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CD36 is a scavenger receptor involved in fatty acid metabolism, innate immunity and

angiogenesis. It interacts with lipoprotein particles and facilitates uptake of long chain fatty

acids. It is also the most common target of the PfEMP1 proteins of the malaria parasite,

Plasmodium falciparum, tethering parasite-infected erythrocytes to endothelial receptors. This

prevents their destruction by splenic clearance and allows increased parasitaemia. Here we

describe the structure of CD36 in complex with long chain fatty acids and a CD36-binding

PfEMP1 protein domain. A conserved hydrophobic pocket allows the hugely diverse PfEMP1

protein family to bind to a conserved phenylalanine residue at the membrane distal tip of

CD36. This phenylalanine is also required for CD36 to interact with lipoprotein particles. By

targeting a site on CD36 that is required for its physiological function, PfEMP1 proteins

maintain the ability to tether to the endothelium and avoid splenic clearance.
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T
he majority of human deaths caused by malaria result
from infection by Plasmodium falciparum1. Unlike
other human-infective Plasmodium species, this parasite

contains a set of adhesive proteins, the PfEMP1, which are
expressed on the surfaces of infected red blood cells, causing them
to bind to blood vessels and tissues2. This protects the parasite
within from clearance by the spleen, allowing the development
of increased parasite load3,4. It also leads to specific pathology,
with PfEMP1 causing the accumulation of parasite-infected
erythrocytes in the placenta during pregnancy-associated
malaria5,6 and in the brain during cerebral malaria7,8.

The PfEMP1 are among the few parasite proteins constantly
exposed to the host immune system during the blood phase of
the parasite life cycle. They are therefore under conflicting
selection pressure, experiencing pressure to diversify to aid
immune evasion while retaining the capacity to interact with
invariant human receptors to fulfil their cytoadhesive role. As a
result they have expanded into a complex protein family, with
around 60 members in each parasite genome and a system of
antigenic variation that allows parasites to switch which PfEMP1
they expose to the immune system2,9. Antibodies that bind
PfEMP1 are found in people from malaria endemic regions and
correlate with immunity from severe disease6,10–12.

To mediate endothelial binding, PfEMP1 proteins contain large
extracellular ectodomains consisting of 2–10 copies of two domain
types, the Duffy-binding like (DBL) and cysteine-rich interdomain
region (CIDR) domains9,13. While these domains are extremely
variable in sequence, they share a conserved architecture14 and can
be classified into different subgroups based on sequence15. The vast
majority of PfEMP1 proteins contain a DBL domain at the
membrane-distal end, followed by a CIDR domain2, with a
variable number of succeeding domains. PfEMP1 are frequently
modular, with individual domains maintaining the capacity to bind
to specific receptors14. The domains closest to the membrane-distal
end interact with endothelial receptors16–18, while serum
components such as IgM19,20 and a2-macroglobulin21 interact
with the membrane-proximal domains.

While a variety of ligands have been implicated in binding to
PfEMP1, there are three major human endothelial proteins
that have been shown to bind in a consistent manner that is
predictable based on the sequences of their constituent domains2.
The scavenger receptor, CD36 binds to many classes of CIDRa
domain (CIDRa2-6)22,23 and is the host receptor most commonly
found to interact with parasite isolates from patients24–26

and with laboratory-adapted parasite strains27. ICAM-1 is also
a common partner, with binding capacity retained in a subset of
the DBLb domains16,28,29. Finally, most CIDRa1 domains bind to
endothelial protein C receptor (EPCR) with 5-7 such domains
predicted in the genome of each parasite isolate2,17.

Approximately 84% of PfEMP1 proteins contain domains
predicted to bind to CD36, making this the most common
adhesion phenotype2. CD36 is a cell surface scavenger receptor
that plays a role in fatty acid uptake, angiogenesis and
phagocytosis30. It contains two transmembrane helices,
between which lies a B47 kDa extracellular domain. The
structure of LIMP-2, a homologue of CD36, revealed an
oval-shaped ectodomain with a hydrophobic cavity that
traverses the whole length of the molecule. This cavity is
thought to be the site through which fatty acids pass as they
move towards the plasma membrane, although no fatty acids
are present in the existing structures31. An a-helical ‘platform’ at
the membrane distal tip of CD36 has been identified as a
recognition site for oxidized low density lipoprotein (LDL) and
fatty acids, with a lysine residue (K164) on this platform
cross-linking to fatty acids and important for oxidized LDL
binding31,32. The structure of CD36 and its binding surface for

PfEMP1 were unknown, although a peptide-based study identi-
fied residues 146–164 of CD36 as forming the binding site33.

CD36 is present in many tissues, allowing adhesion of infected
erythrocytes in different sites within the vascular endothelium18.
It is also present in the cells of the innate and acquired
immune systems, modulating the binding of infected erythrocytes
to macrophages and dendritic cells34,35. This leads to a
nuanced interaction between parasite and host36. On one hand,
the frequency of CD36 binding shows that it is advantageous to
the parasite, allowing the avoidance of splenic clearance. CD36
binding may also benefit the parasite by providing a mechanism
to reduce dendritic cell-mediated T-cell activation, hampering
the capacity of the host immune system to clear the infection34,37.
On the other hand, CD36 binding increases the likelihood of
infected erythrocytes being cleared by macrophages, perhaps
reducing the chances of developing high parasitaemia35,38. CD36
binding is therefore thought to allow the parasite to sustain a
viable infection, while not putting the host at significant danger
from elevated parasite levels36.

