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Abstract: Virus discovery from high throughput sequencing data often follows a bottom-up approach
where taxonomic annotation takes place prior to association to disease. Albeit effective in some
cases, the approach fails to detect novel pathogens and remote variants not present in reference
databases. We have developed a species independent pipeline that utilises sequence clustering for
the identification of nucleotide sequences that co-occur across multiple sequencing data instances.
We applied the workflow to 686 sequencing libraries from 252 cancer samples of different cancer and
tissue types, 32 non-template controls, and 24 test samples. Recurrent sequences were statistically
associated to biological, methodological or technical features with the aim to identify novel pathogens
or plausible contaminants that may associate to a particular kit or method. We provide examples of
identified inhabitants of the healthy tissue flora as well as experimental contaminants. Unmapped
sequences that co-occur with high statistical significance potentially represent the unknown sequence
space where novel pathogens can be identified.

Keywords: sequence clustering; taxonomic characterisation; novel sequence identification; next
generation sequencing; cancer causing viruses; oncoviruses; assay contamination
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1. Introduction

The International Agency for Research on Cancer (IARC) lists several biological species with
carcinogenic potential in humans [1]. This list comprises a bacterium (species Helicobacter pylori),
three parasitic flukes (Clonorchis sinensis, Opisthorchis viverrini and Schistosoma haematobium), and seven
viruses: human papillomaviruses (HPV), human immunodeficiency virus-1 (HIV-1), Epstein-Barr virus
(EBV), hepatitis B and C virus (HBV and HCV), Kaposi’s sarcoma-associated herpesvirus (KSHV), and
human T-cell lymphotropic virus type 1 (HTLV-1).

With the advent and spread of low-cost sequencing technologies, many viruses were discovered
in the last decade [2–8]. One interesting discovery that fuelled the search for oncoviruses was Merkel
cell polyomavirus (MCPyV) found to be clonally integrated in Merkel cell carcinomas [9,10]. The
computational biology community has promptly responded to the growing need for specialised
algorithms and pipelines to analyse the wealth of data [9,11–25]. Table S1 summarises the main
features of some of the common approaches. In spite of particularities in the implementation, these
methodologies share key conceptual similarities: First, sequencing reads or assembled contigs that
originate from the host are identified and discarded, a process termed computational subtraction [9,13].
When the genomes or the concentrations of foreign species are small compared to host genomes, this
step eliminates a substantial fraction of the total sequencing reads. Second, the remaining non-host
sequences are compared to a library of known reference sequences for taxonomic characterisation. The
aforementioned methods identify species present across multiple samples, and the recurrence of a given
viral entity may indicate an association to disease [10,26]. Albeit conceptually valid, this bottom-up
approach is inherently limited to the pre-existence of the organism in the reference databases, whereas
novel oncoviruses showing partial or no similarity to known sequences will be missed. Current efforts
aiming at estimating and characterising metagenomic diversity are far from a complete mapping of
the (viral) sequence-space [27]. In fact, it is common to observe that a small but significant amount
of unknown sequences, the so-called dark matter [28], goes through the current analysis pipelines
without proper characterisation and is discarded from further analyses [24,29,30].

Here, we propose a method capable of identifying the recurrence of sequences across related
samples independently of their existence in reference databases. Our top-down approach compares
samples and establishes recurrence prior to the taxonomic characterisation of the sequences. Thus,
enabling the identification of both known and novel biological entities. Our method has conceptual
similarities to the work of Andreatta et al. [31] where clustering of genes is used to find families
that are predominantly found in pathogenic bacteria. Attending to Koch’s postulates as modified by
Fredericks and Relman [32], sequences from biological entities with a causative or facilitator role would
be present in diseased samples and absent in healthy controls. In addition, recent studies documented
the presence of contaminating and/or artefactual sequences that source from the laboratory kits and
reagents used for sample processing and library preparation [14,33–37]. If not properly addressed,
these confounding observations may lead to erroneous conclusions [38,39]. Our method ascertains
the statistical associations between recurrent sequences and a collection of features that describe the
samples with respect to tissue, disease type, laboratory method, etc. Additionally, the presence of
other known technical problems, such as cluster invasion on the sequencing flow cells [40], might
be detected.

