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Abstract

Known graphical conditions for the generic or global convergence to
equilibria of the dynamical system arising from a reaction network are
shown to be invariant under the so-called successive removal of intermedi-
ates, a systematic procedure to simplify the network, making the graphical
conditions easier to check.
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1 Introduction

In recent years many works in reaction network theory have been concerned
with the idea of model reduction or simplification. This interest is expressed
along various lines of investigation. One direction is the natural problem of pro-
viding simpler models to describe or explain the same biochemical phenomenon
[12]. Another dimension is the consolidation of known model simplification tech-
niques typically justified and applied ad hoc, such as quasi-steady state approxi-
mations [9, 5], into a formal procedure [13]. A third line of inquiry contemplates
whether certain qualitative properties of a reaction network, for instance, num-
ber of steady states [6] or the property of persistence [11], are invariant under a
simplification procedure. This work fits within this last category. The qualita-
tive property of interest is generic convergence to equilibria —the property that
almost every solution within each stoichiometric compatibility class approach
the set of equilibria— and the model simplification procedure is the successive
removal of intermediates (in the sense of Definition 2).

To illustrate our contribution, consider the one-site phosphorylation mecha-
nism modeled by the reaction network

S0 + E −−⇀↽−− S0E −→ S1 + E

S1 + F −−⇀↽−− S1F −→ S0 + F .
(1)

In this mechanism, S0 and S1 are, respectively, the dephosphorylated and phos-
phorylated forms of some protein. The phosphorylation and dephosphorylation
reactions are catalyzed by a kinase E and a phosphatase F . Intermediate steps
in the process during which protein and catalyst are bound to one another
are captured in S0E and S1F . Activation/deactivation motifs such as this
one appear in many important intracellular signaling processes regulating cell
proliferation, differentiation and apoptosis in eukaryotes ranging from yeast to
mammals [17].

In [3], sufficient graphical conditions for a reaction network to exhibit generic
convergence to equilibria (within each stoichiometric compatibility class) were
given. The technique consists of checking that the R-graph of the network is such
that every simple loop has an even number of negative edges, a property known
as the positive loop property, and that there exists a directed path between any
two reaction nodes in the directed SR-graph. For the one-site phosphorylation
mechanism above, the directed SR-graph and the R-graph are displayed in Fig-
ure 1, and one can readily see that they satisfy the aforementioned conditions.

By successively removing the intermediates S0E and S1F , what basically
consists of “collapsing” the reaction paths through them, followed by canceling
out the “catalysts” E and F , which appear on both sides of their respective
emerging reactions with the same stoichiometric coefficient, we obtain the sim-
plified substrate network

R∗
1 : S0 −→ S1 R∗

2 : S1 −→ S0 . (2)
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Figure 1: The directed SR- and the R-graph of (1).

For this simplified network, the directed SR-graph and the R-graph are much
simpler (Figure 2), and the conditions for generic convergence are much easier
to check. (The reason for not writing this as a single reversible reaction will
become clearer when we introduce our working reaction network formalism in
the next section.)
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R∗

2
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+ −
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(a) directed SR-graph
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2

+

(b) R-graph

Figure 2: The directed SR- and the R-graph of (2).

In what follows, we will show that R-strong connectivity of the directed SR-
graph and the positive loop property of the R-graph are always invariant under
the successive removal of intermediates, meaning that the reduced network has
them if, and only if the original one does also, as illustrated in the example
above. Thus, the conditions for the original model can be checked in the often
times much simpler reduced model. Therefore, although this “invariance under
reduction” feature might be useful in the context of finding simpler models to
describe the same observed phenomenon, it is also interesting on its own as a
mathematical tool to analyze large, complicated models, even if the network
obtained through the reduction procedure might not necessarily be understood
to be biologically meaningful.

The approach to generic convergence to equilibria in [3] is based upon the
monotone systems theory of M. W. Hirsch [7, 15, 8]. The reader familiar with
that theory will likely notice the connection, although most of the details have
been deliberately hidden in our presentation by framing all concepts and results
pertaining to monotonicity directly in terms of the graphical conditions given
in [3].

This paper is organized as follows. In Section 2 we introduce our basic
notation and working definition of reaction network, then review the graphical
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conditions for generic convergence to equilibria of [3]. In Section 3 we describe
a systematic procedure to obtain a reduced reaction network by successively
removing intermediates from a given network. We then state our main results
concerning the invariance of the aforementioned conditions for generic/global
convergence under this procedure, and apply them to several examples in the
recent reaction network literature. The last section is devoted to the technical
details of the proofs of our main results.

2 Reaction Networks

In what follows, we denote the set of nonnegative real numbers by R>0, and
denote the set of strictly positive real (respectively, integer) numbers by R>0

(respectively, Z>0). Given n ∈ Z>0, we write [n] := {1, . . . , n}. By convention,
[0] := ∅. For each a ∈ R,

sign a :=











1 , if a > 0

0 , if a = 0

−1 , if a < 0 .

2.1 Basic Formalism

We start by introducing our working definition of reaction network. A complex

over a nonempty, finite set S = {S1, . . . , Sn} is a vector (α1, . . . , αn) ∈ R
n
>0,

often times also expressed as the formal linear combination α1S1 + · · ·+ αnSn.
In this context, the elements of S are referred to as the species constituting the
complex. A reaction over a set of complexes C is an object of the form y −→ y′

or y −−⇀↽−− y′ for some y, y′ ∈ C, y 6= y′. The former are referred to as irreversible
reactions, while the latter are called reversible. In either case, y is called the
reactant of the reaction, and y′ the product.