The role of CD36 binding in malaria has been studied
extensively. However, significant sequence diversity in CD36-
binding CIDR domains has hampered efforts to understand
the molecular determinants that are retained to allow interaction
with CD36. To understand what makes CD36-binding such
a successful interaction for the parasite, we have therefore
combined structural and biophysical studies with analysis of
thousands of sequences to show how CIDRa domains interact
with CD36. We find that, despite extensive sequence diversity, the
CD36-binding CIDRa domains retain a conserved hydrophobic
pocket that accepts a phenylalanine residue found at the
membrane distal tip of CD36. This phenylalanine is also required
for CD36 to bind to oxidized LDL particles. We therefore show
that the diverse PfEMP1 proteins retain a chemically conserved
surface feature that allows them to interact with an invariant
region of their receptor, maintaining the ability to tether to the
endothelium and to avoid clearance.

Results
Determining the structure of CD36 bound to a CIDRa domain.
To determine the structure of CD36 in complex with a CIDRa
domain, we selected the CIDRa2.8 domain from the MCvar1
PfEMP1, as the structure of this isolated domain was already
known39. We coexpressed the ectodomain of CD36 (residues
35–439) together with the MCvar1 CIDRa2.8 domain (residues
576–745 with a C626S mutation to remove an unpaired cysteine).
These were expressed in human embryonic kidney (HEK) 293 cells
in the presence of the class I a-mannosidase inhibitor, kifunensine
and the secreted complex was purified. We used size-exclusion
chromatography coupled to multi-angle light scattering
(SEC-MALS) to demonstrate the formation of a 1:1 complex,
with no higher-order protein assemblies (Supplementary Fig. 1).

The CD36:CIDRa2.8 complex was subjected to crystallization
trials with in situ deglycosylation and proteolysis, allowing a
complete data set to be collected to 2.07 Å resolution.
Molecular replacement attempts in which the MCvar1 CIDRa2.8
domain (PDB 3C64)39 was used as a search model failed,
while using LIMP-2 (PDB 4F7B)31 as a search model yielded a
solution (Supplementary Fig. 2). Subsequent analysis of the
electron density revealed that the MCvar1 CIDRa2.8 domain
structure had adopted a very different conformation from that
seen in crystals of the domain alone (Supplementary Fig. 3).
The molecular replacement solution obtained using LIMP-2 was
therefore used as the starting point for an iterative cycle of
model building and refinement to generate a structure of the
CD36:CIDRa2.8 complex (Table 1).
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The structure of CD36 bound to fatty acids. The CD36
ectodomain adopts an architecture similar to LIMP-2, with
an elongated structure, and is decorated with nine N-linked
glycans distributed across the protein surface (Fig. 1a,
Supplementary Fig. 4)31. While LIMP-2 undergoes a pH-
dependent conformational change, with an ‘open’ conformation
at pH 5.5 and a ‘closed’ conformation at pH 7.5 (refs 31,40,41),
CD36, which was crystallized at pH 8.0, adopts an open
conformation (Fig. 1b). Indeed the pH-sensor residue, H150 of
LIMP-2, which stabilizes its closed conformation41 has been
replaced by phenylalanine residue (F153) in CD36, and CD36 will
therefore not undergo the pH-driven conformational change
observed in LIMP-2, but will remain open and poised to accept
fatty acids at neutral pH.

A distinctive feature of LIMP-2 is a cavity that spans most of
the length of the molecule31. This is also present in CD36 and is
lined predominantly by hydrophobic side chains. Unlike in
LIMP-2, the cavity of CD36 contains two electron density features
that resemble the extended hydrocarbon chain of a fatty acid.
We identified these fatty acids by chloroform extraction of ligands
from the crystallized protein, followed by GC/MS of the extracted
material. This revealed that palmitic acid and stearic acid were
most prevalent of a mixture of fatty acids present in the structure
(Supplementary Fig. 5). Indeed CD36 has been shown to play a
role in the uptake of these fatty acids42 and they have most likely
bound to the protein during expression in human culture cells.
We therefore modelled palmitic acid into these electron densities
and observed a close fit. Both fatty acids are oriented with
their carboxylic acid moieties at the membrane distal end.
The majority of their interactions with CD36 are mediated by
hydrophobic contacts as the fatty acids lie along the length
of the cavity. However, the carboxylic acid group of the

membrane distal fatty acid also makes water-mediated
hydrogen-bonding interactions with T195.