2. Materials and Methods

2.1. Ethics Statement

The study was conducted in accordance with the Declaration of Helsinki. Two ethical
boards reviewed the protocol of this study: The Regional Committee on Health Research Ethics
(Case No. H-2-2012-FSP2) and the National Committee on Health Research Ethics (Case No. 1304226).
Because the study used only samples that were anonymised at collection both boards waived the need
for informed consent in compliance with the national legislation in Denmark.
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2.2. Data Sets

Two hundred and fifty-two cancer samples of 17 different types were collected from various
locations in Denmark and Hungary. Cancer samples of malignant melanoma, acute myeloid leukaemia
(AML), B-cell chronic lymphocytic leukaemia (B-CLL), chronic myelogenous leukaemia (CML), and
T-lineage acute lymphoblastic leukaemia (T-ALL; n = 9) were obtained from Aarhus University
Hospital, Denmark. B-cell precursor acute lymphoblastic leukaemia (BCP-ALL), oropharyngeal head
and neck cancer, testicular cancer, and T-ALL (n = 2) were obtained from Rigshospitalet, Denmark
(Copenhagen University Hospital). Basal cell carcinoma, and mycosis fungoides (cutaneous T-cell
lymphoma) were obtained from Bispebjerg Hospital (Copenhagen University Hospital). Samples
of bladder cancer, breast cancer, colon cancer, as well as ascites fluid of breast cancer, colon cancer,
ovarian cancer, and pancreatic cancer were obtained from the Danish Cancer Biobank, Herlev Hospital,
Denmark. B-cell lymphoma cell lines were obtained from Aalborg University Hospital, Denmark.
Vulva cancer samples were obtained from the National Institute of Oncology, Budapest, Hungary.

Libraries were prepared at the Center for GeoGenetics (CGG), University of Copenhagen,
Denmark based on seven different methods for sample processing comprising five different enrichment
methods and shotgun sequencing targeting total DNA or RNA (Table S3). The enrichment methods
used in the current work were circular genome amplification, sequence capture with retrovirus probes,
virion enrichment (DNA and RNA), and mRNA enrichment. Further details on sample processing and
library preparation have been published elsewhere [37,41,42], except for mRNA enrichment which
was performed using Dynabeads mRNA direct extraction kit (Thermo Fisher Scientific, Waltham, MA,
USA) followed by ScriptSeq v2 RNA-Seq Library Preparation kit as for total RNA analysis [41].

Ultimately, the data set consisted of 686 DNA and RNA libraries, for which 2 ˆ 100 bp paired end
sequencing was performed using the Illumina HiSeq 2000 platform at BGI-Europe, Copenhagen,
Denmark. The 686 sequencing libraries thus originated from 252 different cancer samples, 32
non-template controls, and 24 exogenous controls. The distribution of methods, libraries and controls
for each sample type is provided in Table S2. Samples were preferably analysed with multiple methods,
thus 165 out of 252 samples were analysed with more than one laboratory method (Table S3).

2.3. Constituents of the Software Pipeline and Execution Parameters

The datasets went through a sequential pipeline with modules (in order) of preprocessing,
computational subtraction of host sequences, low-complexity sequence removal, sequence assembly,
clustering, association to metadata features, and taxonomical annotation. Figure 1 provides a schematic
representation of the pipeline used to identify recurrent sequences across related samples.

Demultiplexing was performed using a local python script to partition the reads based on
exact matches in the FASTQ header lines to the multiplexed indices provided. Preprocessing of
reads was performed for all datasets in parallel using AdapterRemoval [43] with the following
parameters {–trimns, –trimqualities, –minquality 2, –minlength 30, –collapse, –outputcollapsed,
–outputcollapsedtruncated, –singleton}. Read ends were trimmed for low quality base calls. Reads
were discarded if the length after trimming fell below 30 bp. In these cases, the other read in a pair
was kept as a singleton. Overlapping paired reads from short inserts were collapsed into a single read
if the overlap was longer than 11 bp, according to the default behaviour of AdapterRemoval.

