
u n i ve r s i t y  o f  co pe n h ag e n  

Pharmacological inhibition of I-K1 by PA-6 in isolated rat hearts affects ventricular
repolarization and refractoriness

Skarsfeldt, Mark A.; Carstensen, Helena; Skibsbye, Lasse; Tang, Chuyi; Buhl, Rikke;
Bentzen, Bo H.; Jespersen, Thomas

Published in:
Physiological Reports

DOI:
10.14814/phy2.12734

Publication date:
2016

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Skarsfeldt, M. A., Carstensen, H., Skibsbye, L., Tang, C., Buhl, R., Bentzen, B. H., & Jespersen, T. (2016).
Pharmacological inhibition of I-K1 by PA-6 in isolated rat hearts affects ventricular repolarization and
refractoriness. Physiological Reports, 4(8), [e12734]. https://doi.org/10.14814/phy2.12734

Download date: 08. apr.. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Copenhagen University Research Information System

https://core.ac.uk/display/269277947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.14814/phy2.12734
https://curis.ku.dk/portal/da/persons/mark-skarsfeldt(a3249b35-520c-4aed-ac7f-67672b3bb5c5).html
https://curis.ku.dk/portal/da/persons/helena-carstensen(23a80c36-171e-427a-b5fa-8af5e9cc5cfb).html
https://curis.ku.dk/portal/da/persons/rikke-buhl(64737e5f-71f8-46eb-9856-2409018e5e85).html
https://curis.ku.dk/portal/da/persons/bo-hjorth-bentzen(59e5d901-5519-4467-870f-b60d716e9b6f).html
https://curis.ku.dk/portal/da/persons/thomas-jespersen(db23d6cb-3abe-4ba2-b1d3-44f918c72e51).html
https://curis.ku.dk/portal/da/publications/pharmacological-inhibition-of-ik1-by-pa6-in-isolated-rat-hearts-affects-ventricular-repolarization-and-refractoriness(4cf285e6-0534-4741-a5e6-24a769529147).html
https://curis.ku.dk/portal/da/publications/pharmacological-inhibition-of-ik1-by-pa6-in-isolated-rat-hearts-affects-ventricular-repolarization-and-refractoriness(4cf285e6-0534-4741-a5e6-24a769529147).html
https://doi.org/10.14814/phy2.12734


ORIGINAL RESEARCH

Pharmacological inhibition of IK1 by PA-6 in isolated rat
hearts affects ventricular repolarization and refractoriness
Mark A. Skarsfeldt1, Helena Carstensen2, Lasse Skibsbye1, Chuyi Tang1, Rikke Buhl2, Bo H. Bentzen1

& Thomas Jespersen1

1 Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

2 Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Keywords

Action potential, IK1, inward rectifier current,

Kir2.x channels, pentamidine.

Correspondence

Thomas Jespersen, Department of Biomedical

Sciences, Faculty of Health and Medical

Sciences, University of Copenhagen, 24.4.19,

Blegdamsvej 3B, DK-2200 Copenhagen,

Denmark.

Tel: +45 24805190

Fax: +45 35327555

E-mail: thojes@sund.ku.dk

Funding Information

This work was supported by The Danish

Council for Independent Research (DFF-1331-

00313B).

Received: 5 January 2016; Revised: 15

February 2016; Accepted: 17 February 2016

doi: 10.14814/phy2.12734

Physiol Rep, 4 (8), 2016, e12734, doi:

10.14814/phy2.12734

Abstract

The inwardly rectifying potassium current (IK1) conducted through Kir2.X

channels contribute to repolarization of the cardiac action potential and to

stabilization of the resting membrane potential in cardiomyocytes. Our aim

was to investigate the effect of the recently discovered IK1 inhibitor PA-6 on

action potential repolarization and refractoriness in isolated rat hearts. Tran-

siently transfected HEK-293 cells expressing IK1 were voltage-clamped with

ramp protocols. Langendorff-perfused heart experiments were performed on

male Sprague–Dawley rats, effective refractory period, Wenckebach cycle

length, and ventricular effective refractory period were determined following

200 nmol/L PA-6 perfusion. 200 nmol/L PA-6 resulted in a significant time-

latency in drug effect on the IK1 current expressed in HEK-293 cells, giving

rise to a maximal effect at 20 min. In the Langendorff-perfused heart experi-

ments, PA-6 prolonged the ventricular action potential duration at 90% repo-

larization (from 41.8 � 6.5 msec to 72.6 � 21.1 msec, 74% compared to

baseline, P < 0.01, n = 6). In parallel, PA-6 significantly prolonged the ven-

tricular effective refractory period compared to baseline (from 34.8 � 4.6

msec to 58.1 � 14.7 msec, 67%, P < 0.01, n = 6). PA-6 increased the short-

term beat-to-beat variability and ventricular fibrillation was observed in two

of six hearts. Neither atrial ERP nor duration of atrial fibrillation was altered

following PA-6 application. The results show that pharmacological inhibition

of cardiac IK1 affects ventricular action potential repolarization and refractori-

ness and increases the risk of ventricular arrhythmia in isolated rat hearts.

Introduction

The inward rectifier potassium current (IK1) contributes

to repolarization in cardiomyocytes (Dhamoon and Jalife

2005). It is important for setting the diastolic membrane

potential (Phase 4 of the cardiac action potential, also

named resting membrane potential), and for the late

repolarization of the cardiac action potential (Phase 3)

where it constitutes a part of the repolarization reserve

currents (Ibarra et al. 1991). Consequently, changes in IK1
have significant effects on the cardiac action potential

morphology, the excitability of the heart and thereby pos-

sibly contribute to or protect against cardiac arrhythmia

(Schmitt et al. 2014).

IK1 is an inwardly rectifying potassium current prefer-

ring inward over outward conductance due to block of

the pore at depolarized membrane potentials by intracel-

lular divalent cations such as Mg2+ and Ca2+ and by

polyamines such as spermine and spermidine (Anu-

monwo and Lopatin 2010). There are four members of

this family (Kir2.1-Kir2.4), and in cardiac tissue Kir2.1 is

the predominant expressed protein. Loss of function
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mutations in KCNJ2, which encodes Kir2.1, is reported in

Andersen–Tawil syndrome (Plaster et al. 2001) and gain

of function can cause shortening of the QT-interval, both

of which increases the risk of ventricular arrhythmias

(Anumonwo and Lopatin 2010). However, the exact role

of IK1 in cardiac arrhythmias is poorly understood,

mainly due to lack of specific and efficacious IK1
modulators.

In the past, IK1 has been blocked by nonspecific com-

pounds like RP-58866 (Yang et al. 1999), MS-551 (Sen

et al. 1998), chloroquine (Rodriguez-Menchaca et al.

2008), tamoxifen (Ponce-Balbuena et al. 2009), or by

cations such as barium and cesium (Hibino et al. 2010)

(reviewed by [van der Heyden and Jespersen 2016]). The

cations were originally used for characterizing the IK1 cur-

rent and were followed by more potent and specific mole-

cules that eased the characterization of IK1 in vitro and

in vivo. However, all of the mentioned compounds affect

other targets in addition to the Kir2.x currents. More

recently a probe report showed potent block with high

selectivity toward Kir2.x using the compound, ML133

(Wu et al. 2010).

Cardiac arrhythmias associated with QTc prolongation

and U-wave alternations have been observed when pen-

tamidine is used for treatment of protozoal infections. As

U-wave deflections on the ECG (Electrocardiogram) are

associated with IK1, De Boer et al., (de Boer et al. 2010b)

investigated the mechanism and action of pentamidine

mediated IK1 block. They concluded that pentamidine

inhibits IK1 in isolated adult canine ventricular cardiomy-

ocytes and that pentamidine blocks the pore region of

Kir2.1 from the cytoplasmic side (de Boer et al. 2010b).