The entrance for the fatty acid translocation pathway has
previously been proposed to lie close to K164 (refs 31,32). Indeed
the central cavity has an opening close to this residue (entrance 1)
that is a likely entry point for the membrane distal fatty acid and
is the entrance that opens and closes in response to pH changes in
LIMP-2 (Fig. 1c). In addition, a second opening (entrance 2) is
also found at the membrane distal side of the CD36 ectodomain
(Fig. 1c) and the second fatty acid occupying the cavity lies in a
tunnel that proceeds from this entrance. Our CD36 structure
therefore supports a model in which fatty acids move through the
cavity, identifying a second possible entrance and further
delineating favourable positions through which translocating

Table 1 | Data collection and refinement statistics.

CD36:CIDRa2.8

Data collection
Space group C121
Cell dimensions

a, b, c (Å) 129.8, 40.7, 138.8
a, b, g (�) 90.0, 114.9, 90.0
Wavelength 0.97949
Resolution (Å) 63.00–2.07 (2.12–2.07)
Rpim (%) 4.6 (53.1)
I/sI 8.2 (1.5)
Completeness (%) 99.8 (99.5)
Multiplicity 3.2 (3.3)

Refinement
Number of reflections 40,525 (3,984)
Rwork/Rfree 21.2/25.2
Number of atoms

Protein 4,490
Ligands 233
Water 152

B-factors
Protein 47.6
Ligand/ion 64.4
Water 44.6

R.m.s deviations
Bond lengths (Å) 0.01
Bond angles (�) 1.19

Ramachandran plot
Favoured (%) 97.0
Allowed (%) 3.0

All structures were determined from one crystal.
Values in parentheses are for highest-resolution shell.

a

b

c

LIMP-2 H150
CD36 F153

LIMP-2 H150

90°

80°

CD36:LIMP-2 (acidic):LIMP-2 (neutral) 

Entrance 2

Entrance 1

Entrance 1

Entrance 2

Exit

Figure 1 | The structure of CD36 and its binding of fatty acids. (a) The

structure of CD36, shown in blue. The nine N-linked glycosylation sites and

associated sugars are green while two palmitic acids are shown as pink

sticks. (b) An alignment of CD36 (blue) with the structures of LIMP-2 at

acidic (cyan) and neutral (pink) pH. Residues F153 from CD36 (orange) and

H150 from LIMP-2 at acidic (light blue) and neutral (pink) pH are

highlighted. (c) A section through a surface representation of CD36

showing the central core cavity occupied by two palmitic acids (pink).

Insets show two putative entrances to this central cavity.
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ligands move as they pass towards the membrane proximal exit
and the plasma membrane.

The structural basis for CD36 binding by PfEMP1. As expected
from characterizing the stoichiometry of the CD36:CIDRa2.8
complex (Supplementary Fig. 1), the crystals contained an
equal number of CD36 and CIDRa2.8 molecules. However,
two CIDRa2.8 domains make significant contacts with each
CD36 ectodomain. To determine which of these represents the
physiological interaction, and which is due to crystal packing we
assessed the binding of mutant proteins by surface plasmon
resonance. Glycosylation sites were introduced into the CIDRa2.8
domain to disrupt each of the two interfaces. In addition, a
key interaction at site 1 is mediated by the insertion of a
phenylalanine residue (F153) from CD36 into a hydrophobic
pocket on the CIDRa2.8 domain and we therefore produced the
F153A mutant of CD36. The insertion of a glycosylation site into
site 1 and the F153A mutation both disrupted the binding of the
CIDRa2.8 domain to CD36 (Supplementary Fig. 6). In contrast, a
mutation inserting a glycan into site 2 had no effect on the
interaction, identifying site 1 as the authentic binding surface.

The PfEMP1 CIDRa2.8 domain therefore binds to the a-helical
bundle at the membrane-distal tip of CD36, close to the major
entrance (entrance 1) to the hydrophobic cavity (Fig. 2a) and in
the region identified previously33. The majority of the interaction
is mediated by F153 from CD36, which fits into a hydrophobic
pocket on the CIDRa2.8 domain surface. Mutation of either F153,
or of hydrophobic residues of the CIDRa2.8 domain that line this
pocket, abolishes the interaction (Fig. 2b, Supplementary Fig. 7).
Secondary interactions are made by a smaller a-helix (residues
668–678) from the CIDRa2.8 domain (mediating hydrogen
bonding to CD36 through E672) and a loop (residues 647–656;
again hydrogen bonding, this time through D650). Neither
of these interactions is critical in the MCvar1 CIDRa2.8
domain, as disrupting hydrogen bonds by mutagenesis led only
to small reductions in affinity (Fig. 2b, Supplementary Fig. 7,
Supplementary Table 1).

Previous studies have shown reduced binding of infected
erythrocytes to CD36 in response to phosphorylation of T92
(ref. 43). We see no evidence of phosphorylation of T92 in the
electron density maps and this side chain is 440 Å from the
CIDRa2.8 domain, suggesting that T92 phosphorylation will not
directly block the interaction.

