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Abstract. Quantification of emphysema extent is important in diagnos-
ing and monitoring patients with chronic obstructive pulmonary disease
(COPD). Several studies have shown that emphysema quantification by
supervised texture classification is more robust and accurate than tradi-
tional densitometry. Current techniques require highly time consuming
manual annotations of patches or use only weak labels indicating over-
all disease status (e.g, COPD or healthy). We show how visual scoring
of regional emphysema extent can be exploited in a learning with label
proportions (LLP) framework to both predict presence of emphysema in
smaller patches and estimate regional extent. We evaluate performance
on 195 visually scored CT scans and achieve an intraclass correlation of
0.72 (0.65–0.78) between predicted region extent and expert raters. To
our knowledge this is the first time that LLP methods have been applied
to medical imaging data.

1 Introduction

Emphysema is a central structural abnormality in patients suffering from chronic
obstructive pulmonary disease (COPD), a leading cause of death worldwide.
Emphysema is characterized by destruction of lung tissue and entrapment of
air in affected regions. Quantifying emphysema extent is useful for monitoring
progression [11] and in the search for genetic associations with COPD [1].

Emphysema is visible in chest CT scans and standard methods for CT-based
assessment of emphysema are densitometry and visual scoring by experts. Den-
sitometry provides an objective measure of emphysema, but is vulnerable to
noise and cannot be used to distinguish emphysema sub-types. Visual scoring
provide information about emphysema sub-type along with estimates of emphy-
sema extent, but suffers from inter-observer variability and is time consuming.
A recent machine learning approach used expert annotations of CT patches for
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predicting emphysema sub-type and severity [2]. Region based visual scoring is
less time-consuming than annotating patches and more clinically relevant [11],
making it more realistic to obtain large data sets.

In this work we classify patches of CT scans by learning emphysema patterns
from visual scoring of regional emphysema extent. In this type of visual scoring,
the lungs are divided into six regions, the upper, middle and lower regions of the
right and left lungs, and each region is assigned a percentage interval indicating
the extent of emphysema in the region.

We view this learning problem as an instance of learning with label propor-
tions (LLP). LLP is a relatively new learning setting first introduced by [6] as an
extension of multiple instance learning (MIL) to proportion labels. In both MIL
and LLP we are concerned with bags of instances, e.g. a collection of patches
from a CT scan, and we wish to predict unknown instance labels from known bag
labels. The difference between MIL and LLP is that MIL learns from binary bag
labels, e.g. COPD versus no-COPD as in [3, 10] and LLP learns from proportion
labels that indicate the proportion of instances in a bag with a certain label. Bag
proportion labels provide more information about instance labels than binary
bag labels and LLP methods attempt to use the extra information to improve
performance.

Several LLP methods have been proposed, Kück and de Freitas [6] develop a
graphical model where both instance labels and true bag proportions are treated
as unknowns; Yu et al. [12] adapt support vector machines to LLP, and present a
method for iteratively optimizing instance and bag loss; Patrini et al. [7] present
Laplacian Mean Map and show that aggregate statistics can be sufficient for
optimizing a large class of loss functions.

In this work we adapt cluster model selection (CMS) [9] to the problem
of learning from visual scoring of emphysema. CMS searches for a clustering
of patches that match known region labels. A part of the search is reshaping
the feature space to improve clustering, and this feature space optimization
together with the fact that no assumptions are made for the bag loss makes CMS
attractive. We reformulate the CMS problem so it is straightforward to use a non-
standard bag loss and contribute an interval bag loss for visually scored intervals
of emphysema extent. We replace the feature weight optimization method with
CMA-ES, a state-of-the-art method for black-box optimization and evaluate the
method on visually scored CT scans. To our knowledge this is the first time that
regional visual scoring of emphysema has been used to train a classifier, and the
first time that LLP has been applied to medical image data.

2 Methods

Based on previous work by [10] and [3] for predicting COPD from CT scans, we
take a texture-analysis approach to characterizing emphysema patterns. Each
patch is represented by a collection of histograms of filter responses. The filters
are multi-scale Gaussians and combinations of derivatives of Gaussians. A sum-
mary of the used filters is given in Table 1 and a thorough description of the
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filters can be found in [10]. The filters are applied at scales σ ∈ {1.2, 2.4, 4.8}mm,
a subset of those used in [10] chosen as a compromise between feature space di-
mension and expressiveness.