A reaction network is an ordered triple G = (S, C,R) where C is a set of
complexes over a nonempty, finite set of species S = {S1, . . . , Sn}, and R =
{R1, . . . , Rm} is a nonempty, finite set of reactions over C. We write R = R→ ∪
R↔, where R→ and R↔ are the disjoint subsets of irreversible and reversible
reactions, respectively. We further assume that, for each i ∈ [n], there exists an
(α1, . . . , αn) ∈ C such that αi > 0, and, for each y ∈ C, there exists a reaction
in R having y as a reactant or product; in other words, S (respectively, C) is
the minimal set over which C (respectively, R) may be defined. We also assume
that

y −→ y′ ∈ R ⇒ y −−⇀↽−− y′, y′ −−⇀↽−− y /∈ R , (3)

and
y −−⇀↽−− y′ ∈ R ⇒ y′ −−⇀↽−− y /∈ R . (4)

For each j ∈ [m], let α1jS1 + · · ·+ αnjSn be the reactant and α′
1jS1 + · · ·+

α′
njSj be the product of reaction Rj . With this notation, we may define the
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n×m matrix N ,

Nij := α′
ij − αij , i = 1, . . . , n , j = 1, . . . ,m ,

known as the stoichiometric matrix of the network. The column-space of N ,
which is a subset of Rn, is called the stoichiometric subspace of G, and denoted
by Γ. A vector c ∈ R

n is said to be a conservation law of G if c ∈ Γ⊥. The
subsets (s0 +Γ)∩R

n
>0, s0 ∈ R

n
>0, are known as the stoichiometric compatibility

classes of G.
The system of ordinary differential equations modeling the evolution of the

concentrations of the species of the network G is then given by

ds

dt
= Nr(s(t)) , t ∈ R>0 , s ∈ R

n
>0 , (5)

where r = (r1, . . . , rm) : Rn
>0 → R

m is a vector-valued function modeling the
kinetic rates of each reaction as functions of the concentrations of the involved
species. Unless otherwise noted, we further assume that G and r satisfy the
hypotheses below.

(G1) There are no auto-catalytic reactions, meaning that no species can appear
as both reactant and product in any reaction. Thus, αijα

′
ij = 0 for any

reaction Rj ∈ R and any species Si ∈ S.

(G2) Each species in S takes part in at most two reactions in R.

(G3) The network is conservative, that is, it has a conservation law c ∈ R
n
>0.

(r1) For each j ∈ [m], if Rj is irreversible, then rj(s) > 0, s ∈ R
n
>0; if Rj is re-

versible, then rj = rfj − rbj , where r
f
j (s), r

b
j(s) > 0, s ∈ R

n
>0. Furthermore,

all the rj , r
f
j , r

b
j : R

n
>0 −→ R>0 have continuously differentiable extensions

to a neighborhood O of Rn
>0.

(r2) For each j ∈ [m], and for each s = (s1, . . . , sn) ∈ R
n
>0,

(i ) if Rj is irreversible, then

sk = 0 for some k ∈ {i ∈ [n] | αij > 0} ⇒ rj(s) = 0 ;

(ii ) if Rj is reversible, then

sk = 0 for some k ∈ {i ∈ [n] | αij > 0} ⇒ rfj (s) > 0 ,

and

sk = 0 for some k ∈ {i ∈ [n] | α′
ij > 0} ⇒ rbj(s) > 0 .

(r3) For each j ∈ [m],
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(i ) if Rj is irreversible, then

∂rj
∂si

(s)

{

> 0 , if αij > 0

= 0 , if αij = 0 .

(ii ) if Rj is reversible, then

∂rj
∂si

(s)











> 0 , if αij > 0

= 0 , if αij = 0

6 0 , if α′
ij > 0 .

Furthermore, the inequalities are strict in R
n
>0.

Remark 1. In the literature, one typically defines reaction networks directly
from their reaction graphs [11], keeping reciprocal reactions as distinct reac-
tions, or, alternatively, by collapsing each pair of reciprocal reactions into a
single reversible reaction [3]. Our approach accommodates both extremes,
plus anything in between, since it does not preclude the possibility that both
y −→ y′, y′ −→ y ∈ R. In other words, one has the freedom to choose at the
beginning which pairs of reciprocal reactions to collapse into a single reversible
reaction, and which ones not to.

Hypotheses (r1)–(r3) are satisfied under the most common kinetic assump-
tions in the literature, namely, mass-action, or more general power-law kinetics,
Michaelis-Menten kinetics, or Hill kinetics, as well as combinations of these [3,
pages 585–586]. Hypotheses (G1)–(G3) are needed in the context of the graph-
ical conditions for generic/global convergence to equilibria introduced in [3],
which we review in the next subsection.

It follows from (r2) and [14, Theorem 5.6] that Rn
>0 is forward invariant for

the flow of (5). We then conclude that the interior, Rn
>0, is also forward-invariant

via [1, Remark 16.3(h)]. (See also [16, Section VII].) And in view of (G3), the
trajectories of (5) are defined for all positive time, and also precompact. �

2.2 Graph Conditions for Generic Convergence

We now review the concepts and results from [3] that we will need, pointing out
that they still hold in our slightly more general setting.

The directed SR-graph of a reaction network G is the directed, bipartite,
labeled graph G→

SR = (V →
SR, E

→
SR, L

→
SR) defined as follows. The set of vertices

V →
SR is the disjoint union

V →
SR := S ∪ R = S ∪ (R→ ∪R↔) .

The set of edges E→
SR and the labeling L→

SR are then characterized as follows.