Preprocessed reads were filtered if they showed homology to the human reference genome, which
included decoys and alternative sequences from version GCA_000001405.15 (GRCh38) of the Genome
Reference Consortium (downloaded August 20, 2014). Mapping to the human genome was done
using BWA [44] version 0.7.10-r789 with the MEM alignment algorithm and default parameters. All
mapped reads without Sequence Alignment/Map (SAM) [45] flag 4 were discarded. Single-unmapped
reads from read pairs were kept. Human depleted reads were filtered for low-complexity regions
using the NCBI-BLAST associated module DustMasker [46] and default parameters. Reads containing
low-complexity stretches of 25 bp or longer were discarded. Assembly of the remaining (non-human,
high complexity) reads was performed with IDBA-UD [47] and parameters {–precorrection}. Contigs
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shorter than 200 bp were discarded. A total of 1,387,377 contigs, originating from the 686 data sets,
went through the entire pipeline. Contigs ranged from 200 bp to 418,807 bp with an overall N50 of
817 bp.

Figure 1. Schematic representation of the bioinformatics pipeline used to process sequencing reads from
all data sets. The ‘preprocessing’ step includes removal of adapter sequences, trimming of low-quality
sequences, and merging of paired-end reads. Data sets progress in parallel until the ‘clustering’ step,
where contigs from all data sets are pooled and grouped.

Contigs from all data sets were pooled and clustered based on pairwise sequence homology
using CD-HIT [48], in fast mode. We chose parameters for clustering that maximised grouping of
similar sequences while minimising inclusion of unrelated sequences. We considered the following
different parametrisation values: percent minimum sequence identity {-c 0.80,0.85,0.90,0.95,0.99};
percent minimum alignment length based on the length of the shortest (-aS) or longest (-aL) sequence
{-aS,-aL 0.3,0.4,0.5,0.6,0.7,0.8,0.85,0.90,0.95,0.99}; global (1) or local (0) alignment mode {-G 1,0}. A
full factorial combination of the aforementioned parameters resulted in 200 different settings. There
were 126 successful combinations of settings listed in Table S4 from where we chose the final settings
{–c 0.90 –aS 0.90 –G 1}

The datasets were described with a panel of 404 different binary metadata features, for example
tissue or disease characteristics (Table S5). Features logically assessed whether they related to a
particular dataset or not. Features describing less than five datasets were removed. Additionally,
features that correlated perfectly in terms of Matthew’s correlation coefficient (MCC = ˘1) were merged.
These filters resulted in 143 unique features (Table S5). Biological features (n = 25) defined sample type,
for instance tissue or disease category. Methodological features (n = 49) described specifics for sample
preparation such as extraction kits, enrichment methods, polymerases, primers, buffer, filters used, or
the laboratory where the work was performed, etc. Technical features (n = 69) defined the flow cell lane
identifiers and whether resequencing was performed. The distributions of datasets and samples across
the features are provided in Table S5. Associations in the clustered contigs and metadata features were
evaluated with Fisher’s exact test using a one-tailed alternative hypothesis (greater) and calculated in
R using the function fisher.test [49].

Annotation of taxonomy was performed in two rounds. First aligning contigs with BLASTn [50]
with parameters {-evalue 0.001} using default {-task megablast} to a frozen version of the NCBI
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nucleotide database nt (downloaded 3 February 2015). Secondly, using BLASTx with parameters
{-evalue 0.001} of all unmapped contig stretches to a frozen version of the NCBI non-redundant protein
database nr (downloaded 3 February 2015). The best hit by highest bit-score was kept for each contig.
The taxonomy database (downloaded 3 February 2015) was used to translate all GenBank identifiers
from hits to taxonomy identifiers. The taxonomy identifiers were then used to obtain the complete
taxonomical lineage and extract scientific names of species. The abundances of all species in each
cluster were used to calculate the species evenness index as defined by Mulder et al. [51]. Clusters
were annotated as the most abundant species in each cluster.

The software to use after the assembly step has been uploaded at https://github.com/
jensfriisnielsen/sequence_recurrence. Sequence clusters that have been described in detail throughout
the manuscript have been included as supplementary files.