To obtain a more specific and potent IK1 block, Takanari

et al., examined several analogs of pentamidine, and

found PA-6 to show the highest affinity for cardiac IK1.

PA-6 blocks human Kir2.1 and 2.2 and mouse Kir 2.1, 2.2,

and 2.3 in the range 12–15 nmol/L (Takanari et al. 2013).

PA-6 thereby has a more than 10-fold lower IC50 value

for IK1 block than ML133 (180 nmol/L) (Takanari et al.

2013) (Wu et al. 2010). Furthermore, PA-6 did not signif-

icantly affect INav, ICa-L, ITo, IKr, and IKs at 200 nmol/L

(Takanari et al. 2013). In the same study, current clamp-

ing of isolated canine ventricular cardiomyocytes revealed

a drastic prolonged action potential duration and short-

term variability following PA-6 application, confirming

the prominent role of IK1 in repolarization (Takanari

et al. 2013). So far, the role of cardiac IK1 has been inves-

tigated using barium chloride, however, Ba2+ is not a

specific blocker of IK1, as it also blocks other inwardly K+

rectifiers (Lesage et al. 1995). Furthermore, Ba2+ is toxic

and not tolerable in vivo (de Boer et al. 2010a). In order

to investigate how cardiac electrophysiology is affected by

a specific IK1 block we here use the IK1 inhibitor PA-6 to

examine the electrophysiological effects of IK1 inhibition

in Langendorff-perfused rat hearts.

Methods

Whole-cell patch-clamp recordings

Cell line preparation

IK1 currents were investigated in transiently transfected

HEK-293 cells, which were grown in Dulbecco’s modified

Eagle’s medium (DMEM; Life Technology, NY) supple-

mented with 10% fetal bovine serum (FBS; Sigma-

Aldrich, St. Louis) and 1% streptomycin (Invitrogen,

Naerum, Denmark) at 37°C in a 5% CO2 atmosphere.

Molecular cloning and transfection

Complementary DNAs encoding human Kir2.1 (GenBank

ACC. NM_000891) were subcloned into the pXOOM vec-

tor, as previously described in (Yang et al. 2010). To

reconstitute IK1 currents HEK-293 cells were transiently

transfected with 1 lg pXOOM-hKir2.1 and 0.2 lg
pcDNA3-eGFP (reporter gene). Transfections were per-

formed using Lipofectamine 2000 (Invitrogen, Naerum,

Denmark) according to the manufacturer’s instructions.

The cells were used for patch-clamp recordings 36–48 h

after transfection.

Solutions and chemicals

The following physiological extracellular solution was

used for the electrophysiological experiments, containing

(in mmol/L): NaCl 140, KCl 4, CaCl2 2, MgCl2 1, HEPES

10, D-Glucose 10 (pH 7.4 with NaOH). The pipette solu-

tion consisted of (in mmol/L) KCl 140, Na2ATP 1, EGTA

2, HEPES 10, CaCl2 0.1, MgCl2 1, D-Glucose 10 (pH 7.4

with KOH).

Electrophysiological methods

Patch-clamp recordings were performed as previously

described (Grunnet et al. 2001) (Yuan et al. 2014). HEK-

293 cells were voltage-clamped with ramp protocols.

Whole-cell currents were measured at room temperature

(20–22°C) with an EPC-9 amplifier and Pulse software

(both from HEKA Elektronik, Lambrecht, Germany).