(i ) An ordered pair (Si, Rj) ∈ S ×R→ belongs to E→
SR if, and only if Si is a

reactant of Rj , that is, if, and only if αij > 0.
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(ii ) An ordered pair (Si, Rj) ∈ S × R↔ belongs to E→
SR if, and only if Si

appears on either side of Rj , that is, if, and only if αij + α′
ij > 0.

(iii ) An ordered pair (Rj , Si) ∈ R×S belongs to E→
SR if, and only if Si is part

of Rj as either a reactant or a product, that is, if, and only if αij+α′
ij > 0.

(iv ) L→
SR(Si, Rj) := − signNij for every (Si, Rj) ∈ E→

SR, and L→
SR(Rj , Si) :=

− signNij for every (Rj , Si) ∈ E→
SR.

The directed SR-graph is said to beR-strongly connected if, for everyRj , Rk ∈
R, there exists a directed path in G→

SR connecting Rj to Rk.

Remark 2. If (Si, Rj), (Rj , Si) ∈ E→
SR for some i ∈ [n] and some j ∈ [m], then

both edges get the same label. �

The SR-graph of G is the undirected, labeled graph GSR = (VSR, ESR, LSR)
where

VSR := V →
SR = S ∪ R ,

ESR := {{Si, Rj} | (Si, Rj) ∈ E→
SR or (Rj , Si) ∈ E→

SR} = {{Si, Rj} | Nij 6= 0} ,

and
LSR({Si, Rj}) := − signNij , {Si, Rj} ∈ ESR .

In view of Remark 2, the SR-graph is simply the undirected graph underlying
the directed SR-graph, in other words, there are no multiple edges connecting
any two vertices.

The R-graph is the undirected, labeled graphGR = (VR, ER, LR) constructed
as follows. The vertices set is defined as

VR := R .

Furthermore,

ER := {{Rj, Rk} | j 6= k and NijNik 6= 0 for some i ∈ [n]} ,

and, for each {Rj , Rk} ∈ ER,

LR({Rj , Rk}) := {− signNijNik | NijNik 6= 0 and i ∈ [n]} .

We emphasize that LR is a set-valued function.
The R-graph is said to have the positive loop property if every labeled simple

loop

Rj1

L1

— Rj2

L2

— · · ·
Lℓ−1

— Rjℓ

Lℓ
— Rj1

in GR has an even number of negative labels, that is, L1L2 · · ·Lℓ = 1 for any
choice of L1 ∈ LR({Rj1 , Rj2}), L2 ∈ LR({Rj2 , Rj3}), . . . , Lℓ ∈ LR({Rjℓ , Rj1}).

The R-graph can be obtained from the SR-graph by placing an edge between
two reaction vertices in the R-graph whenever there is a length-2 path connecting
the two corresponding reaction vertices in the SR-graph, and labeling that edge
with the opposite of the product of the labels along the length-2 path in the
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SR-graph. If there are more than one length-2 path connecting any two reaction
vertices, it is possible that the corresponding edge in the R-graph gets multiple
labels. The positive loop property of the R-graph can then be checked by
inspecting the SR-graph from which it is built. This was done in [3], and we
cite the relevant result here for ease of reference.

Definition 1 (E- and O-Loops). Let Λ: V0 — V1 — · · · — V2λ — V0, λ ∈ Z>0,
be any simple loop in the SR-graph. If

2λ
∏

k=1

LSR({Vk−1, Vk}) = (−1)λ ,

then we call Λ an e-loop. Otherwise we call it an o-loop. △

In the above definition, we know the length of a simple loop in the SR-graph
is always an even number because the SR-graph is a bipartite graph.

Proposition 1. Let G be a reaction network satisfying (G1)–(G2). Then the

R-graph has the positive loop property if, and only if all simple loops in the

SR-graph are e-loops.

Proof. See [3, Proposition 4.5].

Remark 3. When the R-graph has the positive loop property, we may associate
an orthant cone

K = {(x1, . . . , xm) ∈ R
m | σ1x1, . . . , σmxm > 0}

with it by defining the sign pattern σ = (σ1, . . . , σm) ∈ {±1}m as follows. First
suppose the R-graph is connected. Set σ1 := 1. For i ∈ [n]\{1}, consider any
simple path 1 = i0 — i1 — · · · — ik = i joining 1 and i, then set

σi :=
k
∏

d=1

LR

(

{Rid−1
, Rid}

)

. (6)

In view of the positive loop property, this definition does not depend on the
choice of the path. Indeed, the union of the edges of any two simple paths
joining 1 and i is a union of simple loops. The product of the labels of the edges
of the two paths is thus 1, hence the products of the labels of the edges of each
of the two paths agree.

If GR is not connected, then we apply the procedure to each connected
component, starting by setting σi := 1 for the smallest index i ∈ [m] such that
Ri belongs to that component. �

In what follows, given a reaction network G such that its R-graph has the
positive loop property, we will always assume that σ = (σ1, . . . , σm) is the sign
pattern defined above, and K the corresponding orthant cone.
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Proposition 2. Let G be a reaction network satisfying (G1)–(G2). Suppose

that the R-graph has the positive loop property, and the directed SR-graph is

R-strongly connected. Let N be the stoichiometric matrix, and K be the orthant

cone given by the construction in Remark 3. Then, either

(P1) kerN ∩K = {0} ,

or

(P2) kerN ∩ intK 6= ∅ .

Proof. See [3, Lemma 6.1].

Recall that the flow of (5) is said to be bounded-persistent if ω(s0)∩∂R
n
>0 = ∅

for each s0 ∈ R
n
>0, where

ω(s0) :=
⋂

τ>0

⋃

t>τ

{σ(t, s0)}

is the omega-limit set of s0.