3. Results

3.1. Clustering Identifies Recurrent Nucleotide Sequences across Samples

Clustering performance depends on the adequate selection of parameters. We experimented
with a variety of configurations described by c0xaY0yGz where x,Y,y,z varied. The variables denote
minimum percentage of sequence identity x (c0x), minimum percentage of alignment length y (aY0y)
based on mode Y of shortest (aS) or longest (aL) contig in alignment, as well as using local (G0)
or global (G1) alignment mode z (Gz). For example, a configuration encoded C090aS090G1 would
represent a clustering that requires global alignments with a 90% minimum sequence identity over
90% of the length of the shortest contig. The full list of investigated parameter combinations can be
found in Table S4. We chose the parameters based on the performance of the clustering of expected
contaminant sequences from avian leukosis virus (accession id AY350569) [37] and other related avian
retroviruses (ARs) such as avian myeloblastosis virus [52]. ARs are used in the manufacture of the
reverse transcriptase FailSafe PCR enzyme (Epicentre, Madison, WI, USA) included in the utilized
ScriptSeq v2 RNA-Seq Library Preparation kit (Illumina, San Diego, CA, USA). This kit is commonly
used for preparation of RNA libraries [52]. We identified clusters containing contigs that aligned to
species of the Alpharetrovirus genus (NCBI taxa-id: 153057) according to BLASTn and BLASTx hereafter
referred to as AR clusters. All contigs in AR clusters were resolved with BLASTn and BLASTx and
two metrics were considered for AR clusters.

As the first performance metric, we computed the odds ratios (ORs) of the associations between
the presence of AR in the clusters and the use of the ScriptSeq kit. We used a 2 ˆ 2 contingency table
defining the sets of libraries: AR positive and ScriptSeq positive (ARpSSp); AR positive and ScriptSeq
negative (ARpSSn); AR negative and ScriptSeq positive (ARnSSp); AR negative and ScriptSeq negative
(ARnSSn). OR is then defined as the ratio ARpSSpˆARnSSn / (ARpSSnˆARnSSp) and describes the
strength of the association between clusters and features. ORs above 1 indicate association between
the presence of the AR virus and the use of the ScriptSeq kit. ORs for all AR clusters were inspected in
different parameter settings (Figure S1). The ORs varied mostly block-wise with the parameters. The
largest differences observed were between usages of the shortest or longest sequence in alignments
with the alignment length filter. Associations from the shortest mode tended to have higher dispersion
in the range of ORs. Furthermore, one block of clustering results using global alignment mode,
alignment length based on the shortest contig, and a minimum sequence identity of 90% (c09ˆaSyG1),
had an overall high range of ORs as well as the highest minimum values. This suggested that the
clustering was able to reproduce the association between AR clusters and the ScriptSeq kit. In contrast,
the clustering with parameter settings c080aS030G0 had a very broad range of ORs corresponding to a
skewed clustering where some clusters had incorporated most sequences and left other clusters with
only a few contigs.

As a second performance metric we computed the species evenness [51] indices of the AR clusters
represented in Figure S1. The species evenness index is a score that derives from the Shannon’s
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diversity index [53] and compares the abundance of each species within a cluster. An index of zero is
assigned to clusters that are constituted uniquely by contigs mapping to a single species. Contrarily,
scores closer to 1 would indicate that the cluster points to several species and that these are equally
abundant. In our experiment, we favoured lower evenness indices as they indicate that clusters were
able to single out species correctly. For example, parameter settings c080aL030G1 generally had a high
level of species evenness (median 0.73) in clusters, suggesting an incorrect separation of species. In
stark contrast, a block of parameters using global alignment mode, alignment length based on shortest
sequence, 90% minimal sequence identity, and a minimum alignment length of 80/85/90/95/99% of
the shortest sequence (c090aSyG1) all had a median species evenness of 0. This group of parameter
settings also showed desirable performance in terms of OR, as mentioned before. Generally it seemed
that global mode (G1) had better ORs than local mode (G0) when keeping other parameters fixed.
Additionally keeping 90% minimal sequence identity (c090) and varying minimal length of alignment
in shortest mode (aS) seemed stable in both ORs and species evenness indices indicating that these
close parameter settings were generally good. We chose to proceed with a clustering based on global
alignments with a 90% minimum sequence identity over 90% of the length of the shortest contig
(c090aS090G1). This configuration resulted in a total of 681,858 clusters. Of these, 23,205 clusters
contained contigs from at least five different data sets and represented 546,735 different contigs. The
full distribution of cluster sizes can be found in Table S6.