Borosilicate glass pipettes were pulled on a DPZ-Universal

puller (Zeitz Instrumente, Munich, Germany). The pip-

ettes had a resistance of 1.5–2.5 MΩ. The series resis-

tances for whole-cell configuration were 2–5 MΩ and

were 80% compensated. At least 1.0 GΩ were achieved in

all experiments.
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Isolated Langendorff-perfused rat heart
preparations

The experiments followed the European Community Guide-

lines for the Care and Use of Experimental Animals and were

performed under License No. 2010/561-1897. All procedures

performed involving animals were in accordance with the

ethical standards of the institution at which the studies were

conducted and apply to Danish legislations. This article does

not contain any studies with human participants.

The Langendorff-perfused heart experiments were per-

formed on male Sprague–Dawley rats (Taconic A/S, Den-

mark). On the day of the experiment the rats were

weighed (BW 300–400 g) and anesthetized with a subcu-

taneous injection of fentanyl-midazolam mixture, 5 mg/

mL, dose 0.3 mL/100 g BW.

The rats were ventilated (4 mL/60 strokes/min) through

a rodent ventilator (7025 Rodent ventilator, Ugo Basile,

Italy). Tracheostomies were performed and the hearts were

excised and cannulated through a small puncture of the

aorta, near the aortic arch, and connected to the Langen-

dorff retrograde perfusion setup (Hugo Sachs Elektronik,

Harvard Apparatus GmbH, Germany). The hearts were ret-

rogradely perfused at a constant perfusion pressure of

80 mm Hg with a 37°C, pH 7.4, Krebs–Henseleit buffer

(NaCl 120.0, NaHCO3 25.0, KCl 4.0, MgSO4 0.6, NaH2PO4

0.6, CaCl2 2.5, Glucose 11.0, all in mmol/L) saturated with

95% O2 and 5% CO2. The aortic perfusion pressure was

determined with an ISOTEC transducer (Hugo Sachs Elek-

tronik, Harvard Apparatus GmbH, Germany) and the

coronary flow was measured with an ultrasonic flowmeter

(Transonic Systems INC, USA). Both were connected to an

amplifier (Hugo Sachs Elektronik, Harvard Apparatus

GmbH, Germany). The electrical activity of the rat hearts

were measured by using volume conducted electrocardio-

grams (ECGs) and by placing two epicardial monophasic

action potential (MAP) electrodes on the right ventricle.

The hearts were immersed into a temperature-controlled

and carbonated bath containing Krebs–Henseleit buffer.

Perfusion pressure, coronary flow, ECG and MAP analog

signals were sampled at a frequency of 1k/s and were con-

verted by a 16/30 data acquisition system from PowerLab

systems (ADInstruments, UK.) and monitored by using

LabChart 7 software (ADInstruments, UK.)

The hearts were left to stabilize for 30 min at intrinsic

heart rhythm. A bipolar pacing electrode was placed on

the right atrial appendage and a second pacing electrode

was positioned on the right ventricle. Epicardial pacing-

stimulation was applied using square pulses of 2 msec

durations at twice diastolic threshold at 150 basic cycle

lengths (BCL). Right atrial and right ventricular effective

refractory periods (ERPs) were measured by application

of 10 (S1) regular pulses followed by a premature extra

stimulus (S2) with the time between the S1 and the S2

stimuli increased by 2 msec increments until the refrac-

tory period was identified. Furthermore, the Wenckebach

cycle length (WCL) was determined by pacing with

decreasing cycle lengths until a 2:1 AV block appeared.

After the initial 30 min stabilization period atrial ERP

(aERP), WCL, and ventricular ERP (vERP) were determined

and the heart preparations were randomized into treatment

with either 200 nmol/L PA-6 to the drug-treated group or

equivalent amount of DMSO to the time-matched control

(named DMSO) group. The same parameters were deter-

mined every 15 min over a 90 min drug infusion period.

Compound

The pentamidine analog PA-6 (C31H32N4O2) was synthe-

sized by Syngene, Bangalore, India. The compound was dis-

solved in DMSO and the DMSO concentration in the

experiments was 0.002%. The compound was added from a

10 mmol/L stock to the Krebs–Henseleit solution used in the

experiments yielding a final concentration of 200 nmol/L.