Four structures of CIDRa domains have been solved to
date39,44,45. Of these, three adopt a similar compact
conformation44,45, while the MCvar1 CIDRa2.8 domain adopts
an open conformation when crystallized at pH 4.2 (ref. 39)
(Supplementary Figs. 3 and 8). In the structure presented here, the
MCvar1 CDRa2.8 domain (crystallized at pH 8.0) adopts the
typical compact configuration found in other CIDR domains
crystallized around physiological pH, and aligns to the CIDRa1 and
g domains with rmsd of 3.4 and 4.3 Å respectively (Supplementary
Fig. 3). To understand the reasons for this structural discrepancy,
we crystallized our HEK293 cell expressed MCvar1 CIDRa2.8
domain and obtained crystals at pH 4.5 with the same space group
and close to identical cell dimensions (p6522; a¼ b¼ 95.9 Å,
c¼ 91.9 Å) to those reported for bacterially expressed protein
crystallized at pH 4.2. We therefore propose that the open
conformation is an artefact of crystallizing the isolated CIDRa2.8
domain in acidic conditions and that the domains adopt a
conserved compact architecture under physiological conditions.

A comparison of the molecular features used by CIDRa
domains to bind to CD36 and EPCR shows striking similarities,
but with a structural inversion of the mechanism of
binding (Fig. 3). In both cases, the CIDRa domains contain a

core three a-helical bundle with an insertion between the second
and third core helices, a2 and a6 (Supplementary Fig. 8). This
folds to make smaller helices that lie approximately perpendicular
to the core helices. This insert has been identified as a ‘homology
block’ and CIDR domains can be classified into three groups, the
CIDRa1 domains, the CIDRa2-6 domains and the CIDRb/g/d
domains, which each have a different homology block in this
region15. Now that we have structures for members of each of
these domain classes (Supplementary Fig. 3) we can see how
these homology blocks fold to contribute to the formation of
ligand-binding sites.

In the CIDRa1 domains, the insert folds to form a helix and a
kinked helix, with a critical phenylalanine residue protruding from
the kink. This hydrophobic protrusion forms the centre of the
binding site, occupying the hydrophobic groove of EPCR. It is
surrounded by hydrogen bonding residues that further stabilize the
interaction. In contrast, CIDRa2-6 domains lack the kinked helix
and the protruding phenylalanine. Instead the equivalent region of
the protein contributes, together with residues from the core
three-helical bundle, to a hydrophobic cavity (Fig. 3), which
accepts a protruding phenylalanine residue from the ligand (F153
from CD36). Here too, the hydrophobic core of the interaction
surface is surrounded by hydrophilic regions that can make
hydrogen bonds. Residues previously identified to distinguish
between CD36-binding and non-binding CIDR domains lie within
this homology block, but do not directly contact CD36 (ref. 46).
Therefore in both cases the domains form an extremely stable
interaction using a contact surface built around a small
hydrophobic core, surrounded by hydrogen bond donors and
acceptors. The insertion of different homology blocks into the core
helical bundle of the CIDRa domains allows them to do this in
different ways, presenting ligand-binding surfaces with different
architectures to interact with differently structured ligands.

Conserved structural features allow CD36 binding. We next
aimed to understand how the CD36-binding CIDRa2-6 binding
domains diversify, while retaining ligand binding. The genome
sequence of the 3D7 strain of Plasmodium falciparum allowed a
previous systematic analysis of PfEMP1 to identify those that contain
CIDR domains that interact with CD36 (ref. 23). Three classes of
CIDR domains were identified, CIDRa, b and g. All tested CIDRa
domains, with the exception of those from the CIDRa1 subgroup,
bound to CD36 (ref. 23) while CIDRa1 domains bind to EPCR
(ref. 17). This suggested that CD36 binding is an extremely common
phenotype, with B85% of PfEMP1 proteins containing the CIDRa2-
6 domains predicted to bind. However the CIDRa2-6 domains are
highly variable with less than 33% pairwise sequence similarity2.

With many PfEMP1 sequences emerging from recent parasite
genome sequencing projects, we were able to conduct a more
comprehensive analysis. We built sequence distance trees using
2386 CIDRa2-6 domain sequences extracted from 233 parasite
genomes that had been selected to be representative of global
diversity15. No major sequence clusters could be verified by
bootstrapping, but the sequences distributed into small subgroups
as previously described (Fig. 4a)15. The alignment included 11
CIDRa domains from Plasmodium reichenowi that distributed
across the tree of Plasmodium falciparum CIDRa2-6 domains, as
seen for other surface protein families47. We used surface
plasmon resonance to test a panel of CIDRa2-6 domains
randomly selected from across this sequence diversity tree for
the ability to bind to CD36, showing them all to adopt nanomolar
interactions with slow off-rates (Fig. 4a, Supplementary Fig. 9).
Together with previously identified CD36 binders17,23,27, this
confirmed that all tested members of the CIDRa2-6 classes bind
to CD36.
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We next produced a sequence logo for all members of these
domain subclasses (Fig. 4b,c). The majority of the domain
sequences could be aligned into a single logo. However, the loop

containing residues 673-683 was divergent in the CIDRa3.1
subclass. As found before in the DBL and CIDR domains, the
majority of conserved residues were cysteines or aromatics14,44.
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Figure 2 | The structural basis for CD36 binding by PfEMP1 proteins. (a) The structure of the complex of CD36 (blue) with the CIDRa2.8 domain of the

MCvar1 PfEMP1 protein (pink). N-linked glycans are shown in green. The inset shows a surface representation of the CIDRa domain with CD36 as a blue

cartoon and F153 of CD36 in orange. (b) A close-up view of the interface between CD36 and the CIDRa domain with the key interacting residues labelled.

