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14 Abstract

15 Woody vegetation in global tropical drylands is of significant importance for both the inter-

16 annual variability of the carbon cycle and local livelihoods. Satellite observations over the

17 past decades provide a unique way to assess the vegetation long-term dynamics across biomes

18 worldwide. Yet, the actual changes in the woody vegetation are always hidden by inter-

19 annual fluctuations of the leaf density, because the most widely used remote sensing data are

20 primarily related to the photosynthetically active vegetation components. Here, we quantify

21 the temporal trends of the non-photosynthetic woody components (i.e. stems and branches) in

22 global tropical drylands during 2000-2012 using the vegetation optical depth (VOD),
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23 retrieved from passive microwave observations. This is achieved by a novel method focusing

24 on the dry season period to minimize the influence of herbaceous vegetation, and using

25 MODIS (MODerate resolution Imaging Spectroradiometer) NDVI (Normalized Difference

26 Vegetation Index) data to remove the inter-annual fluctuation of the woody leaf component.

27 We revealed significant trends (p < 0.05) in the woody component (VODwood) in 35% of the

28 areas characterized by a non-significant NDVI trend, indicating pronounced gradual

29 growth/decline in woody vegetation not captured by traditional assessments. The method is

30 validated using a unique record of ground measurements from the semi-arid Sahel and shows

31 a strong agreement between changes in VODwood and changes in ground observed woody

32 cover (r2 = 0.78). Reliability of the obtained woody component trends is also supported by a

33 review of relevant literatures for eight hot-spot regions of change. The proposed approach is

34 expected to contribute to an improved assessment of e.g. changes in dryland carbon pools.

35

36 Introduction

37 While vegetation in drylands has relatively low biomass, as compared to the humid areas, it is

38 of significant importance for several reasons: Firstly, drylands cover approximately 41% of

39 the Earth’s terrestrial surface, and therefore total biomass and carbon stock of vegetation in

40 drylands are still a substantial part of the global total (IPCC, 2014). Secondly, the variability

41 of vegetation in drylands is comparatively high, implying that short-term changes in global

42 carbon stocks may be dominated by the contribution from drylands (Ahlstrom et al., 2015,

43 Liu et al., 2015). Thirdly, vegetation in drylands provides both products and services of great

44 importance for local livelihoods (Adeel et al., 2005). Trend analysis of long-term Earth

45 Observation (EO) data has been widely used as means to assess vegetation dynamics in

46 drylands (Fensholt et al., 2012, Horion et al., 2016). Moreover, different vegetation functional

47 types (i.e. persistent vegetation and recurrent vegetation) have been assessed separately in
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48 order to gain insights of the vegetation changes and its relation to changes in climate and

49 human activities (Andela et al., 2013, Archibald &  Scholes, 2007, Donohue et al., 2009,

50 Fensholt et al., 2015). Specifically, herbaceous vegetation is characterized by a short life-span

51 (months or years) and large inter-annual variability driven by water availability and

52 ecological disturbances (e.g. fires), whereas woody plants are characterized by a longer life-

53 span (decades or centuries) with more stable growth conditions, particularly for the woody

54 component (i.e. stems and branches).

55 Relatively few global scale quantitative studies on changes in dryland woody vegetation are

56 available. Most researches on global deforestation/forest change are not designed to map

57 woody vegetation in drylands, since they often do not fulfill the criteria of ‘forest’ (e.g. the

58 FAO criterion of 10% crown cover, an area of more than 0.5 hectares and tree height above 5

59 m) (Hansen et al., 2013, Shimada et al., 2014). The few studies focusing on woody vegetation

60 trends in drylands at regional scale used the normalized difference vegetation index (NDVI)

61 data from optical sensors, e.g. MODerate resolution Imaging Spectroradiometer (MODIS)

62 that are highly sensitive to the photosynthetic leaf component and largely insensitive to the

63 non-photosynthetic woody component (Brandt et al., 2016a, Horion et al., 2014, Mitchard &

64 Flintrop, 2013).

65 The leaf component is generally only a small fraction of the entire above-ground woody

66 biomass, and may not be representative of the trends and spatial patterns of the woody

67 component. In drylands the leaf component is often strongly related to water availability, and

68 may therefore change quite rapidly depending on inter-annual variations in rainfall. Also, the

69 spatial variability of soil conditions and topography partly control water availability.