Data analysis

Whole-cell patch-clamp data were analyzed using IGOR

Pro (WaveMetrics, Lake Oswego) and GraphPad Prism

software (GraphPad Software, San Diego). Data are pre-

sented as mean � SEM.

All Langendorff data were analyzed using Labchart 7

(ADInstruments, UK) and figures were processed in

GraphPad Prism (GraphPad Software, USA).

Data represent the mean � standard error of mean.

Two-tailed paired t-tests were used to compare baseline

with the effect of 90 min perfusion of 200 nmol/L PA-6 on

aERP, vERP, WCL, and action potential duration at 90%

repolarization (APD90). The APD90s were a mean of 40

monophasic action potentials.*P < 0.05 was considered

significant. **P < 0.01, ***P < 0.0001. The heart rate vari-

ability was evaluated using a Poincare plot. Consecutive R–
R intervals from the right ventricle were plotted as 40 n + 1

from ventricular maps. The instability of the beat-to-beat

heart rate was characterized by short-term variability (STV)

and was calculated from 40 subsequent APD90s using

(STV =
P jDnþ1 � Dnj=½40�

ffiffiffi
2

p �).

Results

Time-dependent PA-6 inhibition of IK1

Because the PA-6 binding site on the Kir2.1 channel is

located at the cytosolic part of the channel, the onset of

current inhibition was slow when the drug was applied to

the extracellular solution, as also observed by De Boer

ª 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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et al. (de Boer et al. 2010b) and Takanari et al. (Takanari

et al. 2013). To obtain a clearer picture of the time-

dependence of IK1 blockage voltage clamp experiments on

HEK-293/hKir2.1 transiently transfected cells were per-

formed (Fig. 1A). A significant time-latency in drug effect

was observed, giving rise to a maximal effect at 20 min

after application of 200 and 600 nmol/L PA-6. Applica-

tion of 66 nmol/L reached a maximal inhibitory effect of

75.8% after 35 min of drug application (Fig. 1B). To

address the relative inhibition of the inward and outward

potassium current following PA-6 inhibition current

reduction was measured at �70 mV (outward K+ cur-

rent) and �110 mV (inward K+ current) (Fig. 1C). The

K+ reversal potential was found to be approximately –
90 mV. At the three PA-6 concentrations investigated a

similar block of outward and inward IK1 was found.

Electrophysiological investigations on
Langendorff-perfused rat hearts

To investigate the electrophysiological effects of PA-6 on

the heart, in a system that allows the free concentration

of PA-6 to be precisely controlled, hearts from adult male

Sprague–Dawley rats were removed and mounted in a

Langendorff set-up. Here, retrograde perfusion through

the aorta of oxygenated saline buffer ensures the viability

of the heart for hours and using electrical stimulation it

is possible to pace and quantitate the refractoriness of

both atria and ventricle. The hearts were paced at a basic

cycle length of 150 msec to overrule intrinsic beating and

the electrical activity was measured with both monophasic

action potential (MAP) and ECG electrodes.

Due to the time latency in drug effect on IK1 PA-6 was

applied to the perfusion buffer for 90 min (Fig. 2A,B). A

time-matched control (DMSO) group was included to

investigate time stability of the experimental procedure

(Fig. 2C,D). After 90 min perfusion with 200 nmol/L PA-6

the morphology of the ventricular MAPs was drastically

changed showing a prolongation of repolarization in the

later part of the action potential, (APD90 from

41.8 � 6.5 msec to 72.6 � 21.1 msec, 74% compared to

baseline, P < 0.01, n = 6) (Figs. 2A,B and 3G). In the

DMSO group neither a change in action potential

morphology nor in action potential duration at 90% repo-

larization (APD90) was observed (Figs. 2C,D, and 3C). The

time-dependency of PA-6 effect were analyzed each 15 min.