Table 1. Multi-scale filters for analyzing lung texture. I is an image and Gσ is a
Gaussian with scale σ. The asterisk ∗ indicates convolution. The Hessian is the matrix
of second order partial derivatives of I, where the partial derivatives are computed by
convolution with a corresponding partial derivative of a Gaussian

Feature name Definition Feature name Definition

Gaussian blur Gσ ∗ I Laplacian of Gaussian
∑3
i=1 λi

Gradient magnitude ||∇Gσ ∗ I| | Gaussian curvature
∏3
i=1 λi

Eigenvalues of the Hessian |λ1| ≥ |λ2| ≥ |λ3| Frobenius norm
√∑3

i=1 λ
2
i

2.1 Cluster Model Selection

Cluster model selection (CMS) introduced by [9] is a machine learning method
for learning from label proportions (LLP). Let X d be a d-dimensional feature
space, in our case it is the d filter responses, and x ∈ X d an instance or patch. A
bag Gi ∈ X l×d is a set of l patches from a lung region and Y i

G ∈ Y is a bag label
indicating the extent of emphysema in the region. Here Y = {[Ilow, Ihigh]|Ilow <
Ihigh, Ilow, Ihigh ∈ [0, 1]} is the set of closed intervals on the closed unit interval
[0, 1]. In LLP we have a set of m bags G = {G1, G2, . . . Gm} with associated
bag labels YG = {Y 1

G, Y
2
G, . . . Y

m
G } and we want to predict a binary label for each

patch indicating if emphysema is present.

Cluster model selection is a data-driven approach based on clustering. A
cluster model in this context is a partitioning of X = {G1 ∪G2 ∪ . . . Gm} into k
clusters S = {S1, S2, . . . Sk} with a cluster labeling YS ∈ {0, 1}k indicating if a
cluster is an emphysema cluster. An instance x ∈ Si inherits the label of Si and
a bag label can be estimated as the mean instance label over all instances in the
bag. The cluster model problem can be defined as

arg min
w,ỸS

1

m

m∑

i=1

L(Y i
G, Ỹ

i
G) , (1)

where w ∈ [0, 1]d is a weighting of features and ỸG the estimated bag labels
derived from the cluster labeling ỸS . L is a bag loss function that measures the
loss incurred by predicting Ỹ i

G when the real bag label is Y i
G.

Optimizing (1) is done by splitting it in smaller steps. For a given feature
weight vector w we find a clustering Sw by minimizing the within-cluster distance
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to the cluster center

Sw = arg min
S

k∑

i

∑

x∈Si

dP (x, µi|w) , (2)

where µi is the mean of instances in cluster Si and dP is a weighted patch
distance defined by

dP (x, y|w) =
d∑

i=1

widH(xi, yi) , (3)

where dH is a histogram distance function. Following [10] we use the earth
movers’ distance to measure histogram distance. Minimizing (2) is NP-hard and
we use the k-means algorithm to find an approximate solution.

Cluster Labeling. The original CMS formulation considers real valued label
proportions and uses a loss function with potentially5 multiple “sub-optimal”
global minima. The problem is that several terms are combined as a product,
so if any term is zero the other terms can be arbitrarily large. While the loss
function cannot distinguish between the cases where all terms are zero and one
term is zero, it is unreasonable to consider the two cases equally good solutions.
Here we contribute an interval bag loss more suitable for our purpose, and while
it also has potential for multiple global minima, due to the interval bag labels,
but all the global minima are “equally optimal” from the definition of the loss
function.

For a clustering S we search for the cluster labeling that minimizes the bag
loss L. Let I = [Ilow, Ihigh] be the known interval label and p ∈ [0, 1] the pre-
dicted label. We define the bag loss

L(Ii, pi) =




Iilow − pi if pi < Iilow
pi − Iihigh if pi > Iihigh
0 otherwise

. (4)

L(Ii, pi) is zero when pi is inside the interval and equal to the shortest absolute
distance from the interval otherwise.

