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Abstract

Geostatistical simulation methods allow simulation of spatial structures and patterns based on a choice of statistical model. In the last few
decades multiple-point statistics (MPS) has been developed that allows inferring the statistical model from a training image. This allows for a
simpler quantification of the statistical model, and simulation of more realistic (Earth) structures. A number of different algorithms for MPS
based simulation have been proposed, each associated with a unique set of pros or cons. MPSLIB is a C++ class that provides a framework for
implementing most of the currently proposed multiple-point simulation methods based on sequential simulation. A number of the most widely
used methods are provided as an example. The single normal equation simulation (SNESIM) method is implemented using both a tree and a
list structure. A new generalized ENESIM (GENESIM) algorithm is proposed that can act as (in one extreme) the ENESIM algorithm, and (in
another extreme) similar to the direct sampling algorithm. MPSLIB aims to be easy to compile on most platforms (standard C++11 is the only
requirement) and is released under the Open Source LGPLv3 License to encourage reuse and further development.
c⃝ 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).
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1. Motivation and significance

Geostatistics is a type of statistics with a focus on describing
geo-spatial (Earth) structures in a probabilistic framework
through a probability distribution. A ‘geostatistical model’ refer
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to a selection of a probability distribution to reflect a
specific Earth model. Geostatistical models are typically
used to characterize subsurface reservoir models used for
groundwater, hydrocarbon or heat storage, for both exploration,
exploitation, and management. A geostatistical model describes
infinitely many single Earth models, consistent with the chosen
probability function. The variability of these Earth models
reflect the uncertainty related to the choice of statistical model.
Such uncertainty quantification is the key advantage of using
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geostatistical models, as opposed to considering only one, in
some sense, optimal model.

Geostatistical modeling is a two-step process. First a
statistical model must be selected or described, typically
through a probability distribution f (m). Once a model has been
established, actual realizations from the probability distribution
is generated using ‘simulation algorithms’, which is the topic
of this manuscript.

Traditionally, geostatistical simulation algorithms are based
on Gaussian statistics, typically based on statistics only
between pairs of model parameters, and hence referred to
as 2-point statistics. These methods have been, and are still,
widely used [1]. However, 2-point based statistical models
are limited with respect to the spatial structures they can
represent. With the introduction of multiple-point statistical
(MPS) models, more geologically realistic spatial structures
can be quantified [2,3]. This has led to the development of a
number of simulation algorithms for multiple-point simulation,
e.g. [2–5]. For MPS based statistical models, there is usually no
closed form analytical expression of f (m). Instead, a ‘training
image’ or a ‘sample model’ is assumed available from which
multiple-point statistical events can be inferred. The goal of
MPS methods is to allow sampling from the unknown f (m)

such that realizations are consistent with the statistics that can
be inferred from the training image. For an overview of MPS
based simulation algorithms see [6].

Many of the proposed MPS algorithms are implemented in
various forms. However, some of these codes are either not
maintained [7,8], not available on multiple platforms [8], not
available under an open source license [9–11], or does only
implement one specific type of MPS algorithm [12].

Here a C++ library, MPSLIB, designed specifically for
multiple-point simulation is presented, that is released under the
GPLv3 license. MPSLIB implements the core functionalities
needed to implement any multiple-point simulation algorithm,
based on sequential simulation [13]. Note that this does
not include methods based on pattern matching [14] and
image-synthesis [15]. Implementations of the ‘extended normal
equations simulation’ (ENESIM) [2] and the ‘single normal
equation simulation’ (SNESIM) [3,4] algorithms are provided
as examples. Further, a new algorithm GENESIM, based on the
ENESIM algorithm, is proposed that can act similar to both the
ENESIM and the direct sampling algorithms [5].

2. Software description

MPSLIB is written in C++ [16] using c++11 [17]. It consists
of a C++ class that provides the framework for applying
sequential simulation to sample from multiple-point statistical
models. It also contains a number of algorithms implemented
using MPSLIB.