Significant prolongation of vAPD90 was observed after

45 min (from 41.8 � 6.5 msec to 71.45 � 16.9 msec), 71%
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Figure 1. Whole-cell patch clamping of HEK-293 cells expressing IK1. (A) Representative traces. Currents were recorded in response to a

1000 msec voltage ramp protocol from �120 to +60 mV from a holding potential of �79 mV. 600 nmol/L or 200 nmol/L or 66 nmol/L of PA-

6 were added to the perfusate after getting stable whole-cell patch-clamp current. IK1 currents were following blocked with different levels by

PA-6 (gray traces). (B) Current-time relationships of IK1 during PA-6 blockage. Normalized current density with average � SEM values measured

at �118 mV (currents were elicited by the ramp protocol described above). (C) Outward and inward currents measured at �70 mV and

�110 mV, respectively, 20 min after application of PA-6 at 66 nmol/L, 200 nmol/L and 600 nmol/L. 2 way ANOVA followed by Dunnett0s MC

test, error bars represent mean � SEM, *P < 0.05 was considered significant. **P < 0.01, ***P < 0.0001.
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compared to baseline, P < 0.05, n = 6) (Fig. 2E) while sig-

nificant ventricular effective refractory period (vERP) pro-

longation was found 90 min after application of 200 nmol/L

PA-6 (from 34.8 � 4.6 msec to 58.1 � 14.7 msec, 67%,

P < 0.01, n = 6) (Figs. 2E and 3F). Interestingly, the atrial

ERP was not affected by PA-6 when compared with baseline

(P = 0.12, n = 6) (Fig. 3E) and neither was the Wenckebach

cycle length (WCL), which is a measure of AV-nodal refrac-

toriness, altered by PA-6 compared to baseline (P = 0.09,

n = 6) (Fig. 3H). Neither of these parameters where chan-

ged in time-matched controls (Fig. 3A–D).

Effect of PA-6 on electrical stability

The effect of PA-6 on beating frequency, conduction and

action potential activation current (rheobase) was analyzed

prior to PA-6 and DMSO application (baseline) and after

90 min of application (Fig. 4A–D). PA-6 did not have an

effect on intrinsic heart rate (Fig. 4A), but did reduce

atria-ventricular conduction time (Fig. 4B), measured

from the start of the P-wave to the start of the QRS com-

plex on the ECG. The atrial rheobase was unaltered

(Fig. 4C), while the input current following PA-6 to elicit

action potentials in the ventricle was approximately dou-

bled (Fig. 4D). To address the effect of PA-6 on electrical

stability of the atria and ventricle the duration and fre-

quency of arrhythmia following S1–S2 stimulations were

analyzed (Fig. 4E,F). The duration of arrhythmia in the

atria was longer at 90 min compared to baseline, but no

difference was observed between the PA-6 group and the

time-matched control (DMSO) group (Fig. 4E). In con-

trast, ventricular arrhythmia lasting more than 1 sec was

observed in two hearts in the PA-6 group but in none of

the time-matched control (DMSO) hearts (Fig. 4F).
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ª 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
the American Physiological Society and The Physiological Society.

2016 | Vol. 4 | Iss. 8 | e12734
Page 5

M. A. Skarsfeldt et al. PA-6 Inhibition of Cardiac IK1



To investigate beat-to-beat variability in the ventricles

Poincar�e plots were made by plotting the current APD90

value against the preceding APD90 value. In the DMSO

group the beat-to-beat variability was not changed after

application of DMSO compared to baseline, t = 0 and at

t = 90 (Fig. 5A,B), as quantified by calculating short-term

variability (STV) (Fig. 6). Application of PA-6 resulted in

a prominent change in beat-to beat variability, as illus-

trated in the monophasic action potential recordings with

indications of the individual APD90 values (Fig. 5D),

Consequently, short-term variability (STV) showed a sig-

nificant difference after application of 200 nmol/L PA-6

(P < 0.001, n = 6) (Fig. 6B).