The instances from each bag Gi are distributed over the clustering S and
we define a matrix M that maps cluster labels to bag labels, such that Mij is
the proportion of instances from Gi that belongs to cluster Sj . This allows us
to formulate the labeling problem as

arg min
YS

m∑

i

L(Ii, (MYS)i), s.t.∀j ∈ [1 : k]. 0 ≤ Y j
S ≤ 1 . (5)

Solving (5) is NP-hard for binary cluster labels, so we use a greedy heuristic.
We start by assigning all clusters label zero, then we search for the best labeling

5 It is potentially, because it depends on the clustering - some clusterings have a unique
global minima
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when only one cluster is labeled one. From a cluster labeling with i clusters
labeled one, we search for the best labeling with i+ 1 clusters labeled one. The
labeling is stopped when there is no longer an improvement in (5).

Feature Weight Optimization Clustering and cluster labeling is wrapped in
a black-box optimization over w. The original formulation of CMS uses a simple
genetic algorithm which we have replaced with state-of-the in black-box opti-
mization, CMA-ES. Originally proposed in [5], CMA-ES is a genetic algorithm
that works by generating a set of candidate weight vectors W from a multi-
variate Gaussian distribution with mean m and co-variance C. For each w′ ∈W
we evaluate the fitness of w′ by optimizing (1) with w = w′. The candidate
weights are then ranked and used to update m and C before a new set of can-
didates are generated. The process is iterated until convergence or a maximum
number of iterations is reached.

3 Experiments and Results

The method is evaluated on low-dose CT scans from the Danish Lung Cancer
Screening Trial [8]. Visual scoring of emphysema is performed by two raters using
the method described in [11]. Each rater assigns one of seven labels to the upper,
middle and lower regions of each lung. The labels {0%, 1–5%, 6–25%, 26–50%,
51–75%, 76–100%} indicate the percentage of the region affected by emphysema.
Three data sets have been defined Atrain, Avalidate, Atest with respective sizes of
193, 195, 195 scans. Each data set was initially 200 scans, matching the data
sets defined in [10], but some scans were excluded because they were not visually
scored. A set of 50 patches with a size of approximately 21× 21× 21mm3 were
sampled from each region of the lungs and aggregated into bags. Emphysema
is commonly characterized by the appearance of tissue destruction in lobules,
which are about 10–25mm in diameter [4], and the patch size has been chosen
to approximately match the size of lobules. Each bag was labeled by combining
the extent of both raters, such that the combined interval is the smallest interval
containing the interval of both raters. We assume that the extent labels can be
interpreted as the proportion of patches containing emphysema.

Model training is a two-step procedure, in the first step we train several mod-
els on Atrain and use predictions on Avalidate to choose parameters. In the second
step we train on Atrain combined with Avalidate using the selected parameters
and use predictions on Atest to estimate the performance of the model.

Choosing Parameters. A separate classifier was trained on each of the six
regions and the number of clusters was set to k = [5, 10, 15, 20, 25, 30] for each
classifier, giving a total of 36 models. The performance of each model was esti-
mated on Avalidate by calculating mean absolute error (MAE) from the reference
intervals and intraclass correlation (ICC). To calculate ICC we converted CMS
predictions to interval midpoints and used the average interval midpoint of the
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raters. MAE stabilized around 0.01 for all regions for k ≥ 20. ICC was highest
in the upper regions and values for the right and left upper regions are given in
Table 2. ICC was poor in the lower (≤ 0.24) and middle (≤ 0.31) regions for all
values of k. Prevalence of emphysema and rater agreement is generally highest in
the upper regions (Average prevalence in upper, middle, lower: 26%, 20%, 12%.
Average ICC in upper, middle, lower: 0.81, 0.65, 0.51). We focus on the upper
regions in the following analysis because learning from the lower prevalence and
rater agreement in the middle and lower regions appear to be a much harder
problem, which we leave for future work.

Table 2. Intraclass correlation for parameter selection. The best values are shown
along with the number of clusters in the model. ICC is calculated with a two-way
model and measures consistency. Avg refers to the average of R1 and R2

Region Number of clusters Raters ICC (CI)

Right upper 20
R1/R2 0.83 (0.79–0.87)
Avg/CMS 0.62 (0.53–0.70)

Left upper 15
R1/R2 0.78 (0.72–0.83)
Avg/CMS 0.53 (0.43–0.63)

Region Prediction. We use the selected parameters to train two new models
on the combined data Acombined = Atrain ∪ Avalidate. Performance of the four
models, two trained on Atrain and two trained on Acombined, is evaluated on
Atest by calculating ICC, using the same procedure for converting predictions as
for parameter selection. Performance scores are summarized in Table 3, and we
see that ICC in the upper right region improves when training on the larger data
set, while ICC decrease in the upper left region. We also note that performance
in upper left on Atest is much lower than on Avalidate indicating overfitting in
the parameter selection.