The three-core a-helices of the CIDRa domain (a1, a2 and a6) are coloured in light pink while the insert (a3-a5) is dark pink. Also shown is the effect of

mutagenesis of key interacting residues as determined by surface plasmon resonance. The most critical interactions are mediated by F153 of CD36, which

fits into a hydrophobic pocket lined by residues including F645 and L664 of the CIDRa domain.
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A sequence logo for residues that make direct interactions
with CD36 (Fig. 4d) showed limited sequence conservation, but
with hydrophobic residues exchanged for other hydrophobic
residues and hydrogen bonding capacity conserved. Three of the
most conserved residues that directly contact CD36 (Y582, F586
and F645) contribute to the hydrophobic pocket that accepts
F153 (Fig. 2b).

To understand the distribution of conservation across the
CD36-binding domains, we plotted sequence entropy, as a
measure of chemical conservation, onto the structure of the
MCvar1 CIDRa2.8 domain (Fig. 5a,b). As seen previously for the
CIDRa1 domains, the significant majority of conserved residues
were found in the core of the domain, stabilizing the protein fold.
The major patch of surface exposed conservation was in, and
immediately surrounding, the conserved hydrophobic patch, with
substitutions in this region leading to conservation of the
hydrophobicity of this pocket, maintaining the ability to accept
the conserved F153 residue from CD36. Other contacting
residues lacked direct conservation, but retained the ability to
form hydrogen bonds. This suggests a shared binding mode for
CD36 across the CIDRa2-6 domains.

To support this conclusion, we tested the effect of the F153A
mutation of CD36 on the binding of a sequence diverse set of ten
CIDRa2-6 domains. We found that the binding of each of
these domains to CD36 was significantly reduced in the presence
of the F153A mutations, with reduced overall binding levels and
significantly faster off rates (Fig. 5c, Supplementary Fig. 10).

The F153A mutation did not have an equivalent effect on all of
the CIDRa domains, suggesting that the importance of additional
interactions differ across the family. However, conservation of
chemical property in the F153 binding pocket, combined with a
significant effect of F153 mutation on all of the interactions
supports the idea of a conserved binding mode across the domain
family, despite significant sequence diversification.

The effect of CIDR domains on the natural function of CD36.
CD36 has a number of functions in mammalian physiology.
It has the ability to bind oxidized lipoprotein particles31

and to interact with thrombospondin (TSP) to regulate
angiogenesis30,48. We therefore investigated whether the
binding of PfEMP1 to CD36 can prevent it from interacting
with physiological binding partners. Surface plasmon resonance
experiments showed that the binding of CD36 to TSP was not
altered by pre-incubation with CIDRa2-6 domains (Fig. 6a). In
contrast, the presence of CIDRa2-6 domains abolished the
interaction of CD36 with oxidized LDL particles (Fig. 6b,c).
Furthermore, the F153 mutation, which disrupts the interaction
of CD36 with CIDRa2-6 also abolishes binding of CD36 to
oxidized LDL particles, showing that this region of the protein is
essential to interact both with lipoprotein particles and PfEMP1
(Fig. 6d). The parasite therefore targets a part of CD36 that is
essential for its physiological role in fatty acid uptake, reducing
the likelihood that the human host can escape from PfEMP1
binding by altering its CD36.

Discussion
The PfEMP1 proteins of Plasmodium falciparum have evolved
under conflicting evolutionary pressures. On one hand, they are
constantly exposed to the immune system and are therefore under
constant pressure to diversify, allowing immune evasion. On the
other hand, they must retain functionally important features,
maintaining the capacity to interact with specific endothelial
ligands, allowing them to perform their role in endothelial
adhesion. In this study we have combined structural studies of a
MCvar1 CIDRa2.8 domain in complex with CD36 with the
analysis of the sequences that represent much of the global
diversity of CD36 binding PfEMP1 domains, in order to identify
the molecular features that are required to mediate CD36 binding.

The CIDR domains provide a versatile molecular scaffold for
the evolution of different binding phenotypes. Their structure is
built upon a core three-helical bundle and between the second
and third core helices emerges an insertion of B60 residues.
Much of this insertion has been identified as a ‘homology-block’,
and is a module that differs between the main CIDR domain
classes15. In the CIDRa1 domains the insertion is B60 residues
in length and folds to form the helix and kinked-helix that
provide the majority of the EPCR-binding surface44. In the
CIDRa2-6 domains, a different insertion in this region, of B70
residues, adopts a subtly different structure. The helix and
kinked-helix of CIDRa1 domains are replaced in CIDRa2-6
domains by two shorter helices (a4 and a5 in Supplementary
Fig. 8). Together with residues emerging from the core three-
helical bundle, these form an open, hydrophobic cavity
containing conserved aromatic residues, which is missing in the
CIDRa1 domains. It is this cavity that forms the majority of the
interaction site for CD36. Therefore, the equivalent regions of
CIDRa domains adopt very different architectures, providing
binding sites for very different ligands.