At the core of the library is an implementation of sequential
simulation, that can be briefly described as follows: Say a
probability distribution describes the relation between M model
parameters through f (m) = f (m1, m2, . . . , mM ) that are
typically ordered by some nodes on a grid. Then a realization of
f (m) can be generated using sequential simulation as follows:
1. Visit a random node, say m1, and generate a realization of
f (m1) as m∗

1.
2. Move to another node, say m2, and generate a realization of

f (m2|m∗

1) as m∗

2.
3. Move to another node, say m3, and generate a realization of

f (m3|m∗

1, m∗

2) as m∗

3.
4. ...
5. Move to the last node, mM , and generate a realization of

f (mM |m∗

1, m∗

2, . . . , m∗

M−1) as m∗

M .

This will generate a realization of m∗
= [m∗

1, m∗

2, . . . , m∗

M , ]

from f (m). See more details in e.g. [18].
The major challenge implementing the sequential simulation

algorithm is to generate a realization from the conditional
distribution at each iteration. If the conditional data are given
by m∗

c , then the conditional distribution can in general be given
by

f (mi |m∗
c). (1)

If uncertain co-located information about mi is available as
f (mi soft) (often referred to as ‘soft’ data in geostatistical
literature) then it is accounted for by drawing from

f (mi |m∗
c) f (mi soft). (2)

For MPS based models there will, in general, be no analyt-
ical form of f (mi |m∗

c) available. Instead, the key idea utilized
in most simulation algorithms is to infer information about the
conditional distribution, by scanning the training image for the
conditional data event, m∗

c . There are (at least) two different
approaches for sampling from the conditional distribution in
Eq. (1). In one approach (ENESIM type algorithms), the train-
ing image is scanned for matching conditional data events
at each iteration of the sequential simulation algorithm, from
which the conditional distribution can be estimated [2], or a re-
alization of the conditional distribution directly obtained [5]. In
another approach, the training image is scanned prior to run-
ning the simulation, and the conditional statistics for a number
of predefined data templates are stored in memory. The condi-
tional distribution, Eq. (1), can then be retrieved from memory
during simulation [3,4]. Usually, storing conditional statistics
in memory requires the use of so-called multiple-grids [3] in
order to allow simulation of structures with correlations over
longer distances, while at the same time imposing manageable
memory and CPU requirements. Using multiple-grids, simula-
tion is performed starting in a coarse grid that is refined un-
til simulation is performed on the finest, and requested, grid
size. The use of multiple-grids poses a challenge to condi-
tional simulation (when the value of some model parameters are
known before simulation starts). One approach to handle this
is to make use of data-relocation. When simulating on coarser
grids, conditional data on finer grids are relocated to the clos-
est node in the coarse grid. When conditional simulation has
been performed on a coarser grid, re-located data on the coarse
grid are removed, and simulation is then performed on a finer
grid. For details on multiple-grids and the use of data-relocation
see [19,3,20].
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Fig. 1. MPS general architecture.

2.1. Software architecture

MPS is a namespace that contains different classes. The
main class is the MPSalgorithm class, which implements
the sequential simulation algorithm, methods for reading
and writing 3D gridded data, methods for reading known
data values (known as hard and soft data), and methods
for establishing a data neighborhood, and controlling the
simulation path. In addition, MPSAlgorithm allows multiple
grids, including handling of conditional data. Specifically, grid
re-location of hard data, as proposed in [3], is implemented.

Also, two abstract member functions are defined, but
not implemented: MPSAlgorithm::readConfig and MPS-
Algorithm::simulate

That is, in order to use the MPS class, a new C++
class that inherits the MPSAlgorithm class needs to be
defined, that implements (at least) the two member functions.
MPSAlgorithm::readConfig should set all the parameters
needed to run the simulation, for example by reading from a
parameter file. MPSAlgorithm::simulate should implement
a method that allows generating a realization from Eq. (1).
As discussed above, the main difference between proposed
multiple-point simulation algorithms is related to how this
function is implemented, and can be divided into two families
of algorithms, those that are similar to ENESIM and those
that are similar to SNESIM. Therefore, two general classes,
MPSEnesim and MPSSnesim, have been implemented to handle
operations specific to ENESIM and SNESIM type simulation.

