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The proglucagon-derived peptide hormone, glucagon, comprises 29 amino acids. 
Its secretion from the pancreatic α cells is regulated by several factors. Glucagon 
increases blood glucose levels through gluconeogenesis and glycogenolysis. Elevated 
plasma concentrations of glucagon, hyperglucagonemia, may contribute to diabetes. 
However, hyperglucagonemia is also observed in other clinical conditions than diabetes, 
including nonalcoholic fatty liver disease, glucagon-producing tumors and after 
gastric bypass surgery. Here, we review the current literature on hyperglucagonemia 
in disease with a particular focus on diabetes, and finally speculate that the primary 
physiological importance of glucagon may not reside in glucose homeostasis but in 
regulation of amino acid metabolism exerted via a hitherto unrecognized hepato-
pancreatic feedback loop. 
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The peptide hormone glucagon, contributes 
to the maintenance of euglycemia in humans 
by increasing hepatic glucose production 
during fasting by stimulation of glycogenoly-
sis and gluconeogenesis [1]. Elevated plasma 
concentrations of glucagon (termed hyper-
glucagonemia) [2] and insufficient secretion 
of insulin [3] are biochemical hallmarks of 
diabetes, and the importance of these for 
the diabetic state is often referred to as the 
bihormonal hypothesis. Here, we provide 
an update on the current literature regard-
ing hyperglucagonemia-related diabetes and 
present some novel perspectives regarding 
glucagon biology.

A short historical perspective on 
glucagon
The history of glucagon began in the early 
1920s when Kimball and Murlin reported 
evidence of a circulating factor with an effect 
on glucose homeostasis opposite to that of 
insulin [4]. The glycogenolytic, gluconeo-

genic and ketogenic effects of glucagon were 
first demonstrated in dogs [5]. Eventually, 
glucagon was purified and sequenced at Eli 
Lilly (IN, USA), and shortly after, gluca-
gon was made commercially available by the 
company for treatment of insulin-induced 
hypoglycemia. Nevertheless, glucagon was 
first recognized as a hormone after the devel-
opment of the glucagon radioimmuno assay 
in 1959 by Roger Unger and colleagues 
based on the pioneering work by Berson and 
Yalow [6]; this assay had an instrumental 
role in the  development of the bihormonal 
hypotheses [7].

The importance of glucagon for hepatic 
glucose production in vivo was elucidated by 
blocking the secretion of endogenous glu-
cagon and insulin (by so-called pancreatic 
clamping with somatostatin) while infusing 
glucagon at various rates [8]. These experi-
ments clearly demonstrated that hepatic glu-
cose production was regulated in a push–pull 
manner by both insulin and glucagon, and 
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that the endogenous glucose production in the fast-
ing state represents a balance between the stimulatory 
effects of glucagon and the inhibitory effects of insulin. 
From experiments involving selective glucagon infu-
sions it became clear that the stimulation of hepatic 
glucose production under such conditions is evanes-
cent. Several mechanisms may be responsible for this, 
most importantly upregulation of insulin secretion 
both by glucagon (which powerfully stimulates insu-
lin secretion [9]) and by hyperglycemia, which then (by 
over-ruling the effect of glucagon) lowers hepatic glu-
cose production again [10]. Because of the importance 
of glucagon for regulation of hepatic glucose produc-
tion, it has been debated whether diabetic hyperglyce-
mia (both in Type 1 diabetes and in Type 2 diabetes) 
which is at least partly due to increased hepatic glucose 
production, develops due to insulin deficiency alone 
(the insulinocentric hypothesis [11]) or whether hyper-
secretion of glucagon from pancreatic α cells is equally 
(the bihormonal hypothesis) or even more important 
(the glucagonocentric hypothesis [7]). In support of a 
role for glucagon, inhibition of the secretion or action 
of glucagon has long been an appealing strategy for 
diabetes treatment [12,13].