Reduced data set for training A potential issue when applying CMS to this
data is that the proportion of non-emphysema bags is large (> 70%) and only
very few bags have a label proportion larger than 25%. This gives a highly skewed
data set where less than 10% of instances contain emphysema. It is possible that
the skewed data makes it difficult to identify emphysema clusters because all
clusters will contain mostly non-emphysema instances.

To investigate this hypothesis we re-run the above experiment, but use only
bags with emphysema for training. This gives a less skewed data set, but the
proportion of emphysema instances is still less than 25% . First we train on a
reduced version of Atrain and use performance on the full version of Avalidate for
parameter selection. Then we train a new model using the selected parameter
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Table 3. Agreement between raters and model predictions on Atest. 95% confidence
intervals are shown for ICC. ICC measures consistency and is calculated with a two-way
model

Region Raters
ICC on Atest

Atrain Acombined

Right upper
R1/R2 0.82 (0.76–0.86) 0.82 (0.76–0.86)
R1/CMS 0.67 (0.59–0.74) 0.71 (0.63–0.77)
R2/CMS 0.54 (0.44–0.64) 0.58 (0.48–0.66)
Avg/CMS 0.64 (0.55–0.71) 0.67 (0.59–0.74)

Left upper
R1/R2 0.81 (0.75–0.85) 0.81 (0.75–0.85)
R1/CMS 0.38 (0.25–0.49) 0.38 (0.25–0.49)
R2/CMS 0.37 (0.24–0.49) 0.31 (0.18–0.43)
Avg/CMS 0.40 (0.27–0.51) 0.36 (0.23–0.48)

on the reduced version of Acombined and measure performance on the full version
of Atest.

Performance on Avalidate is summarized in table 4 where we again see best
performance in the upper right region. Performance on Atest is summarized in
table 5 and again we see indication of overfitting in the parameter selection.
Training on the reduced Acombined result in large improvements over training on
the reduced Atrain, beating performance when training on the full data.

Table 4. Intraclass correlation for parameter selection using reduced training data.
Best values are shown with the number of clusters in the model. ICC is calculated with
a two-way model and measures consistency. Avg refers to the average of R1 and R2

Region Number of clusters Raters ICC (CI)

Right upper 30
R1/R2 0.83 (0.79–0.87)
Avg/CMS 0.73 (0.65–0.79)

Left upper 20
R1/R2 0.78 (0.72–0.83)
Avg/CMS 0.56 (0.46–0.65)

It is interesting to note that ICC between CMS and Avg is larger than ICC be-
tween CMS and any of the raters when training on the reduced data. Training on
the full data shows highest ICC between CMS and R1 in three out of four cases.
Estimates from R1 is generally a bit lower than from R2, so underestimating
emphysema should give a better ICC with R1 than with R2 and Avg. This indi-
cates that training on the reduced data overcomes a problem of underestimation
present when training on the full data.
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Table 5. Agreement between raters and model predictions on Atest using reduced
training data. 95% confidence intervals are shown for ICC. ICC measures consistency
and is calculated with a two-way model

Region Raters
ICC on Atest

Atrain Acombined

Right upper
R1/R2 0.82 (0.76–0.86) 0.82 (0.76–0.86)
R1/CMS 0.61 (0.52–0.69) 0.68 (0.60–0.75)
R2/CMS 0.64 (0.55–0.71) 0.69 (0.61–0.75)
Avg/CMS 0.66 (0.57–0.73) 0.72 (0.65–0.78)

Left upper
R1/R2 0.81 (0.75–0.85) 0.81 (0.75–0.85)
R1/CMS 0.45 (0.33–0.56) 0.59 (0.49–0.67)
R2/CMS 0.45 (0.33–0.55) 0.60 (0.50–0.68)
Avg/CMS 0.47 (0.36–0.58) 0.63 (0.53–0.70)