3.2. Characterisation of the Nature of the Recurrent Sequences

The associations between the clusters and the binary metadata features were assessed using a
Fisher’s one tailed exact test. There were 16,567 significant associations having p-value < 3.01e-10,
corresponding to a 0.001 significance level when using Bonferroni’s correction for multiple testing [54].
The significant associations were arranged in 6165 unique clusters and with 73 unique features. The
distribution of the significant associations showed that recurrent sequences originated from diverse
sources and that individual clusters often associated to more than one feature (Figure 2). Furthermore
it is evident that the clusters tend to group in their associations. Likely, these groupings represent
one or more organisms. We investigated the nature of the clusters accounting only for the associated
feature with the smallest p-value; hereafter described as the strongest associations. There were 50
unique features involved in all the strongest associations. The distribution of p-values for each
feature is represented in Figure 3. The 6165 strongest associations were distributed according to 602
biological, 5045 methodological and 518 technical associations. These unique features were arranged
in 3 biological, 24 methodological and 23 technical features. Most p-values were above 1e-24 and
associations with lower p-values were to a few methodological features annotated as extraction kits:
QIAamp DNA mini kit (f056) (Qiagen, Hilden, Germany), DNase/RNase: Promega DNase (f068)
(Promega, Madison, WI, USA), and DNase/RNase: Promega DNase stop solution (f069), purification
kit: RNeasy MinElute, Qiagen (f076), library build: NEBNext, New England BioLabs (f079) (New
England Biolabs, Ipswitch, MA, USA), and ScriptSeq v2 RNA-Seq, Illumina (f084); the latter with a
minimum p-value of 3.04e-89.
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Figure 2. p-values of all significant associations. Rows describe features with biological features in red,
methodological in green and technical in blue. There are 73 features significantly associated to one or
more clusters. Columns describe all significant associations of each of the 6165 unique clusters. The
cluster identifiers have been excluded to avoid cluttering.
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Figure 3. Lowest p-values of clusters established by the pipeline. The p-values are arranged by feature
of the strongest significant association of each of the 6165 clusters. The 50 features involved as strongest
associations have been coloured by type: biological (red), methodological (green), and technical (blue).
The boxes span the first and third quartiles. The dark band inside each box represents the median.
The whiskers of the boxes extend to the lowest and highest values within a distance of 1.5 times the
interquartile range. As can be seen, most p-values were above 1e-24, but a few methodological features
have associated clusters with very low p-values, such as f056, f068, f069, f076, f079, and f084. The
library preparation kit ScriptSeq v2 RNA-Seq, Illumina (f084) displays strongly associated clusters
with p-values as low as 3.04e-89 that mapped as species Avian myeloblastosis-associated virus. Clusters
that were annotated as NCBI species Parvovirus NIH/CQV were associated to laboratory-kit RNeasy
MinElute, Qiagen (f076) with minimal p-value 5.48e-38. Finally, a cluster annotated as Acanthocystis
turfacea chlorella virus MN0810.1 (ATCV) was associated to DNase/RNase: Promega DNase stop
solution (f069) with p-value = 4.19e-12.

3.3. Taxonomic Characterisation

Using BLAST and the NCBI taxonomy database a taxonomic characterisation was attempted for
the 546,735 contigs in the 6165 clusters. This resulted in a taxonomical annotation of 3553 clusters using
BLASTn and an additional 1630 clusters when using BLASTx. For 982 clusters, neither BLASTn nor
BLASTx found significant species in the database. These clusters remained uncharacterised (Table 1).
We found that almost all clusters significantly associated to biological features could be annotated (598
of 602) in contrast to non-biologically associated clusters (4584 of 5563). A total of 1524 unique species
were annotated corresponding to 5183 clusters.
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Table 1. Annotation of associations. The 6165 clusters were mapped using BLASTn and BLASTx. Rows
describe the corresponding type of feature involved as the strongest association of each cluster.

Feature type BLASTn BLASTx Unmapped Total

Biological 593 5 4 602
Methodological 2662 1515 868 5045

Technical 298 110 110 518
Total 3553 1630 982 6165

The Human Microbiome Project (HMP) [55] defines a collection of reference genomes built from
metagenomic samples and associates these to specific sites and tissues across human body sites.
We used this data set of 1317 associations as a confirmation that our pipeline was able to correctly
detect and taxonomically characterise recurrent biologically relevant sequences. HMP provides a list of
commensal organisms commonly found in the three sites that relate to our samples: the gastrointestinal
tract, oral cavity and urogenital tract. We observed the strongest, significant associations between
the expected organisms and biopsies from colon cancer, oral cavity cancer, and vulva cancer. The
taxonomical characterisation of these clusters is described in Table 2. Seven clusters significantly
associated to colon cancer biopsies describing four different organisms that inhabit the gastrointestinal
tract according to HMP, and 342 clusters significantly associated to oral cavity cancer describing 13
different organisms present in the oral cavity in HMP. Finally, we also discovered a cluster significantly
associated to vulva cancer annotated as species Campylobacter ureolyticus (p-value = 1.03e-12), an
inhabitant of the urogenital tract as described by HMP.