ENESIM. The ENESIM subclass extends the main
MPSAlgorithm class with methods and functions specifically
designed to use in case the training image is scanned at each it-
eration. This includes methods for scanning the whole training
image in order to estimate the conditional distribution, Eq. (1),
from which a realization can be drawn. It also includes meth-
ods for scanning only parts of the training image, and optionally
only scan the training image until a maximum number of con-
ditional data events has been found.

SNESIM. The SNESIM subclass extends the main MPS class
with methods and functions specifically designed in case the
statistics from the training images is scanned prior to running
the simulation algorithm and stored in memory.

The SNESIM and ENESIM subclasses form the base of the
proposed C++ framework. A key idea is that it should be
possible to implement any MPS based sequential simulation
algorithm using the C++ Class. Fig. 1 illustrates the architecture
of MPSLIB.
2.2. MPS simulation algorithms

To demonstrate the versatility of MPSLIB a number of the
most well-known multiple-point simulation algorithms, as well
as a new variant, based on sequential simulation has been
implemented.

mps genesim. The mps genesim algorithm is a generalized
implementation of the MPS algorithm named ENESIM
proposed by [2].

In the simplest form of the ENESIM algorithm, the
whole training image is scanned to establish the conditional
distribution in Eq. (1) at each iteration. This is relatively easy
to implement, and is void of problems related to the use of
multiple grids. However, it is also computationally extremely
demanding, to the point where it is not practical to use. The
reason is due to the fact the full training image is scanned at
each iteration, in order to obtain a conditional distribution from
which a realization can be drawn. In order to alleviate this we
suggest to scan the training image only for a maximum number
Nmax of conditional data events, which means the conditional
distribution will only be based on (at the most) Nmax counts.

MPSAlgorithm::simulate is implemented by scanning
the training image for a maximum of Nmax replicates, from
a random starting point. This provides an approximation to
the full conditional distribution, from which a realization is
generated.

At one extreme, Nmax = ∞, this algorithm will produce the
same results as the classical ENESIM algorithm.

At another extreme, Nmax = 1, this algorithm will provide
essentially the same results as the direct sampling algorithm,
with the specific difference that using mps genesim the
conditional distribution is in fact estimated (even if based on
only one count), from which a realization is generated. Using
direct sampling the conditional distribution is never obtained,
and instead a realization from Eq. (1) is taken directly from the
training image as the first matching conditional data event[5].
In this case, when the conditional distribution is based on only
one observed conditional event, conditioning to uncertain data,
as in Eq. (2), cannot be done.

For Nmax > 1 and Nmax < ∞ mps genesim leads to
an algorithm that can approximately account for uncertain
data using (2), while at the same avoiding the high CPU
requirements associated to scanning the full training image.

mps snesim tree. The main contribution of SNESIM is that
conditional patterns are scanned from the training image prior
to simulation, and stored in a search tree [3]. Therefore
a member function is implemented that allows scanning a
training image for a set of predefined data templates. The
corresponding conditional statistics are stored in a binary search
tree. MPSAlgorithm::simulate is implemented such that the
conditional distribution in Eq. (1) is obtained by searching
through the binary search tree. Then a realization is generated
from Eq. (1).

mps snesim list. mps snesim list is very similar to mps
snesim snesim. The main difference is that mps snesim list
stores conditional statistics using a list rather than a search tree.
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This leads to less memory requirements, but slower sequential
search for the conditional distribution, compared to using a bi-
nary search tree [4].

The two SNESIM based algorithms will though not produce
exactly the same result as they differ slightly in how a missing
data event is handled.

2.3. Future development

The algorithms described above implements the core ideas
of the SNESIM, ENESIM, and GENESIM algorithms. Many
variations of the methods are available, and many types of
post-processing have been presented, some of which may be
included in MPSLIB in the future [8,21]. A natural feature to
implement next is to allow simulation of non-stationary fields,
by using multiple training images and/or scaling and rotation
of on training image, which has not yet been considered [8,22].
The use of parallel computing and GPUs will also be a natural
development [23,24].

3. Examples

As an example, based on the training image in Fig. 2(a), the
implemented algorithms will be used to generate realizations in
a 2D 80 × 50 pixel grid, using the hard and soft data shown in
Fig. 2(b).