Proposition 3. Let G be a reaction network satisfying (G1)–(G3) and (r1)–
(r3). Suppose that the flow of (5) is bounded-persistent. Suppose, in addition,

that the R-graph has the positive loop property and that the directed SR-graph

is R-strongly connected. Then,

(i ) if (P1) holds, then there exists a Lebesgue measure-zero D ⊆ R
n
>0 such that

all solutions of (5) starting in R
n
>0\D converge to the set of equilibria, and

(ii ) if (P2) holds, then all solutions of (5) starting in R
n
>0 converge to an

equilibrium. Furthermore, this equilibrium is unique within each stoichio-

metric compatibility class.

Proof. See [3, Corollary 1 and Theorem 2]. The cone constructed from the
R-graph in Remark 3 is the same as the cone given by [3, Corollary 1].

3 Main Results

This work is essentially about how the graphical conditions for generic/global
convergence to equilibria reviewed in Proposition 3 are invariant under the re-
moval of so-called intermediates. However, the removal of intermediates in the
sense they are typically defined in the reaction network literature [6] often gives
rise to auto-catalytic reactions, which are not allowed in our formalism because
of (G1). As we will see, if the problematic species were to appear only in the
reactions emerging from the removal of intermediates, and with the same stoi-
chiometric coefficients in both reactant and product sides, then they could be
simply “cancelled out,” so that the network obtained from their removal still
satisfies (G1).
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We begin this section by giving a formal description of the procedure of
removal of intermediates. We state our main results in Subsection 3.2, and
discuss several examples from the literature in Subsection 3.3. In Subsection 3.4,
we briefly contrast our working definition of intermediates with other variants
in the literature, giving some examples and counterexamples motivating our
choices in this context.

3.1 Removal of Intermediates

Let G = (S, C,R) be a reaction network. For each y = (α1, . . . , αm) ∈ R
m
>0, we

denote
supp y := {Si ∈ S | αi > 0} .

Given a Y ∈ S, consider the following two properties.

(I1) Y ∈ C, and supp y ∩ suppY = ∅ for every complex y ∈ C\{Y }.

(I2) There exist unique y = α1S1 + · · · + αnSn and y′ = α′
1S1 + · · · + α′

nSn

in C\{Y }, y 6= y′, such that

(i ) either y −→ Y or y −−⇀↽−− Y is a reaction in R,

(ii ) either Y −→ y′ or Y −−⇀↽−− y′ is a reaction in R,

(iii )
∑

Si∈E

αiSi =
∑

Si∈E

α′
iSi =: e, where E := supp y ∩ supp y′, and

(iv ) y−e −→ y′−e, y′−e −→ y−e, y−e −−⇀↽−− y′−e, and y′−e −−⇀↽−− y−e
are not reactions in R.

If (I1) and (I2) hold, then we may construct a reaction networkG∗ = (S∗, C∗,R∗)
as follows. We define R∗ := R∗

c ∪R∗
Y , where R∗

c is identified with the subset of
R of reactions not involving the complex Y , and

R∗
Y :=

{

{y − e −−⇀↽−− y′ − e} , if y −−⇀↽−− Y, Y −−⇀↽−− y′ ∈ R

{y − e −→ y′ − e} , if y −→ Y ∈ R or Y −→ y′ ∈ R .

We set C∗ to be the set of reactant and product complexes in the reactions in
R∗, and S∗ is set of species that are part of some complex in C∗. In the above
description, we think of the reactant and product sides of a reaction in R or R∗

as the formal linear combinations of participating species.

Definition 2 (Intermediates). Let G = (S, C,R) be a reaction network. We
say that Y ∈ S is an intermediate if (I1) and (I2) hold. In this case, the reaction
network G∗ = (S∗, C∗,R∗) constructed as above is called the reduction of G by

the removal of the intermediate Y . △

Remark 4. Note that supp e might be empty. If supp e is not empty, then, in
view of (G2), no species in it can take part in any other reaction in G besides
y — Y and Y — y′, where the dash ‘—’ is a placeholder for ‘−→’ or ‘ −−⇀↽−− .’ In
particular, no species in supp e is present in G∗. �
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Remark 5. Recall that we are assuming reaction networks to satisfy (G1)–(G3).
We note that the removal of an intermediate does not break any of these prop-
erties. Indeed, supp(y − e) ∩ supp(y′ − e) = ∅ by construction, so G∗ satisfies
(G1) whenever G does. Furthermore, it follows directly from the construction
that no species in G∗ can take part in more than two reactions, that is, (G2)
also holds for G∗, as long as it already did for G. Finally, it follows from [11,
Theorems 1(iv ) and 2(iv )] that (G3) is preserved by the removal of an inter-
mediate in the sense of Definition 2, which can be seen as a special case of the
iterative removal of sets of intermediates or catalysts in the sense of [11]. We
omit the details. (See Remark 1 also.) �

Given Y1, . . . , Yp ∈ S, set Gp = (Sp, Cp,Rp) := G, and suppose that, for
j = p, . . . , 1, we recursively have Y1, . . . , Yj ∈ Sj , that the species Yj is an
intermediate ofGj , and then defineGj−1 = (Sj−1, Cj−1,Rj−1) to be the reaction
network obtained from Gj by the removal of the intermediate Yj .

Definition 3 (Successive Removal of Intermediates). The reaction network G0

obtained in the above construction is referred to as the reduction of G by the

successive removal of intermediates Yp, . . . , Y1. △

Remark 6. Observe that G0 does not depend on the order in which the inter-
mediates are removed. This can be shown as in the proof of [11, Theorem 3]
(see Remark 5 also). We omit the details. �

Example 1 (The RKIP Network). Consider the RKIP network discussed in [3,
Example 2], displayed below in slightly modified notation as equations (7)–(10).