Although the binding sites for EPCR and CD36 are very
different in shape, both interactions are mediated by similar
chemical properties. In the case of EPCR binding, the CIDRa1
domains present a convex surface formed from two hydrophobic

MCvar1 CIDRα2

CIDRα2:CD36

HB3var03 CIDRα1

CIDRα1:EPCR

a

b

Figure 3 | A comparison of the features that allow CIDRa domains to

bind to EPCR or CD36. (a) A comparison of the structure of a CD36-

binding CIDRa2 domain (pink) with that of an EPCR-binding CIDRa1

domain (orange). Both domains share a core three a-helical bundle. The

insertion that emerges between the second and third of these core helices

forms a docking platform for ligands. (b) A close up of the binding

interfaces that mediates the CIDRa2:CD36 and CIDRa1:EPCR interactions.

The CIDRa1 domains have a phenylalanine residue (F656) on a convex

surface of the domain that protrudes into the hydrophobic groove of EPCR.

In contrast, the CIDRa2 domains have a hydrophobic pocket that binds to a

protruding phenyalanine residue (F153) from CD36.
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Figure 4 | Extensive diversity in CD36 binding CIDRa domains. (a) Sequence distance tree of 2386 full-length CIDRa2-6 domains. Red lines

represent sequences from Plasmodium reichenowi. A blue circle marks the sequence of the crystallized CIDRa2.8 domain (also see Supplementary Fig. 8).

Green circles mark sequences of recombinant CIDRa domains for which the affinity for CD36 binding were tested (corresponding SPR traces given).

Pink circles mark sequences of CIDR domains previously demonstrated to bind CD36. Annotated clusters contained previously defined CIDRa2-6

subclasses. All tested domains from the CIDRa2-6 subclasses bind to CD36. (b) Sequences of the 2386 CIDRa domains were aligned and a
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phenylalanine residues. These residues, and in particular F656 in
the HB3var03 CIDRa1 domain, protrude into the hydrophobic
groove of EPCR, while hydrophilic residues that surround this
hydrophobic cluster make hydrogen-bonding interactions. The
CD36-binding domains present a binding site that is conceptually

the inverse of this. Instead of a hydrophobic protrusion, the
CD36-binding surface is predominantly formed from a concave
hydrophobic pocket into which docks a phenylalanine, F153
from CD36. A loop from the CIDRa domain then makes
hydrogen bonds with other regions of CD36. In both cases, this
combination of a small hydrophobic core, together with a larger,
complementary hydrophilic interface, generates a high affinity
and stable binding site, allowing the domains to interact with
their ligand with a slow off rate, stabilizing cytoadhesion of
infected erythrocytes against the strong forces of blood flow.

In both cases, these binding surfaces have diversified
significantly, with little sequence conservation in the residues
that made direct contacts with EPCR or CD36. However, in
both cases, residues involved in stabilizing the fold are conserved
and sequence variation in residues that interact directly with the
ligands is conservative in chemistry, maintaining the capacity to
bind. This raises the possibility of generating antibodies that
recognize these conserved chemical features and show broadly
inhibitory potential. In particular, the EPCR binding surface of
the CIDRa1 domains protrudes from the domain, presenting a
surface that appears compatible with recognition by an
antibody. In contrast, the CD36 binding site is concave, with its
conserved hydrophobic residues concealed in a pocket that
may be less readily recognized. This binding surface is
surrounded by a sequence diverse protein surface containing a
flexible loop (residues 647–657) that might make antibody-
mediated recognition less likely. Perhaps this is why the CD36
interaction is such a successful one from the perspective
of the parasite, with the binding site reducing the exposure
of chemically conserved determinants from detection by
acquired immunity, allowing a diverse set of CIDRa2-6 domains
and a system of antigenic variation to provide the changes
necessary to maintain the capacity to cytoadhere and to protect
the parasite from splenic clearance.

A second strategy used by both EPCR- and CD36-binding
CIDR domains is to interact with functionally important sites in
their human receptors to avoid the ready evolution of
escape mutants in the human genome. The CIDRa1 domains
bind to the region of EPCR that is required for its interaction with
its ligand, protein C. Indeed the conserved phenylalanine of the
CIDRa1 domains occupies a pocket that is also occupied by a
phenylalanine from protein C. The parasite has evolved a similar
trick in its CIDRa2-6 domains (Fig. 7). Here the CIDR domains
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(a) Surface plasmon resonance analysis showing that the preincubation of

CD36 with IT4var45 CIDRa2.9 does not affect the binding of

thrombospondin (TSP) to CD36. (b) Surface plasmon resonance analysis

showing that the preincubation of CD36 with IT4var45 CIDRa2.9 prevents

the binding of oxidized LDL particles (oxLDL) to CD36. (c) SPR data

showing the inhibition of oxLDL binding to CD36 by a panel of CIDRa2-6

domains. (d) Demonstration by surface plasmon resonance that the F153A

mutation blocks the binding of oxLDL to CD36.
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interact with a phenylalanine residue that protrudes from the
surface of CD36. But why are polymorphisms in this residue not
favoured in malaria endemic regions, as these would be expected
to allow escape from binding? We show here that this residue is
also important for binding to oxidized LDL particles, one of the
physiological binding partners of CD36, and that the CIDRa
domains prevent oxidized LDL from binding. Once again, the
PfEMP1 proteins target a functionally important site, reducing
the likelihood of a host escape mutant that would prevent infected
erythrocytes from sequestering away from splenic destruction.