70 Moreover, large differences in phenology are found between woody species and consequently

71 changes in species composition will result in substantial changes in the leaf component
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72 (Brandt et al., 2016b) that are not necessarily reflected in changes in woody biomass. In

73 addition, fires will have a considerable impact on inter-annual variations of leaf density and

74 mass. All these factors will cause inter-annual fluctuations of the leaf component and tend to

75 mask the supposedly more gradual and continuous trends in woody biomass.

76 Microwave sensor observations are sensitive to the water content in both photosynthetic

77 (herbaceous and woody plant leaves) and non-photosynthetic (woody stems and branches)

78 vegetation components (Jones et al., 2013). The contribution of each component to the

79 observed signals highly depends on the microwave frequency used. Observations from low

80 frequency (i.e. 1.4 GHz) carry information mainly on the woody component (more related to

81 branches for forests), while the relative information on the leaf component increases

82 significantly with higher frequencies (Ferrazzoli et al., 2002, Guglielmetti et al., 2007, Santi

83 et al., 2009). The L-band (1-2 GHz) radar backscatter has been shown to be highly correlated

84 to woody biomass in tropical savannas and woodlands (Mitchard et al., 2009). Yet, available

85 L-band radar data have a limited record length hampering woody vegetation change studies

86 spanning decades, and it is still challenging to apply radar backscatter data for woody biomass

87 estimation at regional to global scales due to the difficulties of accounting for spatial

88 variability in soil properties and vegetation geometrical distributions at a high spatial

89 resolution (Kerr, 2007).

90 Recently, Liu et al. (2011) produced a global long-term vegetation optical depth (VOD)

91 dataset retrieved from satellite passive microwave radiometer observations at frequencies

92 higher than 6.8 GHz, which was shown to carry important information on woody vegetation

93 yet heavily influenced by the herbaceous vegetation and woody plant leaves (Grant et al.,

94 2016, Tian et al., 2016). In this study, we present a method to separate the leaf and woody

95 components by the combined use of VOD and NDVI datasets to obtain a more accurate
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96 assessment of woody vegetation changes/trends in global tropical drylands for the period

97 2000 to 2012.

98

99 Materials and methods

100 Study area

101 According to the UNEP (United Nations Environment Program) humidity map, global

102 drylands are defined to include hyper-arid, arid, semi-arid and dry-subhumid regions. In this

103 study, we focused on the tropical (between 35°N and 35°S) dryland areas, including the

104 majority of woody vegetation of global drylands. Annual rainfall is usually below 800 mm

105 and concentrated in the wet/growing season, with high inter-annual variability in both rainfall

106 amount and timing (Adeel et al., 2005). The typical vegetation in tropical drylands are annual

107 herbaceous plants, shrubs and trees with open canopy cover, classified as savanna, shrublands

108 or woodland depending on the dominant plant types. Annual herbaceous vegetation normally

109 completes their life cycle during a single growing season spanning few months, governed by

110 the timing of the rainy season. Contrastingly, trees and shrubs may show distinctly different

111 seasonal cycles dependent on the species, i.e. evergreen, semi-evergreen or deciduous.

112 NDVI and VOD data

113 We used the Collection 6 Terra MODIS monthly product MOD13C2 with a spatial resolution

114 of 0.05 degree (about 5.5 km at equator) and covering from 2000 to present (Didan, 2015).

115 The surface reflectance bands have been corrected for atmospheric effects (Vermote &

116 Kotchenova, 2008) and sensor degradation (Detsch et al., 2016, Lyapustin et al., 2014). To

117 match the spatial resolution of VOD data, the red and near-infrared reflectance bands were

118 aggregated to 0.25 degree by averaging before calculation of NDVI data.
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119 The VOD data retrieval is based on the Land Parameter Retrieval Model (LPRM) (Owe et al.,

120 2001) with inputs of satellite passive microwave observations from several sensors, including

121 the Special Sensor Microwave Imager (SSM/I), the Advanced Microwave Scanning

122 Radiometer – Earth Observing System (AMSR-E), the WindSat and the FengYun-3B (Liu et

123 al., 2015). The microwave frequency of each sensor used is 19.4 GHz, 6.9 GHz, 6.8 GHz and

124 10 GHz, respectively. A cumulative distribution function (CDF) matching approach was used

125 to merge the VOD retrievals from different sensors without changing the inter-annual

126 variations and long-term trends (Liu et al., 2012). The VOD dataset was produced at a

127 monthly temporal interval from 1988 to 2012 and a spatial resolution of 0.25 degree (about 27

128 km at equator). The data is consistent among sensors as evaluated in Tian et al. (2016).