R +K −−⇀↽−− RK (7)

RK + Ep −−⇀↽−− RKEp −→ R+Kp + E (8)

Mp + E −−⇀↽−− MpE −→ Mp + Ep (9)

Kp + P −−⇀↽−− KpP −→ K + P (10)

The reaction network obtained by the removal of the intermediate MpE consists
of (7), (8), (10), plus the reaction E −→ Ep (the species Mp is cancelled out
upon the removal of MpE). We may further remove the intermediate RKEp,
then the intermediate KpP (leading to P being also cancelled out), eventually
obtaining

R∗
1 : R+K −−⇀↽−− RK

R∗
2 : RK + Ep −→ R+Kp + E

R∗
3 : E −→ Ep

R∗
4 : Kp −→ K

as the reduced reaction network. ♦

Example 2 (Single-Phosphorylation Mechanism). Consider the one-site phos-
phorylation mechanism (1) discussed in the introduction. The reaction network
obtained by the successive removal of intermediates S0E and S1F is given by

R∗
1 : S0 −→ S1 R∗

2 : S1 −→ S0 .
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We emphasize that, in our formalism, the reduced network consists of the two
reactions R1 and R2, and not of the single reversible reaction S0 −−⇀↽−− S1. ♦

3.2 Invariance under the Removal of an Intermediate

Theorem 1. Let G be a reaction network satisfying (G1)–(G2). Suppose G∗ is

a reaction network obtained from G by the successive removal of intermediates.

Then G∗ also satisfies (G1)–(G2) and, furthermore,

(i ) the directed SR-graph of G∗ is R-strongly connected if, and only if the

directed SR-graph of G is R-strongly connected, and

(ii ) the R-graph of G∗ has the positive loop property if, and only if the R-graph

of G has the positive loop property.

Furthermore, if these two graphical conditions are met, then (P1) and (P2)
are also invariant under the removal of sets of intermediates.

Theorem 2. Let G be a reaction network satisfying (G1)–(G2). Suppose G∗ is

a reaction network obtained from G by the successive removal of intermediates.

Suppose, in addition, that the R-graph of G∗ has the positive loop property,

and the directed SR-graph of G∗ is R-strongly connected. Let N and N∗ be

the stoichiometric matrices of G and G∗, and K and K∗ the orthant cones

constructed in Remark 3 from the R-graphs of G and G∗, respectively. Then,

kerN ∩K = {0} ⇔ kerN∗ ∩K∗ = {0} ,

and

kerN ∩ intK 6= ∅ ⇔ kerN∗ ∩ intK∗ 6= ∅ .

In view of Theorem 1, the graphical hypotheses on the directed SR- and
R-graphs in Proposition 3 for G can be checked in G∗. And in view of Theorem
2, if these hypotheses are satisfied, then (P1)/(P2) can also be checked in G∗.
The hypothesis of bounded-persistence in Proposition 3 can be checked using
the graphical conditions in [2]. As shown in [11], these graphical conditions for
bounded-persistence can also be checked in G∗. We have thus devised a method
to study the qualitative property of generic or global convergence of a reaction
network by analyzing a reduced network associated with it.

The proofs of Theorems 1 and 2 will be given in Section 4. We first illustrate
the results with a few examples.

3.3 Examples

Example 3 (The RKIP Network). Consider the RKIP network discussed in
Example 1, which was reduced by the successive removal of intermediates MpE,
RKEp and KpP . The R-graph of the reduced network is shown in Figure 3b.
One can readily see that it has the positive loop property. The directed SR-
graph of the reduced network is shown in Figure 3a. One can also readily see
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that it is R-strongly connected. We conclude via Theorem 1 that the directed
SR- and the R-graphs of the original RKIP network have the same properties.

The R-graph of the reduced network yields, via Remark 3, the orthant cone
K∗ := R

4
>0. Furthermore, each of the species R,K,RK,Ep, E,Kp appears

in exactly two reactions, once as a reactant, once as a product, both times
with stoichiometric coefficient 1. Therefore, (1, 1, 1, 1) ∈ kerN∗, showing that
kerN∗∩intK∗ 6= ∅. It follows from Theorem 2 that kerN∩intK 6= ∅, where N
is the stoichiometric matrix of the original RKIP network, and K is the orthant
cone obtained for its R-graph via Remark 3.

The property of bounded-persistence for the flow of G can also be checked
directly on G∗ (see [11, Theorems 1 and 2] and Remark 1).

We conclude via Proposition 3 that, under kinetic assumptions (r1)–(r3),
the RKIP network from Example 1 has that property that each stoichiometric
compatibility class has a unique equilibrium to which all trajectories starting
with strictly positive concentrations converge. ♦

R∗

1 RK

R

R∗

2

Ep E

R∗

3
KpR∗

4

K

−

+

+

−

+

−

+
−

−
+

−

+

(a) directed SR-graph

R∗

1 R∗

2

R∗

3R∗

4

+

+
+

+

(b) R-graph

Figure 3: The directed SR- and the R-graph of the reduced RKIP network from
Example 1.

Example 4 (Processive n-Site Phosphorylation Mechanism). Consider the se-
quential and processive n-site phosphorylation mechanism described by the re-
action network

S0 + E −−⇀↽−− S0E −−⇀↽−− S1E −−⇀↽−− · · · −−⇀↽−− Sn−1E −→ SnE

Sn + F −−⇀↽−− SnF −−⇀↽−− · · · −−⇀↽−− S2F −−⇀↽−− S1F −→ S0 + F .