Table 2. Taxonomical characterisation of certain biologically associated clusters. The clusters are
significantly associated with lowest p-values to biological features and the species annotations are
described by HMP. In cases where several clusters shared the annotated species, the lowest p-value of
the associations is given #sig: number of significant clusters.

Feature Cluster annotation
(species) #sig. p-value HMP body site

Colon cancer biopsy Bacteroides fragilis 2 2.43e-20 Gastrointestinal tract
Colon cancer biopsy Faecalibacterium prausnitzii 3 1.60e-20 Gastrointestinal tract
Colon cancer biopsy Eubacterium rectale 1 2.92e-17 Gastrointestinal tract
Colon cancer biopsy Alistipes shahii 1 1.34e-13 Gastrointestinal tract
Oral cavity cancer Prevotella melaninogenica 292 1.74e-24 Oral
Oral cavity cancer Streptococcus agalactiae 2 4.60e-23 Oral
Oral cavity cancer Prevotella veroralis 8 1.73e-21 Oral
Oral cavity cancer Prevotella histicola 1 5.37e-16 Oral
Oral cavity cancer Streptococcus oralis 22 2.31e-15 Oral
Oral cavity cancer Prevotella dentalis 7 2.31e-15 Oral
Oral cavity cancer Porphyromonas gingivalis 2 4.49e-14 Oral
Oral cavity cancer Solobacterium moorei 1 1.34e-13 Oral
Oral cavity cancer Treponema denticola 2 8.26e-13 Oral
Oral cavity cancer Campylobacter rectus 1 2.60e-12 Oral
Oral cavity cancer Filifactor alocis 2 4.12e-11 Oral
Oral cavity cancer Streptococcus dysgalactiae 1 4.12e-11 Oral
Oral cavity cancer Prevotella sp. oral taxon 306 1 4.85e-11 Oral

Vulva cancer Campylobacter ureolyticus 1 1.03e-12 Urogenital tract

In the methodological associations, we correctly detected the strong known association (p-value:
3.04e-89) of avian myeloblastosis-associated virus (accession L10922.1) used in the manufacture of
the ScriptSeq v2 RNA-Seq library preparation kit (f089). As the clustering parameters were evaluated
with this known contaminant, this is expected. Furthermore, we annotated 19 clusters as NCBI
taxonomy species Parvovirus NIH-CQV (accession KC617868.1; NCBI taxa-id 1341019), an established
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contaminant [34,35]. The associated feature with lowest p-value to the parvovirus clusters suggested a
contamination from the RNeasy MinElute purification kit (f076) manufactured by Qiagen (p-value:
5.48e-38). In addition, a single cluster annotated as NCBI taxonomy species Acanthocystis turfacea
Chlorella virus MN0810.1 (accession JX997174.1, taxa-id 1278272) with lowest associated p-value
(p-value = 4.19e-12) to laboratory kit DNase/RNase: Promega DNase stop solution (f069). ATCV-1 was
previously reported as a contaminant [36].

3.4. Identification of Novel Recurrent Sequences

In addition to the sequences that were characterised in the previous step, we found 982 examples
of uncharacterised clusters. The contigs in these clusters varied substantially in length ranging from a
minimum of 200 bp to a maximum of 33.6 kb (N50 = 617 bp). Our approach provides the capability
to discover these recurrent novel sequences, but also permits the investigation of their plausible
origin. Most associations were methodological (Table 1), probably sourcing from nucleotide sequences
contained in various laboratory kits (Figure 4). For instance, out of the 868 methodologically associated
clusters, there were 648 associated clusters to the laboratory reagent DNase/RNase: Promega DNase
stop solution (minimum p-value: 2.40e-36). Additionally, 110 recurring sequences were attributed to
technical issues of the flow cell lanes (minimum p-value: 1.85e-21 in feature 383). In total, 4 unmapped
clusters were associated to a biological feature, namely oral cavity cancer, with the longest contig of
each cluster at 1789, 3247, 4661, and 4720 bp and with respective p-values of 1.01e-10, 1.01e-10, 1.17e-14,
and 1.01e-10.