129 Conceptual design

130 The VOD retrievals from microwave emission at frequencies higher than 6.8 GHz are related

131 to the water content in both the herbaceous plants and the woody plant leaves/stems/branches

132 (Guglielmetti et al., 2007, Santi et al., 2009). In drylands characterized by a long dry season,

133 the contribution from herbaceous vegetation will rapidly disappear and become negligible a

134 few months into the dry season, and consequently the signal from woody vegetation will

135 dominate. In order to separate the contributions from the leaf and woody components, we

136 employed the independent information from MODIS NDVI which represents the amount of

137 photosynthetically active plant material, and is largely determined by green leaves (i.e. leaf

138 density) of woody vegetation in the dry season (Brandt et al., 2016b). The overall conceptual

139 design is shown in Fig. 1a and the detailed procedure of retrieving trends/changes in the

140 woody component is described as follows (illustrated in supplementary material Fig. S1 based

141 on simulated data):
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142 i. For each pixel over a certain period of years, we decompose the observed dry season

143 VOD (denoted as VODraw) and the corresponding observed NDVI signal (denoted as

144 NDVIraw) into two components: the long-term trend (LTT) and the inter-annual

145 variations (IAV), respectively:

146 VODraw = VODLTT + ΔVODIAV                          (1)

147 NDVIraw = NDVILTT + ΔNDVIIAV                                          (2)

148 Both the leaf and woody components would contribute to VODLTT and VODIAV, while

149 the NDVILTT and NDVIIAV are primarily attributed to the leaf component.

150 ii. If there is a significant correlation between VODIAV and NDVIIAV, we assume that the

151 VODIAV is dominated by a contribution from the leaf component while the woody

152 component is relatively stable over time. Then we establish a linear regression

153 between VODIAV and NDVIIAV:

154 ΔVODIAV = β × ΔNDVIIAV + ε            (3)

155 Where β and ε are the slope and the residuals, respectively, varying as a function of

156 woody vegetation density and species composition. Note that the intercept of the

157 regression is 0 since both the independent and response variables have been already

158 detrended. We built the regression model using the detrended VOD/NDVI instead of

159 the original VOD/NDVI observations to avoid an underestimation of the trend in the

160 woody component (Supplementary material Fig. S1).

161 iii. We apply the slope parameter (β) to NDVIraw to estimate the contribution from the leaf

162 component to both VODLTT and VODIAV (denoted as VODleaf):

163 VODleaf = β × NDVIraw + b       (4)

164 Then the difference between VODraw and the estimated VODleaf would be the

165 contribution from the woody component (denoted as VODwood):
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166 VODwood = VODraw – VODleaf       (5)

167 It must be noted that we focus only on the long-term trends in VODwood, as the

168 absolute values of VODwood cannot be obtained with the lack of estimation of b in

169 equation (4). 

170

171 Fig. 1 (a) Conceptual design of the estimation of trends in the dryland woody vegetation component.

172 (b) An example pixel (9.5°N, 18.75°E) showing the temporal profile of NDVI, VOD and the retrieved

173 VODwood. Note that the focus of this approach is on the temporal trend of the retrieved VODwood, since

174 the absolute values cannot be inferred.

175 Applying to remote sensing data

176 The method proposed was applied to monthly MODIS NDVI and VOD data from 2000 to

177 2012 being the intersection period of the NDVI and VOD datasets used. The VOD and NDVI

178 data were detrended per pixel to obtain the inter-annual variation VODIVA and NDVIIAV,

179 respectively. Pixels with a non-significant t (p ≥ 0.05) linear correlation between VODIVA and

180 NDVIIAV were masked out for retrieval of VODwood, and also pixels with an NDVI value

181 below 0.1 were excluded in the analysis to minimize influences from the soil background
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182 (Huete, 1988). We determined the dry season period as the three months with lowest values in

183 each dry season of the VOD observations (accounting for cross calendar-year minimum of

184 VOD values in the southern hemisphere). To reduce the impact of cloud cover, we compared

185 the Pearson product-moment correlation coefficient between all the seven possible

186 combinations within the three months of detrended VOD and NDVI (i.e. first minimum,

187 second minimum, third minimum, average of first and second minimum, average of first and

188 third minimum, average of second and third minimum, and average of all the three months)

189 and selected the one characterized by the highest r value. An example shows that the retrieved

190 VODwood is more stable over time as compared to both NDVI and VOD (Fig. 1b). The NDVI

191 trend was transformed into VOD units by multiplying the slope value β to be comparable with

192 the retrieved VODwood trend.