The implemented algorithms are based on the same core
functionality, and therefore the parameter files needed to run
the algorithms are very similar. The following text file is part of
the parameter file for all simulations algorithms:

Number of realizations # 3
Random Seed (0 ‘random‘ seed) # 1
Simulation grid size X # 80
Simulation grid size Y # 50
Simulation grid size Z # 1
Simulation grid world/origin X # 0
Simulation grid world/origin Y # 0
Simulation grid world/origin Z # 0
Simulation grid grid cell size X # 1
Simulation grid grid cell size Y # 1
Simulation grid grid cell size Z # 1
Training image file
(spaces not allowed) # ti.dat

Output folder (spaces in name not allowed) # .
Shuffle Simulation Grid path
(1 : random, 0 : sequential) # 1

Shuffle Training Image path
(1 : random, 0 : sequential) # 1

HardData filename (same size as the simulation
grid) # conditional.dat

HardData seach radius (world units) # 1
Softdata categories (separated by ;) # 0;1
Soft datafilenames (separated by ; only need
(number_categories - 1) grids) # soft.dat

Number of threads (minimum 1, maximum 8 -
depend on your CPU) # 1

Debug mode (2: write to file, 1: show preview,
0: show counters, -1: no ) # -1
The parameter file above defines a 2D regular grid (80 by 50
pixels) where each pixel has a size of 1 × 1 and the coordinates
of the first pixel are (0, 0). The training image must be given
in an ASCII formatted GSLIB file (a type of simplified Geo-
EAS formatted file, see [1]) called ‘ti.dat’, where the first line
contains the dimension of the training image. For example, the
first line for a 100 × 100 × 10 training image must be ‘100
100 10’. One can optionally make use of hard data (data known
with no uncertainty), or soft data (data that reflect uncertain
observations), both in GSLIB format. The number of threads is
currently not used, but kept to allow the use of multi threading
in the future. Finally the debug mode defines the amount of
information written to disk and screen during simulation.

3.1. SNESIM

Both mps snesim tree and mps snesim list make use
of the same additional information in the parameter file:

Number of multiple grids # 4
Search template size X # 7
Search template size Y # 7
Search template size Z # 1
Maximum number conditional data (-1: all) # 49
Min Node count (-1: ignore)# 5

The first line sets the number of multiple grids used. To disable
the use of multiple-grids, “0” should be chosen. The next three
lines indicate the search template size, which is here set as
7 × 7 × 1. This means that any conditional data event within
a 7 × 7 grid size is scanned, and its associated conditional
statistics stored, prior to running the simulation algorithm. The
next line sets the maximum number of conditional data within
the template to consider. If set to zero all conditional data within
the template will be used.

The last line sets the minimum number of replicates needed
in order to use an obtained conditional distribution. If the
number of conditional data is below this number then one
conditional data is discarded, until enough replicates are found.

3.2. GENESIM

The mps genesim algorithm needs the following additional
parameters defined:

Max number of conditional point, N_cond # 49
Maximum number of counts for conditional pdf,
N_max # 1

Max number of iterations, N_max_ite # 10000

The first line defines the maximum number of conditional
points needed during simulation. This is related to the template
size for the SNESIM type algorithms. However, as no multiple-
grids are used, conditioning can be effective over ranges
spanning the whole simulation grid. The next two lines define
properties specifically related to the GENESIM algorithm. Line
2 defines the maximum number of points, Nmax, used to set
up the conditional distribution Eq. (1). However, even if not
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(a) Training image. (b) Simulation grid hard and soft data, P(mi ) = 1.

Fig. 2. (a) Training image, (b) Simulation grid with 6 hard (circles) and soft data at all grid nodes. Colorbar indicates the local soft probability. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
(a) mps snesim tree.

(b) mps snesim list.

(c) mps genesim (Nmax = ∞).

(d) mps genesim (Nmax = 10).

(e) mps genesim (Nmax = 1).