In addition, the region of CD36 on which this phenylalanine is
displayed is the site of recognition for long chain fatty acids. Fatty
acids can be cross-linked to K164 of CD36 and are then thought
to move across to enter the central CD36 cavity and pass through
the CD36 ectodomain to the membrane surface. The CIDRa2.8
domain lies directly in between K164 and the cavity entrance,
potentially blocking lipid uptake. With fatty acid uptake and
oxidized LDL binding linked to fatty acid metabolism and
atherosclerosis, it will be interesting to see whether CIDRa2-6
domains can prevent fatty acid uptake as a proof of principle of
targeting this region of CD36.

In summary, our characterization of the structural basis for
CD36-binding by PfEMP1, coupled with our previous analysis of
EPCR-binding has shown how the complex PfEMP1 protein
family balances the need to adhere tightly to unchanging human
receptors while diversifying to evade antibody-mediated
recognition. Functionally important regions of human receptors
are targeted, reducing the likelihood of mutations that disrupt
binding, but also, inadvertently blocking the physiological roles of
these receptors, with the potential to lead to disease outcomes.
While human receptors are restricted from evolving away from the
interaction, the PfEMP1 proteins are hugely diverse, retaining their
structure and the chemical features of their binding site while
altering nearly all of their surface residues. The CD36-binding
CIDR domains also tuck their ligand-binding site in a small
pocket, reducing the likelihood of antibody-mediated recognition.
In this way, the parasite has evolved a surface protein family that

can maintain the capacity to tether it away from splenic clearance,
while avoiding clearance by the acquired immune system.

Methods
Protein expression and purification. A gene encoding the human CD36
ectodomain (residues 35–439) was inserted into the pHLsec vector49, modified with a
C-terminal 8xHis tag (pHLsec-8H). A synthetic complementary DNA clone of
MCvar1 CIDRa2.8 with Cys626 mutated into Ser to remove an unpaired cysteine
(codon-optimized for expression in mammalian cells) was obtained from GeneArt
(Invitrogen), and residues 576–745 were cloned into pHLsec-8H. CD36 constructs
used for SPR experiments had an additional C-terminal BAP tag that was biotinylated
in vitro by incubation with BirA ligase (Sigma-Aldrich). Mutants were generated
using two-step overlapping PCR experiments and verified by DNA sequencing
(Source Bioscience) and cloning primers are given in Supplementary Table 2.

CD36 and MCvar1 CIDRa2.8 were coexpressed in HEK293 (ATCC
CRL-11268) cells in the presence of 5 mM kifunensine. The conditioned media was
dialysed against phosphate-buffered saline with the addition of 0.5 M NaCl and the
protein complex was purified by immobilized metal ion affinity chromatography
using TALON resin (Clontech). The CD36:CIDRa2.8 complex was further purified
by size-exclusion chromatography using a Superdex 200 16/600 column
(GE Healthcare Life Sciences) and 10 mM Bis-Tris, pH 6.5 and 0.3 M NaCl. For
SEC-MALS experiments, proteins were expressed and purified as above. For
surface plasmon resonance analysis, CD36 and MCvar1 CIDRa2.8 proteins and
their mutants were expressed individually in HEK293 cells, and were purified as
above, before buffer exchange into 10 mM HEPES, pH 7.5, 0.15 M NaCl.

Recombinant CIDRa2-6 domains were expressed and purified as previously
described44. In short, domain sequences with boundaries as defined in Rask et al.15

were used to design domain-encoding DNA. These were codon optimized for
expression in Drosophila Sf9 cells and were delivered already inserted into the
baculovirus-insect cell expression vector pAcGP67-A (Geneart, Regensburg, Germany).
All proteins were expressed with C-terminal V5 and His-tags, and were purified by
nickel affinity chromatography. Sequences are given in Supplementary Table 3.

Crystallization of a complex of CD36 and MCvar1 CIDRa2.8. The purified
CD36:CIDRa2.8 complex was concentrated to 10 mg/ml in the presence of 1%
(v/v) Flavobacterium meningosepticum endoglycosidase-F1 and carboxypeptidase Y
(Sigma-Aldrich) for in situ de-glycosylation and proteolysis. The protein samples
were then subjected to sitting drop vapour diffusion crystallization trials in SwisSci
96-well plates by mixing 100 nl protein with 100 nl reservoir solution. The
CD36:CIDRa2.8 complex crystallized in 0.2 M NaCl, 20% (w/v) PEG6000, 0.1 M
Tris, pH 8.0 at 18�. For cryo-protection, crystals were transferred into mother
liquor supplemented with 25% (w/v) glycerol and then cryo-cooled in liquid
nitrogen for storage and data collection.