(See [4], and references therein.) Note that the one-site mechanism from Exam-
ple 2 is the special case when n = 1 of this mechanism. The reaction network
obtained by the successive removal of the intermediates S0E, . . . , Sn−1E, SnF,
. . . , S1F is given by

R∗
1 : S0 −→ S1 R∗

2 : S1 −→ S0 .

13



The R-graph of the reduced network (Figure 4a) has no loops, so, it vacuously
has the positive loop property. Furthermore, the directed SR-graph of the re-
duced network (Figure 4b) is R-strongly connected. It follows from Theorem 1
that the directed SR- and the R-graphs of the original n-site phosphorylation
network have the same properties.

The R-graph of the reduced network yields, via Remark 3, the orthant cone
K∗ := R

2
>0. One can argue as in Example 3 that (1, 1) ∈ kerN∗, showing that

kerN∗ ∩ intK∗ 6= ∅, and so kerN ∩ intK 6= ∅ via Theorem 2. Finally, one can
once again show that the flow of G is bounded-persistent via [11, Theorems 1
and 2] and Remark 1.

It follows from Proposition 3 that, under kinetic assumptions (r1)–(r3), each
stoichiometric compatibility class has a unique equilibrium to which all trajec-
tories starting with strictly positive concentrations converge. ♦

R∗

1

S0

R∗

2

S1

+ −

+−

(a) directed SR-graph

R∗

1 R∗

2

+

(b) R-graph

Figure 4: The directed SR- and the R-graph of the reduced n-site phosphoryla-
tion network from Example 4.

Example 5 (A Phosphorelay). Consider the general phosphorelay system studied
in [10]. The underlying reaction network consists of the reactions

Sm
1

−−⇀↽−− Sm
2

−−⇀↽−− · · · −−⇀↽−− Sm
Nm

, m = 1, . . . ,M ,

Sm
Nm

+ Sm+1
0

−−⇀↽−− Xm −→ Sm
0 + Sm+1

1 , m = 1, . . . ,M − 1 ,

S1
0 −→ S1

1 SM
NM

−→ SM
0 .

For each m ∈ [M ] and each n ∈ [Nm], Sm
n represents the mth substrate (out of

M > 1), phosphorylated at its nth site (out of Nm > 1), and Sm
0 corresponds to

the unphosphorylated state of the mth substrate. The phosphate group can be
transferred sequentially from site to site within the same substrate, or via the
formation of an intermediate complexXm from Sm

Nm
to Sm+1

1 , m = 1, . . . ,M−1.
The methods in [3] were employed in [10] to show that, under mass-action
kinetics, the phosphorelay has a unique nonnegative equilibrium to which all
solutions starting with positive concentrations converge.

First note that each species in the phosphorelay takes part in exactly two
reactions. Thus, (G2) is satisfied. Now

{S1
1 , S

1
2 , . . . , S

1
N1−1, S

2
2 , . . . , S

2
N2−1, . . . , S

M
2 , . . . , SM

NM−1, S
M
NM

, X1, . . . , XM−1}

is a set of intermediates. The network obtained after their removal is given by
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R1 : S1
0 −→ S1

N1

R2 : S2
1
−−⇀↽−− S2

N2

...
...

RM−1 : SM−1

1
−−⇀↽−− SM−1

NM−1

RM : SM
1 −→ SM

0

Rt
1 : S1

N1
+ S2

0 −→ S1
0 + S2

1

...
...

Rt
M−1 : SM−1

NM−1
+ SM

0 −→ SM−1
0 + SM

1 .

The directed SR-graph and the R-graph of the reduction are sketched in
Figures 5a and 5b, where they can be readily seen to have, respectively, the
R-strong connectedness and positive loop properties. It follows from Theorem
1 that the directed SR-graph and the R-graph of the original network have,
respectively, the R-strong connectedness and positive loop properties.

R1

S1
0

S1
N1

Rt
1

S2
0

S2
1

S2
N2

R2

Rt
2

S3
0

S3
1

S
M−1

NM−1

S
M−1
0

R3 RM−1

Rt
M−1

SM
1

SM
0

RM

∗ ∗

∗

−

−

−

−

−

−

−

+

+

+ −

+

+ −

+

+

−

++ +

− +

− +

+ −

(a) directed SR-graph

R1

Rt
1

R2

Rt
2

R3

Rt
3

RM−1

Rt
M−2 Rt

M−1

RM

+

+

+

+

+

+

+

+

+

+

+

(b) R-graph

Figure 5: The SR- and the R-graph of the reduction of the phosphorelay system.

The R-graph of the reduced network (Figure 5b) yields, via Remark 3, the
orthant coneK∗ := R

2M−1

>0
. The same argument as in the previous two examples

shows that (1, . . . , 1) ∈ R
2M−1 belongs to the kernel of the stoichiometric matrix

N∗ of the reduced network. Thus, kerN∗∩intK∗ 6= ∅, and so kerN∩intK 6= ∅

by Theorem 2. As before, bounded-persistent follows via [11, Theorems 1 and
2] and Remark 1.

We conclude via Proposition 3 that, within each stoichiometric compatibil-
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ity class, there exists a unique nonnegative equilibrium to which all solutions
starting with strictly positive concentrations converge. ♦

3.4 Further Comments on Definition 2

Our working definition of intermediates in this paper is somewhat more restric-
tive than in [11], where a related study of invariance of qualitative properties
of reaction networks under the removal of sets of intermediates and catalysts
was carried out. We conclude this section with a discussion of the differences,
and show some examples of what may go wrong with the kinds of intermediates
precluded in our working definition.