Discussion

At this point, only few chemical entities blocking the

important cardiac Kir2.1 have a convincingly resolved

mode of action. Recently pentamidine was used as a lead

compound in the development of new potent and selec-

tive IK1 blockers (Takanari et al. 2013). 200 nmol/L PA-6

blocked more than 90% of all Kir2.x channels in a volt-

age independent manner, yielding IC50 values of 12–15
nmol/L.

This study investigates the effect of PA-6 on IK1 in

an intact heart (Langendorff) preparation. The onset of

PA-6 mediated effects showed a time-latency in the
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Figure 3. Individual effects of PA-6. (A, E) Effect of either DMSO or 200 nmol/L PA-6 on rat aERP, (B, F) vERP, (C, G) vAPD90 and (D, H) WCL.

Two-tailed paired t-tests were used to compare baseline with the effect of 90 min perfusion of 200 nmol/L PA-6 on aERP, vERP, vAPD90 and
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Langendorff-preparations, reaching a plateau after 90 min.

The slow onset of effect is probably due to PA-6 blocking

the channel pore from the cytosolic side as reported by De

Boer et al. who applied the pentamidine compound from

either the extracellular or the intracellular side of the mem-

brane using the whole-cell or inside-out patch-clamp

technique (de Boer et al. 2010b). When testing the

time-dependency of PA-6 block on HEK-293/Kir2.1 cells

by whole-cell patch clamping we also observed a profound

time-dependency of drug effect, which manifested in a

20 min latency before 200 nmol/L PA-6 produced its maxi-

mal block of the IK1 current (Fig. 1B).

Pharmacological modulation of IK1 has previously been

reported to impact the electrical stability of the heart
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administration of DMSO or PA-6. DMSO or PA-6 did not significantly affect the intrinsic heart rate. (B) Atria-Ventricular conduction with
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(Jalife and Berenfeld 2004). Suppression of IK1 increases

APD/QT and depolarizes the diastolic potential, which

may result in both early and delayed after-depolariza-

tions, while enhancing IK1 shortens APD/QT (Dhamoon

and Jalife 2005). In agreement with this, we found that

inhibition of IK1 in the ventricles using 200 nmol/L PA-6

prolonged APD90 and increased vERP. In addition, we

found that IK1 inhibition increased the variability in the

ventricular action potential duration. This may be

arrhythmogenic due to the proarrhythmic effect of

enhanced dispersion/heterogeneity in ventricular con-

duction and repolarization (Thomsen et al. 2004;

Szentandrassy et al. 2015). Variation in repolarization

was determined by analyzing the beat-to-beat variability

in APD90. Poincar�e plots revealed that PA-6 significantly

increased beat-to-beat variability and STV in this isolated

heart model. The variability in action potential duration

found by Takanari et al. in canine ventricular myocytes

Takanari et al. 2013) thereby also seems to translate to

the whole beating heart. During the 90 min perfusion

two of the six PA-6 challenged hearts developed runs of

ventricular arrhythmia following S2 stimuli, suggesting

that IK1 inhibition increases the risk of ventricular

arrhythmia.
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The atrial-ventricular conduction time was also

increased by IK1 inhibition and because the Wenckebach

cycle length was not changed this indicates a conduction

slowing in the myocardium and not of the AV nodal tis-

sue. As IK1 is known to play a pivotal role in setting the

ventricular resting membrane potential (Dhamoon and

Jalife 2005) it is expected that PA-6 block induces a

depolarization of the resting membrane potential, which

will increase the fraction of inactivated cardiac sodium

channels and thus lowered tissue excitability. Further-

more, a reduced availability of sodium channels will slow

conduction due to the increased source-to-sink mismatch

(Comtois et al. 2005). The increased risk of ventricular

arrhythmia observed following loss of IK1 current (re-

viewed in [Dhamoon and Jalife 2005]) may thereby be

supported by at least three different parameters being (1)

APD90 dispersion; (2) prolonged vERP, and (3) reduced

sodium channel availability caused by a depolarized

RMP.