Data collection and structure determination. Data were collected at beamline
IO2 (Diamond Light Source UK) with a Pilatus 6M detector. Diffraction data of the
CD36:CIDRa2.8 complex were indexed and integrated using XIA2 (ref. 50)
coupled with XDS51, and scaled and merged using Aimless52 to a resolution of
2.07 Å. A subset of 5% of randomly selected diffraction data were used for the
calculation of Rfree.

The structure of the CD36:CIDRa2.8 complex was determined by molecular
replacement in PHASER53 with the structure of LIMP-2 (PDB 4F7B) used as a
search model to obtain the initial phases. The models were completed by manual
building in COOT54 and refinement in autoBuster55.

Surface plasmon resonance. SPR binding measurements were performed using a
Biacore T200 instrument (GE Healthcare Life Science) at 25 �C in 20 mM HEPES,
pH 7.5, 0.15 M NaCl, 0.005% (w/v) Tween20. CD36 wild-type and mutants with
BAP tags were expressed in HEK293T cells, incubated with BirA for in vitro
biotinylation and immobilized onto sensor CAPture chip (GE Healthcare Life
Sciences) to B700 RU. MCvar1 CIDRa2.8 domain and mutants used as analytes
were expressed in HEK293 cells and purified as described above. In all binding
experiments, analytes were injected for 240 s with a 300 s dissociation time before
chip regeneration. Affinities were estimated using equilibrium binding measure-
ments and data were fitted with the BIAevalution software using a one site-binding
model. For competition experiments, different CIDRa proteins were injected onto
the chip with 500 s association time, followed by injecting either 400 nM Recom-
binant Human Thrombospondin-1 (TSP-1; R&D SYSTEMS) or 10 nM Native
Human low density lipoprotein (oxidized)(oxLDL; AbD Serotec). All buffers were
supplemented with 72.5 mM Oleic acid (MP Biochedicals Australasia Pty Limited)
for oxLDL binding experiments.

Size-exclusion chromatography multi-angle light scattering. SEC-MALS
experiments were performed using an analytical Superdex S200 10/300 GL column
(GE Healthcare Life Sciences) connected to online static light-scattering
(DAWN HELEOS 8, Wyatt Technology) and differential refractive index (Optilabr
EX, Wyatt Technology). Purified sample (MCvar1 CIDRa2.8 at 1.5 mg/ml and
CD36:MCvar1 CIDRa2.8 complex at 1 mg/ml) were injected into a column

oxLDL

FA
?

FA

Plasma membrane Plasma membrane

CIDRα

Figure 7 | A model for the inhibition of oxLDL binding by PfEMP1. One of

the physiological roles of CD36 is to interact with oxidized LDL (oxLDL).

Fatty acids can be incorporated from oxLDL particles, or other transport

systems and pass through the central cavity of CD36 to the membrane. The

PfEMP1 CIDRa2-6 domains interact with the same surface of CD36 as

oxLDL and compete for binding.
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equilibrated with 10 mM HEPES pH 7.5, 0.15 M NaCl. Molecular mass determi-
nation was performed using an adapted RI increment value (dn/dc standard value;
0.186 ml/g) to account for glycosylation. The theoretical molecular weight was
predicated from amino acid sequence plus 1865 Da per N-linked glycosylation site
for recombinant protein produced from HEK293T cells in the presence of
kifunensine with limited glycosylation. Data were analysed using the ASTRA 6.1
software package (Wyatt Technology).

Analysis of PfEMP1 sequences. A total of 263 CIDRa2-6 domains from seven
previously annotated whole genome sequenced parasites15 were used as previously
described44, to blastp extract CIDRa sequences from assemblies of Illumina whole
genome sequencing data from 226 parasite samples collected in both Africa and
Asia56 (Study number ERP000190) available through the MalariaGEN community.
Only full length domain sequences were kept (domain boundaries as defined in15).
This resulted in a total of 2386 CIDRa2-6 sequences, including 11 sequences from
P. reichenowi CIDRa2-6 domains, which were used for the analysis of sequence
diversity. A hand-corrected MUSCLE alignment was used to generate sequence
logos by WebLogo 3 (ref. 57) and neighbour joining sequence distance trees by
MEGA58. No major sequence clusters could be verified by bootstrapping, but
sequences distributed as previously observed15.

Determination of unknown ligand(s) using GC/MS. To identify the nature of
the bound ligand in crystals of the CD36:CIDRa complex, we used gas
chromatography coupled with mass spectrometry (GC/MS). Briefly, purified
CD36:CIDRa protein was incubated at 100 �C for 5 min, and then chloroform was
added to a final concentration of 80% (v/v) to denature the protein and extract the
ligand. The sample was derivatized with N,O-Bis(trimethylsilyl)trifluoroacetamide.
The derivatized sample was then analysed by GC/MS on a Waters GCT Classic
instrument. Ligand identification was performed by comparison of mass spectrum
of the analyte with the NIST library database.

Data availability. The structure is deposited with pdb code 5LGD. All other data,
including CIDRa domain sequences, are available from the authors on request.
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