The y −−⇀↽−− Y ∈ R Case

In [11], a species Y would still be considered an intermediate if y = y′ in (I2).
In this case, G∗ is defined by simply removing the reaction y −−⇀↽−− Y from G
(or removing the reactions y −→ Y and Y −→ y, if that is the case). The R-
strong connectedness property of the directed SR-graph is not invariant under
the removal of intermediates of this type. To see this, consider the reaction
network

G : A+B −−⇀↽−− Y C −→ B .

The reaction network obtained by removing Y as described above is

G∗ : C −→ B .

The directed SR-graph of G∗ is R-strongly connected, while that of G is not.

The y — Y — y′, (y − e) — (y′ − e) ∈ R Case

We first note that, if (G2) holds, and the SR-graph of the network is assumed to
be connected, then there cannot be any other reactions in the network besides
these three. Indeed, each species constituting y, y′ or Y is already linked in the
SR-graph to two reaction nodes. So, neither of these species can be involved
in any other reaction. Therefore, precluding this kind of intermediates in our
working definition is far less restrictive than it might seem at first — the bulk
of the constrain comes from (G2) already.

In (I2)(iv ), if we allow for (y − e) −→ (y′ − e) to be a reaction in R, then
the R-strong connectedness condition for monotonicity might not be invariant
under the removal of intermediates of this type. To see this, consider the reaction
network

G : A −→ Y −→ B A −→ B .

By removing Y , we get the reaction network

G∗ : A −→ B .

As before, the directed SR-graph of G∗ is R-strongly connected, while that of
G is not.
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Furthermore, the reaction network obtained by removing Y might not be
well defined without (I2)(iv ). For instance, if

G : A −−⇀↽−− Y −−⇀↽−− B A −→ B ,

then
G∗ : A −−⇀↽−− B A −→ B ,

which violates (3) and (4).

4 Proofs of Theorems 1 and 2

Note that it suffices to prove Theorems 1 and 2 for the removal of a single
intermediate Y . The general result then follows by induction on the number of
intermediates successively removed. We have four cases to consider, depending
on how Y appears in G, all of which are captured by

y +

p
∑

i=1

γiEi — Y — y′ +

p
∑

i=1

γiEi , (11)

where each ‘—’ may mean either ‘−→’ or ‘ −−⇀↽−− ,’

e :=

p
∑

i=1

γiEi

may be an empty sum, and supp y ∩ supp y′ = ∅.

4.1 Proof of Theorem 1(i )

Although the directed SR-graph will not be quite the same in all cases, they
can still be treated together. Denote

RY : y +

p
∑

i=1

γiEi — Y , R′
Y : Y — y′ +

p
∑

i=1

γiEi .

By reordering the species in S = {S1, . . . , Sn}, if necessary, we may write y =
α1S1+· · ·+αkSk and y′ = α′

1S
′
1+· · ·+α′

k′S′
k′ for some α1, . . . , αk, α

′
1, . . . , α

′
k′ > 0

and some S1, . . . , Sk, S
′
1, . . . , S

′
k′ ∈ S. Figure 6a illustrates the directed SR-

graph of G. Note that there is always a directed path RY −→ Y −→ R′
Y in the

graph. This path is replaced by the reaction node R∗ = y — y′ in the directed
SR-graph of G∗ (see Figure 6b). It is not difficult to see that G→

SR is R-strongly
connected if, and only if (G∗)→SR is also R-strongly connected. For instance,

RY −→ Y −→ R′
Y −→ Si1 −→ Rj1 −→ · · · −→ Siℓ −→ Riℓ

is a directed path in G→
SR if, and only if

R∗ −→ Si1 −→ Rj1 −→ · · · −→ Siℓ −→ Riℓ
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is a directed path in (G∗)→SR. Similar pairings can be made for paths ending or
passing through RY , R

′
Y or R∗ in their respective graphs, and paths not passing

through either of these reaction nodes can be found in a graph if, and only if
they can be found in the other. �

RY

Y

R′

Y

Sk

...

S1

E1

...

Ep

S′

1

...

S′

k′

+

+
+

+

− + −

−
−

−

(a) directed SR-graph of G

...

S1

Sk

R∗ ...

S′
1

S′
k′

+

+

−

−

(b) directed SR-graph of G∗

Figure 6: The directed SR-graphs of G and G∗. A rounded arrow head at the
end of an edge indicates that the edge is only in the graph in that direction in
some of the cases in (11). For instance, the edge Y −→ RY is only in the directed
SR-graph of G if the first ‘—’ in (11) is a ‘ −−⇀↽−− .’ The (undirected) SR-graphs
of G and G∗ are obtained by simply ignoring the arrow heads altogether.

4.2 Proof of Theorem 1(ii )

To study the positive loop property of the R-graph of G and G∗, we will use
Proposition 1, together with the lemma below.

Lemma 1. A simple loop in the SR-graph is an e-loop if, and only if it contains

an even number of segments Si — Rj — Sk, Si, Sk ∈ S, Rj ∈ R, such that

LSR({Si, Rj}) = LSR({Rj , Sk}).

Proof. See [3, Lemma 4.4].