Patch Prediction. We inspected patch predictions visually. Figure 1 shows
slices and patch predictions for two subjects. Top row shows a case where raters
and prediction agree and bottom row shows a case where prediction is larger
than raters. In the case with agreement we see that patches classified as not
emphysema contain little to no emphysema, while patches classified as emphy-
sema contain large areas with clear tissue destruction. It appears that emphy-
sema patches are in an area with a large degree of paraseptal emphysema, while
not-emphysema patches are in an area with a small degree of centrilobular em-
physema. In the case of larger predicted extent it appears that there is a small
decrease in density in the upper part of the region compared to the lower part.
The patches predicted as emphysema are in the upper part and appear to contain
some tissue destruction.

4 Discussion and Conclusion

The agreement in the upper right region shows that CMS can estimate emphy-
sema extent, which is clinically more relevant than predicting COPD presence
considered in [10] and [3].

The performance improvement when training only on emphysema bags in-
dicates that subsampling training data to achieve a more balanced data set is
beneficial for CMS. The tendency to overfit, suggested by the performance de-
crease from Avalidate to Atest, indicate that removing all non-emphysema bags
is detrimental to performance. Future work could investigate how to determine
the optimal mix of bags. It is possible that performance in the middle and lower
regions could be improved in the same manner, but the very low prevalence in
the lower regions could result in overfitting because the amount of training data
is too small to be representative of the full data set. Another approach is to train
on data from several regions, either by combining a couple of regions or using
all six regions.
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Fig. 1. Patch prediction in upper right region. Top: Rated as 26-50% extent, predicted
as 26% extent. Bottom: Rated as 0% extent, predicted as 10% extent. Left: Intensity
rescaled coronal slice. Center: Blue regions are not labeled. Purple patches are labeled
as emphysema and non-colored patches as not emphysema. Right: Blue regions are
not labeled. Purple patches are labeled as not emphysema and non-colored patches as
emphysema

The increased performance when training on Acombined versus training on
Atrain indicates that improving performance could be a matter of increasing
the amount of training data. However increasing the amount of training runs
counter to one of the primary objectives of weak label learning, that of reducing
the burden of labeling training data, and future work should consider the trade
off between labeling burden and performance.

The inspected patch predictions show that patches with severe emphysema
are likely to be labeled emphysema, while regions with mild emphysema tend to
be labeled not emphysema. It is unlikely that we can account for the heterogene-
ity of emphysema with binary patch labels alone, and an alternative is to assign
continuous labels indicating emphysema extent in the patch. This would allow
us to rank patches and could be interesting as a tool for studying progression of
emphysema. An interesting possibility suggested by the patch predictions for the
region assessed as having 0% emphysema, is that the method is more sensitive
to some mild cases of emphysema than the raters. If this is true, the approach
could become a valuable tool for early detection of emphysema.

In this work we have focused on predicting emphysema extent without con-
sidering emphysema sub-type. Sub-type information is clinically interesting and
a model that simultaneously predicts extent and sub-type is a future goal. Em-
physema sub-types appear differently in CT scans, centrilobular emphysema is
diffuse with small holes spread out over the affected area and paraseptal em-
physema is more clearly defined with large bounded regions of complete tissue
destruction. Simply extending cluster labels to {no-emphysema, centrilobular,
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paraseptal} could improve performance, because it is likely that some patches
with centrilobular emphysema are more similar to patches without emphysema
than to patches with paraseptal emphysema.

There is, to our knowledge, no previous work that attempts to learn from the
kind of visual assessment we consider here. The patch-based classifier from [2]
uses a different labeling scheme with six classes (three severities of centrilobular,
one panlobular, one pleural-based and one non-emphysema), and the evaluation
metrics are also different making it difficult to compare. It appears that the
biggest problem for [2] is distinguishing mild and severe cases of centrilobular
emphysema. This suggests that replacing binary labels indicating presence with
categorical labels indicating severity might not be enough to model emphysema
severity and a continuous severity score could be the way forward.

In conclusion, we show that visual scoring of emphysema extent in regions can
be used for training an LLP method to predict both region extent and presence
of emphysema in patches. The results also show that predictions correlate poorly
with raters when training on data where emphysema prevalence is very low and
rater agreement is low to moderate.
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