193 Validation with in situ measurements

194 Time series data of in situ woody cover and leaf biomass available from Senegal were used to

195 validate the retrieved trends of the woody and leaf components, respectively. Validating long-

196 term trends requires continuous field data records covering a long time period and being

197 representative for areas comparable with the spatial resolution of the satellite data. Moreover,

198 in situ data should ideally include a broad range of ecosystem functional types and be located

199 in areas where actual trends are observed. This study uses a unique data set of 11 ground sites

200 (supplementary Fig. S2), located along a north-south rainfall gradient in Senegal (200-800

201 mm/year) covering the full time period of this study. The woody plant cover along this

202 gradient increases from approximately 3% in the north to more than 40% in the south,

203 including typical dryland evergreen and deciduous species (Brandt et al., 2016b). Moreover,

204 significant changes within the last 15 years are observed in these areas (Brandt et al., 2015).

205 Each site consists of a 1 km transect line, and the canopy cover of all woody plants
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206 (regardless of size) was measured every two years in 4 circular plots, spaced at 200 m

207 intervals (Brandt et al., 2016b). Furthermore, the leaf biomass of woody species was

208 investigated for the same sites using allometric models (Diouf et al., 2015). Leaf mass and

209 density is closely related to inter-annual rainfall variations, whereas the woody cover is more

210 stable and representative for the woody vegetation density.

211 The scale differences between the in situ measurements and satellite data inevitably introduce

212 bias since pixel values generally tend to over/under estimate lowest/highest plot scale values

213 (Fensholt et al., 2006). However, the sites are originally selected to be representative for

214 relatively large homogeneous areas (Diallo et al., 1991) and have been successfully linked

215 with VOD pixels (Tian et al., 2016). Therefore, it was deemed feasible in this case to perform

216 pixel vs. plot scale comparisons between the trends of EO data and in situ measurements. 

217 Results

218 Trends in different woody vegetation components

219 The detrended dry season VOD data is significantly (p < 0.05) correlated with the

220 corresponding detrended NDVI data in 71% of global tropical drylands over the period 2000-

221 2012 (Fig. 2). For these areas, 14% of the NDVI pixels show significant trends (p < 0.05,

222 located mainly in southern Africa and Australia, Fig. 3b), while 27% of the VOD pixels have

223 significant trends (Fig. 3a). After removing the leaf inter-annual fluctuation from the VOD

224 signal, the retrieved VODwood shows significant trends in 36% of global tropical drylands (Fig.

225 3c). Furthermore, for pixels with a non-significant NDVI trend, 35% show a significant

226 VODwood trend (22% positive and 13% negative), revealing considerable areas characterized

227 by a woody vegetation trend obscured by leaf fluctuations (Fig. 4).
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228

229 Fig. 2 Correlation coefficients (r value) between detrended NDVI and detrended VOD time

230 series during 2000-2012.
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231

232 Fig. 3 Trends of (a) VOD, (b) NDVI, and (c) VODwood during 2000-2012. Pixels with non-

233 significant (p ≥ 0.05) correlation between detrended NDVI and detrended VOD are masked

234 with light grey color. Pixels with non-significant trends (p ≥ 0.05) are masked with dark grey

235 color. Black boxes in (c) delineate hot-spot areas of VODwood changes (Fig. 6).
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236

237 Fig. 4 Spatial patterns of different trend combinations of VODwood (woody component) and

238 NDVI (leaf component).

239 Validation with in situ measurements

240 The NDVI derived leaf trend is strongly coupled to the in situ leaf biomass trend (r2 = 0.59; p

241 < 0.01, Fig. 5a), yet not significantly correlated with the in situ woody cover trend (Fig. 5c).