Let RY , R
′
Y , R

∗, α1, . . . , αk, α
′
1, . . . , α

′
k′ , S1, . . . , Sk, S

′
1, . . . , S

′
k′ be as in the

proof of Theorem 1(i ).
On the one hand, L is a simple e-loop (respectively, o-loop) of G∗

SR which
does not go through R∗ if, and only if it is a simple e-loop (respectively, o-loop)
of GSR which does not go through either of RY , Y and R′

Y .
On the other hand, the simple loops of G∗

SR which go through R∗ are in
one-to-one correspondence with the simple loops of GSR going through RY , Y
or R′

Y . This correspondence is established as follows. Any simple loop L in
G∗

SR which goes through R∗ has the form

R∗ — Sout — Ri1 — Si1 — · · · — Siℓ — Riℓ — Sin — R∗

for some pairwise distinct Ri1 , . . . , Riℓ ∈ R∗ ∩ R and Sout, Si1 , . . . , Siℓ , Sin ∈
S∗ ∩ R. If Sout, Sin ∈ {S1, . . . , Sk} (respectively, Sout, Sin ∈ {S′

1, . . . , S
′
k′}),
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then we need only replace R∗ with RY (respectively, R′
Y ). If Sout belongs to

one of the sets {S1, . . . , Sk} and {S′
1, . . . , S

′
k′}, and Sin belongs to the other, then

we need only replace R∗ by the segment RY — Y — R′
Y . Now note that this

correspondence also takes e-loops (respectively, o-loops) to e-loops (respectively,
o-loops). Indeed, this follows from Lemma 1. If Sin and Sout belong to the same
set, the simple loop in GSR has the same number of edges as its corresponding
loop in G∗

SR, and they both have the same sign pattern. If Sin and Sout belong
to different sets, then the consecutive edges in the segments

Sin — R∗ — Sout and Sin — RY — Y — R′
Y — Sout

have opposite signs, as one can see in Figures 6a and 6b, so the number of
segments Si — Rj — Sk such that Si — Rj and Rj — Sk have the same sign
does not change from the path in G∗

SR to the corresponding path in GSR.
We conclude that every simple loop in GSR is an e-loop if, and only if every

simple loop in G∗
SR is an e-loop. Since (G2) holds, it follows from Proposition 1

that the R-graph of G has the positive loop property if, and only if the R-graph
of G∗ also has the positive loop property. �

4.3 Proof of Theorem 2

Once we understand the relationships between kerN and kerN∗ and between
K and K∗, the proof of the theorem will follow somewhat effortlessly.

Relationship between kerN and kerN∗

We first consider the case in which e is nontrivial. By reordering the species and
reactions so that Y,E1, . . . , Ep, and the reactions y — Y and Y — y′ appear at
the end, if necessary, we may write the stoichiometric matrices N and N∗ of,
respectively, G and G∗ as

N =

























−α1 α′
1

N∗
c

...
...

−αn α′
n

0 · · · 0 1 −1
0 · · · 0 −γ1 γ1
...

. . .
...

...
...

0 · · · 0 −γp γp

























and N∗ =







α′
1 − α1

N∗
c

...
α′
n − αn






,

for some n × (m − 1) matrix N∗
c , where n is the number of nonintermediate

species, m−1 is the number of reactions not involving Y , and where we write y =
α1S1+· · ·+αnSn+γ1E1+· · · γpEp and y′ = α′

1S1+· · ·+α′
nSn+γ1E1+· · ·+γpEp.

Thus,

kerN = {(v1, . . . , vm−1, vm, vm) ∈ R
m+1 | (v1, . . . , vm) ∈ kerN∗} . (12)
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In case p = 0, the argument is basically the same. The only difference is
that N does not have the p bottom-most rows corresponding to the catalysts.
The relationship between kerN and kerN∗ is also given by (12).

Relationship between K and K∗

We order the reactions R1, . . . , Rm, Rm+1 of G and R∗
1, . . . , R

∗
m of G∗ as above,

so that Rj and R∗
j are identified for j = 1, . . . ,m − 1, and Rm = y — Y ,

Rm+1 = Y — y′, and R∗
m = y — y′. Note that the R-graph of G∗ could be

obtained from the R-graph of G by simply collapsing the edge {Rm, Rm+1} in
GR into the vertex R∗

m in G∗
R (refer to Figures 6a and 6b). Indeed, we have

L({Rm, Rm+1}) = 1 , (13)

and, in view of the positive loop property, L({Rj, Rm}) = L({Rj , Rm+1}) for
any j ∈ [m− 1] such that {Rj, Rm}, {Rj, Rm+1} ∈ ER. Thus,

L({Ri, Rj}) = L∗({R∗
i , R

∗
j}) , ∀i, j ∈ [m] : {Ri, Rj} ∈ ER , (14)

and

L({Rj, Rm+1}) = L∗({R∗
j , R

∗
m}) , ∀j ∈ [m− 1] : {Rj , Rm+1} ∈ ER . (15)

Let σ = (σ1, . . . , σm, σm+1) and σ∗ = (σ∗
1 , . . . , σ

∗
m) be the sign patterns of

the cones K and K∗ constructed via Remark 3 for G and G∗, respectively. It
follows from (6) and (13)–(15) that σm = σm+1 and σ∗

j = σj , j = 1, . . . ,m− 1.

Proof of Theorem 2

We may summarize the discussion above as a lemma.

Lemma 2. Assume the same hypotheses as in Theorem 2. Then

kerN = {(v1, . . . , vm−1, vm, vm) ∈ R
m+1 | (v1, . . . , vm) ∈ kerN∗}

and the sign pattern σ of K is given by

σ = (σ∗
1 , . . . , σ

∗
m, σ∗

m) ,

where (σ∗
1 , . . . , σ

∗
m) = σ∗ is the sign pattern of K∗.

It follows from the lemma that

(v1, . . . , vm) ∈ kerN∗ ∩K∗ ⇔ (v1, . . . , vm, vm) ∈ kerN ∩K ,

and, moreover,

(v1, . . . , vm) ∈ intK∗ ⇔ (v1, . . . , vm, vm) ∈ intK .

This establishes Theorem 2.
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