Figure 4. Unmapped clusters. The clusters are placed by their strongest associated feature. Feature
types are marked in colour as follows: biological (red), methodological (green), and technical (blue). Top:
Number of clusters associated to each feature on a log-10 scaled axis. There are 648 associated clusters
of feature DNase/RNase: Promega DNase stop solution (f069), and 1 associated cluster to feature
Polymerases: Phusion HF, NEB (f086). Bottom: Base-pair length (bp) of all cluster representatives
(longest contig of each cluster) on a log-10 scaled axis. The N50 of all unmapped cluster representatives
are marked by a brown dot. The longest cluster representative is 33.6 kb with N50 = 617 bp.
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To further clarify the unresolved biologically associated sequences, we manually investigated
the cluster representatives using the newest databases (December 2015) at the NCBI web-interfaces
for BLASTn, BLASTx and CCD v. 3.14 (conserved domains) [56] with default parameters and an
e-value <0.001 (Table 3). All cluster representatives could be explained as commensal bacteria related
to the oral cavity as described by HMP. In order of increasing length, the cluster representatives
were identified as: Prevotella veroralis, Prevotella veroralis, Prevotella fusca JCM 17724, and
Peptostreptococcus anaerobius as the best hits with percent sequence identity: 92%, 90%, 91%, and
72%, respectively. Cluster representatives 3 and 4 contained both bacterial and phage-like conserved
domains. The super family DUF4280 is of unknown function but related to bacteria and the ND2
super family is the nicotine adenine dinucleotide (NADH) dehydrogenase subunit 2 involved in
electron transport. Conversely, Phage_base_V is related to the tail of phages and rve is an integrase
domain that could also be explained as part of a transposon. Likely these sequences derived from less
well-described parts of the microbiome.

Table 3. Conserved domains of unmapped biological clusters. The cluster representatives of the
four unmapped biologically associated clusters were manually searched for sequence similarities and
conserved domains via the NCBI web-interfaces BLASTn, BLASTx, and CCD, respectively. Cells
containing a dash had no hits with an e-value < 0.001. Cluster representative: Length of the sequence.
BLASTn and BLASTx: Organism name (accession) %-id / %-coverage. CCD: Domain name (accession).

Cluster
representative BLASTn BLASTx CCD

1789 bp -
Prevotella veroralis
(WP_026284690.1)

92% / 42%
-

3246 bp Prevotella fusca JCM 17724
(CP012075.1) 76% / 18%

Prevotella veroralis
(WP_004384161.1)

90% / 56%

DUF4280 super family
(cl16620) TauE super family

(cl21514)

4661 bp Prevotella fusca JCM 17724
(CP012075.1) 91% / 87%

Prevotella fusca
(WP_050696472.1)

85% / 66%

Peptidase_M23 (pfam01551)
lysozyme_like super family

(cl00222) DUF4280
(pfam14107) Fil_haemagg_2
(pfam13332) Phage_base_V

(pfam04717)

4720 bp Eubacterium sulci ATCC
35585 (CP012068.1) 71% / 21%

Peptostreptococcus
anaerobius CAG:621

(CCY47489.1) 72% / 36%

Acyl_transf_3 super family
(cl21495) ND5 (MTH00095)
rve (pfam00665) ND2 super

family (cl10157)

4. Discussion

Usually, virus discovery in shotgun sequencing studies involves processing millions of reads in
a viroinformatics pipeline. Existing tools typically offer a comprehensive taxonomical description
of a single sample that is compared to the taxonomy of other samples to determine their relevance.
A downside of this bottom-up methodology is that novel sequences that cannot be sufficiently well
characterised in the first round are often discarded in the process. Another disadvantage is that
potential contaminants will have to be controlled for in the post-processing of the data, an effort
that is often omitted [38]. In the present study, we have presented a methodology to categorise
recurring sequences according to experimental origin and metadata features. Additionally, using this
methodology we could replicate both biological and methodological sequence associations known
from the literature as well as pinpoint new unannotated recurring sequences.