242 Contrastingly, the VODwood trend is highly correlated with the in situ woody cover trend (r2 =

243 0.78; p < 0.001, Fig. 5f) whereas no significant correlation with the in situ leaf biomass trend

244 is observed (Fig. 5d). The VOD trend shows an intermediate correlation with both the in situ

245 leaf biomass trend (r2 = 0.27; p < 0.1, Fig. 5b) and the in situ woody cover trend (r2 = 0.60; p

246 < 0.01, Fig. 5e). Therefore, the method based on the complementary information in the VOD

247 and NDVI datasets has proven to successfully reduce the inter-annual fluctuations of the

248 VOD signal associated with the leaf component, thereby representing the woody vegetation

249 trend better than when using only VOD.
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250

251 Fig. 5 Relationships between trends of in situ measured (a-c) leaf biomass and (d-f) woody

252 canopy cover and trends of (a, d) NDVI, (b, e) VOD, and (c, f) VODwood. Locations and

253 measurements of all in situ sites are shown in supplementary Fig. S2 and S3.

254 Sub-continental hot-spot regions of change

255 During the period 2000-2012, the trends in VODwood were found to be significantly (p < 0.05)

256 positive in 22.7% of global tropical drylands whereas 13.3% were characterized by a

257 significantly negative trend. We selected eight sub-continental hot-spot change regions of

258 VODwood trends for further analyses (as indicated in Fig. 3c and enlarged in Fig. 6). The total

259 area of significant VODwood trends and the percentage of significant trends per area for each

260 hot-spot change region are summarized in Fig. 7. Large coherent areas of pronounced

261 increasing VODwood trends are observed in Sahel, Namibia and South Africa, and East

262 Australia. Contrastingly, areas of significant decreasing VODwood trends are found in Gran

263 Chaco, eastern Africa, West Australia, and the eastern part of southern Africa.
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264

265 Fig. 6 Trends of VODwood in hot-spot change regions of (a) Mexico & Texas, (b) Gran Chaco,

266 (c) Brazil, (d) Sahel, (e) southern Africa, (f) eastern Africa, (g) India, and (h) Australia.
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267 Spatial extend of hot-spot change regions is indicated by the black boxes in Fig. 3c. Pixels

268 with a non-significant (p ≥ 0.05) correlation between detrended NDVI and detrended VOD

269 are masked with light grey color. Pixels with non-significant trends (p ≥ 0.05) are masked

270 with dark grey color.

271

272 Fig. 7 Area (km2*106) and percentages of significant (p < 0.05) positive and negative

273 VODwood trends for the sub-continental hot-spot regions of change (Fig. 6). The ratio between

274 areas of positive and negative trends is given by the number on the right side of each bar.

275 Discussion

276 Trends in woody vegetation

277 This study attained a separation between trends of the leaf and woody components in global

278 tropical drylands (2000-2012) by combing satellite observations from optical and passive

279 microwave sensors. By removing the inter-annual fluctuations and trends of the leaf

280 component, we revealed regional scale trend patterns in woody vegetation which have not
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281 been shown previously. In addition, we found areas characterized by diverging trends in the

282 retrieved VODwood and NDVI data. This can be related to changes in composition of trees and

283 shrubs within the footprint (~25 km) of a VOD pixel since trees and shrubs are characterized

284 by different signatures in the proportion of leaf and woody components (Andela et al., 2013).

285 Given a similar amount of the woody component, shrubs generally look greener (higher

286 NDVI) than trees as shrubs in this case will have a higher fractional vegetation cover. For

287 example, Herrmann and  Tappan (2013) reported an impoverishment of trees and

288 encroachment of shrubs between the early 1980s and 2010 in central Senegal despite a

289 positive NDVI trend. This area corresponds with the pixels with a non-significant VODwood

290 trend and significant positive NDVI trend (colored as orange) in Fig. 4.

291 Quantifying trends/changes in different vegetation components remains a challenge for state-

292 of-the-art dynamic global vegetation models (DGVMs) due to the complex responses of

293 biomass partitioning process to plant type and size, nutrient supply and climate at global scale

294 (De Kauwe et al., 2014, Piao et al., 2013, Poorter et al., 2012). EO data provide

295 measurements of land surface properties at global scale, allowing the assessment of

296 vegetation dynamics directly (Liu et al., 2015, Nemani et al., 2003) and has also been

297 coupled/compared with vegetation models (Calvet et al., 2004, Poulter et al., 2014). Yet, the

298 most widely used EO data for EO/DGVM fusion is the optical satellite sensor vegetation

299 index observations (NDVI) which are shown here to be unrelated to the non-photosynthetic

300 woody vegetation component. This might be one of the reasons for the large discrepancy

301 between the global terrestrial carbon storage estimated from DGVMs and EO data,

302 respectively (Kolby Smith et al., 2016). Therefore, if aiming at improved assessment of e.g.