Fig. 3. Simulation conditional to 6 hard data, using (a) mps snesim tree, (b) mps snesim list, (c) mps genesim (Nmax = ∞), (d) mps genesim (Nmax = 10), and
(e) mps genesim (Nmax = 1). Columns 1–3: 3 independent realizations. Column 4: Etype mean (colorbar as in Fig. 2). Column 5: Etype standard deviation (yellow:
low, red: high). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
enough conditional points have been obtained after Nmax ite =

10000 iterations of scanning for a match (as defined in the last
line), scanning is stopped and the conditional distribution used
as is.
In case Nmax = ∞ and Nmax ite = ∞, then mps genesim
will behave just as the ENESIM algorithm. Nmax = 1 and
Nmax ite = ∞ will lead to an algorithm similar direct sam-
pling, in the sense that if needed, the whole training image will
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(a) mps snesim tree.

(b) mps snesim list.

(c) mps genesim (Nmax = ∞).

(d) mps genesim (Nmax = 10).

(e) mps genesim (Nmax = 1).

Fig. 4. Simulation conditional to 6 hard data and soft data, using (a) mps snesim tree, (b) mps snesim list, (c) mps genesim (Nmax = ∞), (d) mps genesim
(Nmax = 10), and (e) mps genesim (Nmax = 1). Columns 1–3: 3 independent realizations. Column 4: Etype mean (colorbar as in Fig. 2). Column 5: Etype standard
deviation (yellow: low, red: high). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
be scanned for a replicate. The original implementation of di-
rect sampling does not allow for conditioning to ‘soft’ uncer-
tain data in a manner similar to the ENESIM and SNESIM
algorithm. However, the GENESIM algorithm, using a finite
Nmax ite has the potential to decrease the simulation time sig-
nificantly compared to a traditional ENESIM implementation,
while at the same time allowing for conditioning to uncertain
data through Eq. (2).

Fig. 3, shows three independent realizations conditional
to only the hard data, generated using mps snesim tree,
mps snesim list, and mps snesim genesim with Nmax =

∞, Nmax = 10, and Nmax = 1. Fig. 4, shows the same results as
Fig. 3 but in case conditioning to both hard and soft data. Note
how soft data is not taken into account, as discussed previously,
when using GENESIM in style of direct sampling with Nmax =

1, Fig. 4(e). On the other hand, using Nmax = 10, the
GENESIM algorithm can take soft data into account, Fig. 4(d).

4. Impact

MPSLIB has been developed to be useful to both beginners
and experts using multiple-point geostatistics. It should be
useful for both scientific research and commercial application.
A goal has been to provide a foundation that allows developing,
testing, and comparing the many different approaches for
utilizing multiple-point simulation, which are all largely built
on the same basic idea.

Perhaps the most widely known and used software for geo-
statistical estimation and simulation is GSLIB [1]. GSLIB, writ-
ten in Fortran, provides both a set of building blocks, and
numerous examples of how to use these building blocks to im-
plement useful algorithms, for 2-point statistical modeling. The
history of GSLIB has shown that availability of free and open
software can be a main driver in the development of a research
field, benefiting both basic research and commercial applica-
tion. The design of MPSLIB is chosen with GSLIB in mind.

MPSLIB should be flexible, easy to extend, easy to compile,
and applicable for both scientific and commercial purposes.
MPSLIB should alleviate the possibility to test out new ideas,
without the need to re-implement every aspect of sequential
simulation. Currently no such computer code is available, that
uses both a permissive open source license, and is maintained.

The development of the generalized ENESIM algorithm
is an example on how the existing code can be extended to
produce a new type of multiple-point statistical algorithm with
some novel features. We hope this example, and the base code,
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will encourage other developers to extend the code in a similar
manner.

The software was developed in a collaboration between
researchers from a public institution and a commercial
company. The company will use the code as the back end for
a user orientated geological model building experience. The
researchers will use the code for scientific research related to
multiple-point statistical modeling in the future.

5. Conclusions

MPSLIB is a C++ library for multiple-point based statistical
models based on sequential simulation. It is intended to provide
the building blocks that allow implementation of any multiple-
point simulation method based on sequential simulation. As
examples, variants of ENESIM and SNESIM type multiple-
point algorithms have been implemented and a new algorithm
proposed. MPSLIB relies only on standard C++11 and should
be easy to compile, modify and extend, and is released under
the LGPLv3 license.
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