Structure of the glucagon molecule, 
regulation of glucagon secretion 
& extrahepatic effects
Bioactive glucagon is produced by enzymatic cleav-
age of the proglucagon precursor by prohormone- 
convertase 2 (PC2) to form fully processed glucagon 
of 29 amino acids (Figure 1). Glucagon is secreted from 
pancreatic α cells in response to falling concentrations 
of glucose (hypoglycemia, e.g., during aerobic exercise 
or long-term fasting) or increasing concentrations of 
amino acids [14] whereas lipids have modest effects 
on the α cells [15]. Its secretion is also modulated by 
the intestinal peptides, GLP-1 (inhibits) [16], oxynto-
modulin (enhances) [17] and glucose-dependent insu-
linotropic polypeptide (GIP; enhances) [18,19]. Also the 
autonomic nervous system may play an important role 
in regulation of glucagon secretion [20]. The inhibitory 
action of GLP-1 is currently being exploited in the so-
called GLP-1-based therapies [21], which include both 
GLP-1RAs and inhibitors of the GLP-1-inactivating 
enzyme, DPP-4, which prolong its survival in the 
circulation and elevates plasma levels of endogenous, 
active GLP-1 [22]. In addition to the complexity of 
stimulatory and inhibitory extrapancreatic factors, 
glucagon secretion is also regulated by intra-islet fac-
tors (paracrine regulation) (Figure 2) [23,24], the secre-
tion of which may, in turn, depend on stimulation 
by gut-derived hormones and/or neural signals; these 
signals include somatostatin (from δ cells) and pos-

sibly amylin, insulin, γ-aminobutyric acid and zinc 
(from β cells) [24]. It remains unclear whether glucagon 
feedback to α cells in an autocrine manner; accord-
ing to the most recent studies, α cells do not appear 
to express glucagon receptors (GCGRs) [25]. As men-
tioned, glucagon stimulates insulin secretion and 
may in this way, regulate its own secretion via insulin 
receptors expressed on the α cells [26]. However, insu-
lin arriving via the arterial supply to the α cells may 
also directly influence (inhibit) glucagon secretion [27]. 
Current data suggest that glucagon-induced insulin 
secretion depends on its cognate receptor but in addi-
tion also involves the GLP-1R – both expressed on the 
 pancreatic β cells [28,29].

Apart from the liver, glucagon has additional extra-
pancreatic effects. Thus, large pharmacological doses 
of glucagon inhibit appetite in humans, but the mech-
anism involved is unknown (and could involve the 
GLP-1R). Combined agonists of GCGR and GLP-1R 
(dual-agonists) are currently being investigated for 
treating obesity [31]. It has also been suggested that the 
body weight lowering effects of glucagon are linked 
to increased hepatic secretion of FGF-21 [32], which 
in turn may regulate sugar intake, possibly through 
direct effects on the hypothalamus (as FGF-21 has 
been detected in human cerebrospinal fluid) [33,34]. 
Finally glucagon may also have effects on the heart 
(positive inotropic and chronotropic effects) [35] and 
gastro intestinal motility (inhibitory) [36] at least when 
given exogenously at high concentrations.

In summary, regulation of glucagon secretion is 
complicated, and several in-depth reviews dealing with 
this have appeared [21,24,37–38]. In the following, we will 
discuss essential aspects of glucagon measurement in 
humans.

The measurement of glucagon is tricky but 
crucial for understanding the biology of 
glucagon
A biomarker of disease should only be used if its mea-
surement fulfills the reliability criteria of Richterich 
(sensitivity, specificity, precision and accuracy [39]) 
and the standard protocols from the Clinical and 
 Laboratory Standards Institute [40].

The entire amino acid glucagon sequence (HSQGT-
FTSDYSKYLDSRRAQDFVQWLMNT) is also 
found in the two peptide hormones, oxynto modulin 
and glicentin, which are secreted from intestinal L-cells 
in response to nutrient intake [30]. However, both of 
these peptides are C-terminally elongated compared 
with native glucagon; thus, antibodies binding to the 
free C-terminus of the glucagon molecule are in prin-
ciple specific for pancreatic glucagon (Figure 1). Extra-
pancreatic glucagon secretion has been reported after 
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Figure 1. Molecular processing of proglucagon to glucagon in humans and immuno-based methods for detection. 
Glucagon (33–61) results from prohormone convertase 2-dependent processing of proglucagon (1–160). In 
the intestine, proglucagon is processed by PC1/3 activity to glicentin (1–69), which may be further cleaved 
into GRPP and oxyntomodulin (33–69). Due to these processing patterns, immune-based methods relying on a 
single antibody will not be specific for glucagon: antibodies raised against the N-terminal region will cross-react 
with oxyntomodulin, C-terminal antibodies with proglucagon 1–61, and ‘side-viewing’ antibodies will bind to 
glucagon, glicentin, oxyntomodulin and glucagon 1–61. Full specificity requires a ‘sandwich’ approach, involving a 
combination of N- and C-terminally directed antibodies.  
Data taken with permission from [30]. 
GRPP: Glucagon-reactive polypeptide.
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pancreatectomy in humans [41] (and in dogs [42]) using 
C-terminal glucagon assays that were subsequently 
validated using state-of-the-art MS [43]. In addition, 
a molecule with a molecular weight similar to that of 
pancreatic glucagon (3485 MW) has been reported 
to be produced in the GI tract of several species [44]. 
Thus, there is little doubt that fully processed glucagon 
may be secreted from extrapancreatic sites in humans, 
at least under certain circumstances.