303 changes in dryland carbon pools or woody vegetation cover/mass changes (from EO data

304 alone or assimilated into DGVMs), the presented method of combining EO optical and

305 microwave remote sensing is expected to outperform the use of each of them separately.
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306 Interpretation of sub-continental hot-spot regions of VODwood change

307 The areas of increasing VODwood trends in Mexico and Texas, USA are likely related to shrub

308 encroachment mainly happening in the Chihuahuan Desert (Aide et al., 2013, Van Auken,

309 2009), which was reported to be accelerating caused by a changing climatic conditions of

310 increasing temperatures (D'Odorico et al., 2010). The significant decreasing VODwood trend in

311 the southeast of Texas corresponds well with the 2011 drought causing large scale tree

312 mortality as reported by Schwantes et al. (2016).

313 Extensive deforestation has taken place in vast parts of the Gran Chaco region characterized

314 by a transformation from dry deciduous forest into agriculture land (soybean production)

315 (Gasparri &  Grau, 2009). These changes in land cover and land use (LULCC) were also

316 captured by medium/high resolution Landsat data (Hansen et al., 2013). The VODwood trend

317 successfully detected this LULCC as a pronounced and widespread woody vegetation loss. 

318 A return of woody vegetation in the Brazilian Caatinga region caused by the increases in

319 rainfall and decrease in the area under cultivation during 2001-2009 was reported by Redo et

320 al. (2013), which may explain the strongly positive VODwood trends in our analysis in

321 northeast part of Brazil. Contrastingly, decreasing VODwood trends in the south of Brazil

322 indicating a loss of woody vegetation, are likely to be caused by the highly degraded soil

323 conditions in this region (Almeida-Filho &  Carvalho, 2010).

324 In the African Sahel, a greening trend driven by increasing rainfall after prolonged droughts

325 was reported using the AVHRR NDVI datasets (Herrmann et al., 2005, Prince et al., 2007).

326 However, this greening trend starting from early 1980s seems to have stabilized as assessed

327 using data from the MODIS sensor since 2000 (Horion et al., 2014). This agrees well with the

328 NDVI based leaf component trend in this study (Fig. 3b). The widespread significant positive

329 VODwood trends (Fig. 6d) indicate that the density of woody vegetation stands have continued
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330 to increase during 2000-2012, which is in line with the findings of Brandt et al. (2016a).

331 Besides the overall increasing trend, losses of woody vegetation are also seen in the Sahel e.g.

332 northern Nigeria which was reported to be caused by logging and agricultural expansion into

333 forest reserves (Brandt et al., 2016a). 

334 The extensive shrub encroachment in the drylands of Namibia and South Africa (Buitenwerf

335 et al., 2012, O'Connor et al., 2014, Rohde &  Hoffman, 2012) is supported by the significant

336 positive trends in both the NDVI based leaf component and retrieved VODwood based woody

337 component. However, the VODwood shows much larger areas of positive trends as compared to

338 NDVI (Fig. 4), indicating a potential under-estimation of the spatial extent of shrub

339 encroachment based on optical remote sensing data in this region (Saha et al., 2015).

340 Manmade fires are used for controlling bush encroachment in Botswana and Zimbabwe

341 (Gandiwa, 2011, Mudongo et al., 2016). While fire rarely kill trees, bush encroachment is

342 suppressed and ultimately will lead to a reduction in the size of woody plants (Higgins et al.,

343 2007). Therefore, an intensification of fire events during this period as observed by Andela

344 and  van der Werf (2014) would be a plausible explanation for the overall decreasing VODwood

345 trends in Botswana and Zimbabwe.

346 Selective logging of hardwood trees species for charcoal production was reported to introduce

347 land degradation in the woodland regions of Kenya (Ndegwa et al., 2016). Also, massive

348 logging and deforestation for charcoal and livestock production is happening in Somalia

349 (Oduori et al., 2011, Rembold et al., 2013) which together may explain the widespread

350 pattern of decreasing VODwood trends in East Africa (Fig. 6f).

