness Matthew Might, Jeffrey Foster
	Metrics for Programming Tools Krishnamurthi, Shriram; Politz, Joe Gibbs
	JavaScript Analysis and Intermediate Representation Thomas Jensen

	Participants