In this study, we had no datasets and features of healthy biological controls. We included a
comparison to published reference genomes from HMP to validate that biologically co-occurring
sequences can be found with the presented methodology. In this case, we are most likely observing



Viruses 2016, 8, 53 12 of 16

normal biological inhabitants of the tissue samples, something our metadata scheme does not account
for. The disease association of many of these organisms is obviously not fully known, and some of
them could be related to disease features outside the cancer domain, features that we did not include
in the present study.

Optimising clustering parameters for one virus family might not result in the optimal separation
of other families. Here, we optimised clustering parameters to rediscover the association of sequences
to a known laboratory kit. Using these clustering parameters may result in a non-optimal separation
of clusters that biologically belonged together, or the reverse problem—merged clusters that reflected
different biological units. Optimal separation is likely problem-specific. Different taxonomic
units would require the use of different clustering parameters to separate. However, choosing
taxonomy-specific parameters requires a working hypothesis of the most likely findings. Here, we
focused on the general problem of associating sequences to features using a known association to
guide the choice of clustering parameters.

A combination of several features may be the true foundation of particular sequences but this
was not explored in this work. There may also be situations where a combination of clusters is the
correct association to a particular feature. For instance, a virus that is present with a low titre may
be sequenced sporadically resulting in less than full coverage and several non-coherent contigs from
different viral genome regions. Each cluster may include an incomplete amount of data sets and
thereby artificially show a weaker association. Merged and viewed as one, the incomplete clusters
will have the correct strength of association. A grouping based on taxonomy, or a more data-driven
approach that cluster sequence groups based on the associated datasets as seen in Figure 2, could be
included as another iteration to properly strengthen the statistical associations. Furthermore, forming
clusters only by internal sequence identity may also miss pathogenic scenarios such as an oncovirus
and any necessary helper viruses that do not share homology to the oncovirus.

In the present study, we used a majority vote to assign taxonomy. There could be other ways to
assign taxonomy, for instance, using a lowest common ancestor (LCA) strategy. A majority vote will
likely introduce some false assignments if there are distant taxa involved in the sequence group present
in nearly equal fractions. A LCA strategy can handle this but may reduce the taxonomic resolution to
a level where there is no real gain of information.

After determining what the significantly co-occurring sequence groups are, more effort might
resolve interesting unmapped contigs. For instance, use of more sensitive alignment algorithms, profile
Hidden Markov Models (HMMs), gene predictors, artificial neural networks trained on specific signals
such as viral capsid sequences [57], or PCR extraction followed by Sanger sequencing might provide
the relevant clues. However, that was not within the scope of this study.

The major advantage of the top-down approach is that it works without prior knowledge of the
sequences. It is not dependent on reference sequence databases to single out the promising candidates
for further analysis. The top-down method can determine the relevance of unknown sequences
upfront while also systematically controlling for contamination by design. Most of the annotated
sequences found in this study were sequenced from cancer specimens. However, it is apparent from
the association analysis that several viral sequences detected are possibly contaminants or technical
artefacts. Furthermore, the unmapped clusters are retained and easily arranged by relevance according
to the nature of their associated features. Having this information helps precipitate a prioritised list of
sequence candidates

The quality of the associations will depend on the experimental design, sampling, available
metadata, as well as the rigorousness and standardisation of both working routines and annotations.
We stress the point that care must still be taken when formulating hypotheses and in the interpretation
of associations.
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5. Conclusions

Virus discovery using high-throughput sequencing and especially characterising clinical samples
is a challenge. Many viral discovery pipelines rely on similarity to reference databases as the most
compelling argument for identifying putative sequences of medical or biological importance. Although
a necessary step in the analysis, it has the downside of not considering novel sequences not included
in reference sets as well as not considering the origins of the discoveries. There are many examples
of contamination and technical artefacts; therefore, potential discoveries should be accompanied by
convincing evidence that the sequences are not instead associated with the methodology or technology
in use. We suggest a different approach that has complementary advantages inherent in the design.
We show that we can differentiate between biological and non-biological associations, replicate known
associations and potentially add new associations of cancer-associated viruses.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/8/2/53,
Table S1: Virus discovery pipelines, Table S2: Distribution of library types, Table S3: Methods in cancer samples,
Table S4: Clustering parameters, Table S5: Feature descriptions, Table S6: Datasets in clusters, Figure S1:
Clustering performance.
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