In the atria IK1 is believed to play a central role, but

other repolarizing potassium currents, including IK,ACh
and IK,Ca are also important in the later part of the action

potential and in setting the resting membrane potential

(Gaumond and Fried 1986; Wang et al. 2013; Skibsbye

et al. 2014; Tang et al. 2015; van der Heyden and Jes-

persen 2016). Surprisingly, application of PA-6 did not

significantly alter aERP or the duration of the S2-induced

runs of atrial arrhythmia. In rabbit and human IK1 has

been reported to be 6- to 10-fold less expressed in atria

as compared to ventricle (Giles and Imaizumi 1988;

Wang et al. 1998). A similar lower atrial IK1 in the rat

myocardium could explain the lack of PA-6 effect in rat

atria. It could also be speculated that other K+ currents,

constituting an atrial repolarization- and resting mem-

brane potential reserve, would ensure electrical stability

even when IK1 is blocked.

For many years studies of the electrophysiological func-

tion of IK1 has been limited because of the lack of selec-

tive tool compounds. However, a selective inhibitor may

not only be interesting as a tool for understanding cardiac

IK1 properties in vitro it might also have therapeutic

potential. The genesis and progression of atrial fibrillation

has been suggested to be linked to an increased IK1
(Bosch et al. 1999; Ehrlich 2008). Likewise the upregula-

tion of KCNJ2/Kir2.1 expression governed by changes in

miR-26 transcriptional levels has been linked to the pro-

motion of clinical AF (Luo et al. 2013). It can therefore

be suggested that selective pharmacological inhibition of

IK1 could serve as an antiarrhythmic principle. However,

the risk of ventricular side effects would limit clinical

application. Further, short-QT syndrome is associated

with ventricular arrhythmias and sudden cardiac death

(Pattnaik et al. 2012), and gain of function mutations in

KCNJ2 may result in arrhythmias related to Short-QT

syndrome (El Harchi et al. 2008; Hattori et al. 2012).

Selective pharmacological inhibiting of IK1 might be use-

ful in treating patients carrying such channelopathies,

although the pharmaceutical interest might be limited

due to the low number of patients diagnosed with such

phenotypes worldwide.

Study limitations

IK1 has a prominent role in controlling the resting mem-

brane potential. Therefore, we attempted to test PA-6’s

effect on rat atrial and ventricular tissue strips using

microelectrode recordings to measure action potentials

(data not shown). However, superfusion of PA-6 had no

effect on the electrophysiological properties of neither iso-

lated atrial nor ventricular tissue, possibly due to low tis-

sue penetrance of the drug as permeability is indeed

reduced in a superfused tissue strip as compared to a

coronary-perfused Langendorff heart. Such permeability

issues were previously observed for other compounds

(Skibsbye et al. 2014). Also, experiments were performed

in rat hearts which have different spatial and temporal

distribution of ionic currents compared to larger mam-

mals and humans. Hence, translatability of these findings

to larger animals or humans should be done with caution.

Exploring the ability of the PA-6 compound to influence

cardiac electrophysiology in larger animals is therefore

needed.

Conclusion

PA-6 inhibits cardiac IK1 in Langendorff-perfused rat

hearts, resulting in prolonged ventricular action potentials
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and increased refractoriness. Moreover, block of IK1 in

the rat ventricles also increases beat-to-beat variability

and STV, as well as the risk of electrical stimulated ven-

tricular arrhythmias. Atrial electrophysiology was not

altered following IK1 block. These results suggest that

blocking IK1 in rat hearts is proarrhythmic and may lead

to increased susceptibility to ventricular arrhythmia.
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