Significant presence in the circulation of N-termi-
nally elongated glucagon (proglucagon 1–61) has been 
reported in patients with kidney failure; thus, gluca-
gon measurements in subjects with impaired kidney 
function may lead to overestimation of endogenous 
glucagon secretion [45]. The stability of the glucagon 
molecule and the sensitivity of the assay must be con-
sidered when designing studies and planning measure-
ments of endogenous glucagon in humans, as discussed 
elsewhere in detail [45–48].

Hyperglucagonemia & diabetes: head or toe?
The importance of glucagon in normal glucose homeo-
stasis and in the pathogenesis of diabetes remains 

intensely debated [7,31]. Hyperglucagonemia is observed 
in most, but not all, subjects with Type 2 diabetes dur-
ing fasting [49–51]. However, an initial lack of suppres-
sion or hypersecretion of glucagon during a carbohy-
drate-rich meal is always reported [52], and this has 
been suggested to indicate that the α cell response to 
hyperglycemia is blunted, but the mechanism underly-
ing this effect has not been clarified [53]. Thus, an iso-
glycemic intravenous glucose infusion (i.e., resulting in 
identical glucose concentrations as the oral administra-
tion) typically inhibits glucagon secretion in an almost 
normal manner in patients with diabetes [54,55].

Two hypotheses involving glucagon to explain 
the hormonal dysregulation of plasma glucose in 
diabetes have gained particular support: the bihor-
monal and the glucagonocentric hypothesis. The 
glucagono centric hypothesis [7] was recently greatly 
supported by several studies demonstrating that 
disruption of GCGR signaling (by genetic meth-
ods, i.e., knock-out of the GCGR, or by antibodies 
against the GCGR), normalizes hyperglycemia in 
animal models of Type 1 diabetes (mice, rats and 
monkeys) [56–59] and also improves glucose regula-
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Figure 2. Regulation of glucagon secretion. (A) Several factors regulate the secretion of glucagon; most 
importantly glucose, amino acids, gastrointestinal peptides, the nervous system and possibly peptides secreted 
from the α, β and δ cells (intra-islet regulation), among which δ-cell-derived somatostatin is well established. 
(B) Same factors as in A are shown in red (inhibit secretion of glucagon) or black (stimulate secretion of glucagon).
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tion in Type 2 diabetes [12]. However, acute glucagon 
deficiency produced by either acute α cell depletion, 
glucagon-immunoneutralization or pharmacologi-
cal antagonism of the GCGR does not reduce the 
hyperglycemia of insulin deficiency [60]. The dif-
ferences between studies involving chronic dele-
tion or block of the GCGR and those relying on 
an acute block may be due to one of the important 
consequences of GCGR antagonism: α cell hyper-
secretion and hyperplasia [57,61,62]. The hyperplastic 
α cells seem to produce GLP-1 [61,63]. There may also 
be hyperplasia of the intestinal L-cells, resulting in 
further GLP-1 secretion. The mechanism whereby 
GLP-1 has glucose-lowering effects in animals inca-
pable of glucagon signaling and insulin secretion is 
unclear, but Jun et al. recently showed that a mouse 
model of Type 1 diabetes defective in both GLP-
1R and GCGR exhibited increased hepatic glucose 
production [63], suggesting that GLP-1 might influ-
ence hepatic glucose production independently of its 
insulinotropic and glucagonostatic properties. In line 
with this, GLP-1 was recently claimed to influence 
hepatic glucose production in humans independent 
of changes in islet  hormone secretion [64].