351 A consistent increasing trend was observed in the retrieved VODwood for India, meaning an

352 increase in the forest cover or natural growth of trees during the period studied. This may be
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353 attributed to the large scale implementation of policies aiming at developing forest protection

354 programs (Reddy et al., 2013, Tian et al., 2014).  

355 The geographical patterns of VODwood trends in Australia correspond well with the substantial

356 changes in water availability during the period studied (Xie et al., 2016). A continues decline

357 in water storage was reported in Australia during the early 21st-century caused by long lasting

358 droughts (known as the ‘big dry’), being particularly severe in the southwestern part causing

359 widespread tree mortality (Brouwers et al., 2013, McGrath et al., 2012). Effects of water loss

360 were compensated or even reversed by a continental-scale water gain in 2010 and 2011,

361 particularly strong in the eastern part (Xie et al., 2016).

362 Limitations and Outlook

363 The microwave observations used in this long-term VOD dataset cannot always penetrate the

364 entire vegetation layer (e.g. rainforest). To mitigate this potential limitation of the usage of

365 VOD, our study focuses on dryland areas only. Since we are aiming to detect changes in the

366 woody component, herbaceous and crops would perturb the estimation accuracy due to their

367 different relationships with satellite observations as compared to woody vegetation (Tian et

368 al., 2016). The use of VOD observations from only the dry season facilitates accurate

369 detection of the water content in woody component, but remnants of senescent material from

370 leftover herbaceous vegetation and crops, together with soil background, may still introduce

371 noise. However, a significant relationship between VOD and NDVI time series would ensure

372 that the impacts of error sources on the estimated trends remain at a low level.

373 VOD is reported to be linearly related to the vegetation water content in green vegetation

374 component, depending on vegetation structure, microwave frequency, and vegetation water

375 status (Griend &  Wigneron, 2004, Jackson &  Schmugge, 1991, Wigneron et al., 2004). Yet,

376 the relationship between VOD and vegetation water content in the woody component may be
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377 more complex considering the varying sizes, heights, shapes and species of woody plants

378 (Jones et al., 2011). Furthermore, the relationship between water content/VOD and woody

379 biomass is also expected to be more complex, which may change with the soil conditions and

380 woody species composition (Sternberg &  Shoshany, 2001). In combination with a lack of

381 ground observations, these potentially confounding factors made it difficult to transform

382 VODwood to the units of biomass.

383 The AVHRR sensors have observations since early 1980s, forming the basis for global long-

384 term NDVI datasets. Yet, several problems made it challenging to merge observations from

385 difference sensors in a temporally consistent way (Tian et al., 2015), especially during the dry

386 season (Horion et al., 2014). As for the passive microwave records, although differences of

387 the microwave frequencies exist between sensors (e.g. 19.4 GHz for SSM/I and 6.9GHz for

388 AMSR-E), the sensitivity of observed microwave emissions to the leaf component was

389 reported to be similar at these frequencies (Santi et al., 2009). Moreover, the long overlapping

390 period between different sensors made it possible to calibrate VOD retrievals successfully

391 (Liu et al., 2011). Consequently, the availability of an improved AVHRR based long-term

392 NDVI products (expected release in the near future) will extend the analysis period of woody

393 component trends to around three decades. 

394 Recently, several passive microwave satellite instruments operating at L-band (1.4 GHz) have

395 been launched, i.e. the Soil Moisture and Ocean Salinity (SMOS, 2010 - present), the

396 Aquarius (2011 - 2015) and the Soil Moisture Active Passive (SMAP). As the leaf component

397 is close to be transparent at L-band (Guglielmetti et al., 2007, Santi et al., 2009), observations

398 from these sensors are expected to be more directly linked to information on the woody

399 component (Grant et al., 2016, Vittucci et al., 2016). Due to their short time period of

400 operation, trend analyses on these L-band observations are not yet feasible. However, with
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401 observations continued in the near future, temporal trends of VOD retrievals from SMOS and

402 SMAP can be compared with the trends of the approach developed in this study. If promising,

403 they can be merged into a long-term time series to assist analyzing changes in woody

404 vegetation.
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612 Supporting Information captions

613 Fig. S1. Example of the conceptual design based on simulated data.

614 Fig. S2. Location of the in situ sites.

615 Fig. S3. In situ measurements of leaf biomass and woody cover data.