The extent to which α-cell dysfunction (appear-
ing as hyperglucagonemia) precedes a decline in insu-

lin secretion in subjects with Type 2 diabetes is not 
known. In epidemiological studies, Ahrén et al. were 
able to demonstrate that incipient impairment of glu-
cose tolerance was associated with attenuated insulin-
induced suppression of glucagon secretion [65]. Pro-
spective data on plasma glucagon levels in subjects at 
risk of developing Type 2 diabetes (impaired glucose 
tolerance and impaired fasting glucose) similarly sug-
gest that glucagon hyper secretion occurs very early in 
the development of glucose  intolerance [51,66–68].

Hyperglucagonemia has also been found in patients 
with pancreatic neuroendocrine tumors [69]. Inter-
estingly, the molecular heterogeneity of the circulat-
ing products of glucagon-producing tumors seems 
to reflect the clinical presentation [70]. For example 
greater than tenfold hypersecretion of glucagon 
(3485 MW) presents clinically as a classical gluca-
gonoma syndrome with a characteristic dermatitis 
termed necrolytic migratory erythema [71] (which 
interestingly can be ameliorated by an infusion of 
amino acids [72], see below). In contrast, greater than 
tenfold elevations of plasma concentrations of gluca-
gon-like immunoreactivity (GLI), representing the 
intestinal glucagon- containing proglucagon cleavage 
products oxyntomodulin and glicentin and which 
results from measurements using side-viewing anti-
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Figure 3. Molecular mechanisms for glucagon-stimulated gluconeogenesis 
in hepatocytes. Glucagon binds to its seven-transmembrane receptor on 
the hepatocyte and thereby activates Gαs- and Gq-coupled pathways. PKA 
phosphorylates and thereby activates gluconeogenic enzymes, including 
PEPCK and glucose-6-phosphatase, which then increase gluconeogenesis 
and glycogenolysis. Phosphorylase kinase is a serine/threonine-specific 
protein kinase that activates glycogen phosphorylase which then releases 
glucose-1-phosphate from glycogen. Levels of intracellular calcium are 
important for the glucagon-induced inhibition of glycolysis. Catabolism of 
proteinogenic amino acids is depicted in the upper left. 
cAMP: Cyclic adenosine monophosphate. 
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bodies, does not seem to correlate with the appear-
ance of a classical glucagonoma  syndrome. Thus, an 
‘L-cell like’ cleavage (PC1) of the proglucagon in the 
tumor (Figure 1), which also resulted in extremely 
high levels of active GLP-1 (7-36NH

2
) was associated 

with hypoglycemia [73,74]. Finally, hyperglucagonemia 
due to N-terminally elongated forms of the glucagon 
mole cule may also be found in subjects with gluca-
gonoma and, as aforementioned, in subjects with renal 
dysfunction [45]. However, further studies are needed 
to clarify the exact molecular nature and the source 
and activity of such N-terminally elongated glucagon 
molecules.

Hyperglucagonemia from a hepatic point of 
view
Glucagon is secreted into the portal vein and from 
there it reaches the hepatocytes at a higher concentra-
tion compared with what can be found in the systemic 
circulation [75]. Glucagon increases blood glucose lev-
els in a dose-dependent manner [76] by potent activa-
tion of hepatic glucose production, as demonstrated 
in a clamp study of conscious overnight-fasted dogs; 
net hepatic glucose output (NHGO), mainly derived 
from glycogenolysis, increased from 11 μmol/kg/min 
to 36 μmol/kg/min in 15 min following infusion 
with glucagon (Figure 3) [1]. Although glucagon 
secretion may show pulsatility [77], the effect of glu-
cagon on the liver does not seem to depend on pul-
satility [78]. Cyclic AMP/protein kinase A have long 
been established as the major intracellular mediators 
of the gluco regulatory effects of glucagon within 
hepatocytes by activation of glycogen phosphorylase, 
resulting in increased glycogenolysis [79]. Although 
glucagon importantly regulates enzymes responsible 
for gluconeogenesis, including PEPCK, glucagon 
may not be the most important regulator of gluco-
neogenic fluxes due to its inability to increase the 
delivery of gluconeogenic amino acids or glycerol to 
the liver in humans (because GCGRs do not appear 
to be expressed in skeletal muscle and in adipose tis-
sue in humans [80]). During prolonged fasting glu-
cagon may have importance for gluconeogenesis, not 
through mobilizing the precursors (which normally 
is taken care of by cortisol and low levels of insu-
lin) needed for it, but rather by maintaining gluco-
neogenic enzymes in an optimal state. Importantly, 
dysfunction of the liver, as observed in nonalcoholic 
fatty liver disease and cirrhosis, appear to cause 
hypersecretion of glucagon independently of changes 
in glucose tolerance [81,82]. Is glucagon hypersecretion 
a direct cause of failed hepatic function, and if so, 
how does the liver signal to the pancreas? In the fol-
lowing, we will propose and discuss the existence of 

a pancreas-liver axis with glucagon and amino acid 
feedback loops.

Knock-out of the glucagon receptor 
causes hyperglucagonemia, hyperplasia of 
pancreatic α cells & hyperaminoacidemia
A key discovery in glucagon biology was the cloning 
and characterization of the GCGR [83]. In humans, 
expression of the GCGR is mainly detected in the 
liver, the β cells of the pancreas, the kidney, the 
small intestine, certain regions of the brain and the 
heart [84]. Intriguingly, disruption of glucagon sig-
naling causes hyperglucagonemia and α-cell hyper-
plasia, as demonstrated in both GCGR knock-out 
mouse [60,61,85] and in humans, including those with 
dysfunctional mutations of the GCGR [86]. Also 
destruction of the glucagon gene leads to marked 
α-cell hyperplasia [87]. Genetic deletion of the PC2 
enzyme, which disrupts glucagon signaling by attenu-
ating the processing of proglucagon to glucagon in 
pancreatic α cells thereby reducing plasma glucagon, 
also causes mild hypoglycemia and α-cell hyperplasia, 
both of which can be reversed by provision of exog-
enous glucagon by osmotic micropumps [88]. Interest-
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Figure 4. Metabolic effects of glucagon receptor uncoupling on the hepato-pancreas axis. (A) illustrates the 
effects of the normal balance between glucagon and insulin on the liver, and (B) illustrates that specific knock-out 
of liver GCGR causes hyperaminoacidemia, hypersecretion of glucagon (and potentially also other proglucagon-
derived peptides including bioactive GLP-1 and oxyntomodulin), and eventually hyperplasia of pancreatic α cells 
but not β cells.  
Data taken with permission from [30]. 
GCGR: Glucagon receptor.
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ingly, it has been reported that in some patients with 
glucagonoma (glucagon producing tumors) the lev-
els of amino acids are very low [71] suggesting that at 
pathological levels of glucagon (up to several nmol/l 
compared with 4–8 pmol/L in healthy subjects) may 
cause the liver to suck in amino acids for conversion 
to urea, thereby causing severe hypoaminoacide-
mia. It is well established that glucagon is a power-
ful regulator of hepatic ureagenesis from amino acids 
and that glucagon immunoneutralization blocks this 
process [89]. Furthermore, N-acetylglutamate synthase 
(NAGS) that produces N-acetyl glutamate a unique 
co-factor essential for catalyzing the first enzyme urea 
genesis carbomyl phosphate synthetase-1 seems to be 
regulated at a transcriptional level by glucagon [90], in 
addition, several enzymes in the urea cycle are regu-
lated at a transcriptional level by glucagon [91]. Thus 
it seems clear that glucagon is a major regulator of 
plasma amino acid levels. But what is the role of amino 
acids for α-cell biology and secretion? Regarding the 
α-cell hyperplasia after glucagon receptor deletion it 
was soon demonstrated that liver-specific deletion of 
the GCGR also causes α-cell hyperplasia [62], and that 
α-cell hyperplasia in islets from GCGR knock-out 
mice normalizes following 8 weeks of implantation of 
the hyperplastic islets into wild-type mice [62], sug-
gesting that the hyperplasia was caused by a humoral 
liver-derived α-cell growth factor. Further studies 
revealed that disruption of glucagon signaling by 
proglucagon gene deletion is associated with hyper-
aminoacidemia [14,92], and in a recent study it was 
demonstrated that experimental hyperaminoacidemia 
may cause α-cell hyperplasia [14]. Collectively, these 
studies suggest that we might need to rethink the 
role of glucagon as exclusively associated with glucose 
metabolism and that amino acid are the missing link 

in a feedback loop connecting the liver and the α cells 
(Figure 4). Thus, it seems that a new era of glucagon 
biology has just started.

Conclusion
Glucagon biology has been studied for decades, but 
the mechanisms regulating glucagon secretion and its 
impact on diseases such as diabetes remain debated. 
Accurate estimation of plasma glucagon levels is 
important for unraveling the importance of elevated 
levels in diabetes and other pathological conditions 
and has been challenging, but improved methods are 
now appearing. Emerging data suggest that the physi-
ological role of glucagon is not restricted to blood 
glucose regulation, but also encompasses amino acid 
metabolism. Thus, a liver–α-cell axis seems to exist 
where glucagon regulates hepatic amino acid turn over 
and amino acids regulate α-cell growth and secretion. 
This may explain that conditions of glucagon excess 
and deficiency have greater impact on amino acid 
metabolism than on glucose metabolism while defi-
ciencies of amino acid metabolism, including liver dis-
ease, may have greater impact on α-cell secretion than 
disturbances of glucose metabolism.

Future perspective
Knowledge about the exact mechanisms whereby 
glucagon secretion is regulated is important for the 
understanding of diabetes pathophysiology. Hyperglu-
cagonemia, which can now be diagnosed with greater 
certainty because of the development of new improved 
assay methods [45], may not only reflect the dysregu-
lation of glucose homeostasis; rather, supported by 
recent evidence [14,62,92], it may be part of a hepatopan-
creatic feedback system. Thus, factors that uncouple 
this feedback systemic (liver disease, diabetes, GCGR 

Executive summary

The measurement of glucagon is tricky but crucial for understanding the biology of glucagon
•	 The development of specific and sensitive methods for measurement of glucagon is crucial for understanding 

the biology of glucagon. For instance, application of highly specific sandwich ELISAs for estimating glucagon 
secretion is important in patients with kidney failure and for the correct classification of tumors producing 
glucagon.

Hyperglucagonemia from a hepatic point of view
•	 Hyperglucagonemia may reflect inappropriate negative feedback by a humoral hepatic factor: the paradoxical 

hypersecretion in subjects with Type 2 diabetes may not only be due to dysregulation of glucose levels and 
‘miscommunication’ within the pancreatic islets, but may reflect impaired glucagon signaling in the liver. Liver-
specific deletion of the glucagon receptor causes α-cell hyperplasia and elevated plasma levels of glucagon.

Knock-out of the glucagon receptor causes hyperglucagonemia, hyperplasia of pancreatic α cells and 
hyperaminoacidemia
•	 Amino acids may be crucial for a hitherto unknown hepatic–pancreas feedback system controlling α-cell 

numbers and function. Conversely glucagon levels importantly regulate amino acid levels and turnover. 
Knock-out of the glucagon receptor causes hyperglucagonemia, hyperplasia of pancreatic α cells and 
hyperaminoacidemia, and there is evidence to suggest that it is the hyperaminoacidemia that causes the 
hypersecretion and hyperplasia.
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antagonists) result in a compensatory hypersecretion of 
α-cell-derived glucagon. In addition, it has been dem-
onstrated that postprandial glucagon responses may be 
derived from the GI tract. This raises new important 
aspect of glucagon physiology and pathophysiology – 
maybe glucagon from the gut is more important for 
amino acid regulation than for glucose metabolism.

We suggest that a new era with a reappraisal of 
glucagon from its current position as a mainly gluco-
regulatory hormone to an amino acid regulatory 
hormone will emerge in the coming years. This also 
suggests that hyperglucagonemia whenever it occurs 
should be re-evaluated in relation to liver function and 
amino acid turnover. There are already indications 
that the hyperglucagonemia of Type 2 diabetes may 
indeed reflect early hepatic dysfunction [93]. Recogni-
tion of the new liver–α-cell feedback loop may there-
fore have major impact on our understanding of the 

paradox hypersecretion of glucagon in subjects with 
Type 2 diabetes and improve our understanding of 
basic  glucagon biology.
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