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Pathological gambling is an addictive disorder characterized by an irresistible urge to gamble despite severe con-
sequences. One of the hallmarks of pathological gambling is maladaptive and highly risky decision-making,
which has been linked to dysregulation of reward-related brain regions such as the ventral striatum. However,
previous studies have produced contradictory results regarding the implication of this network, revealing either
hypo- or hypersensitivity to monetary gains and losses. One possible explanation is that the gambling brain
might be misrepresenting the benefits and costs when weighting the potential outcomes, and not the gains
and losses per se. To address this issue, we investigatedwhether pathological gambling is associatedwith abnor-
mal brain activity during decisions that weight the utility of possible gains against possible losses. Pathological
gamblers and healthy human subjects underwent functional magnetic resonance imaging while they accepted
or rejectedmixed gain/loss gambles with fifty–fifty chances ofwinning or losing. Contrary to healthy individuals,
gamblers showed a U-shaped response profile reflecting hypersensitivity to the most appetitive and most aver-
sive bets in an executive cortico-striatal network including the dorsolateral prefrontal cortex and caudate nucle-
us. This network is concerned with the evaluation of action–outcome contingencies, monitoring recent actions
and anticipating their consequences. The dysregulation of this specific network, especially for extreme bets
with large potentials consequences, offers a novel understanding of the neural basis of pathological gambling
in terms of deficient associations between gambling actions and their financial impact.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Pathological gambling is a mental disorder characterized by an irre-
sistible urge to engage in monetary gambling despite harmful conse-
quences. With a prevalence reaching 1–2% in many Western societies
(Welte et al., 2008; Wardle et al., 2010), this disorder constitutes a se-
vere public and personal health issue. Pathological gambling has recent-
ly been classified as a behavioral addiction and shares many core
symptoms with drug addictions such as withdrawal, tolerance, and
high preoccupation (Petry 2007; Leeman and Potenza 2012).

Risky decision-making is an important hallmark of pathological
gambling. Indeed, gamblers have a high tolerance toward risk (Clark
2010; Brevers et al. 2013), and pathological gambling has been linked
roup (EHESS/CNRS/ENS), Ecole
m, 75005 Paris, France.
ns.fr (S.V. Gelskov).
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to alterations of dopaminergic regions linked to reward, risk, and moti-
vation, such as the ventral striatum and the ventromedial prefrontal
cortex (vmPFC) (van Holst et al. 2010; Limbrick-Oldfield et al. 2013;
Potenza 2014). However, while some studies have found hypoactivation
of the mesolimbic reward pathway in response to the anticipation or
outcome of rewards (Reuter et al. 2005; de Ruiter et al. 2009; Balodis
et al. 2012), other studies have reported hyperactivation of the same
pathway to anticipated reward (van Holst et al. 2012; Worhunsky
et al. 2014), anticipated losses (Romanczuk-Seiferth et al. 2015), or
gambling cues (Crockford et al. 2005; Goudriaan et al. 2010). Interest-
ingly, positron emission tomography (PET) studies revealed no general
differences between gamblers and healthy controls in themagnitude of
striatal dopamine release (Joutsa et al. 2012; Linnet et al. 2011) but
showed a positive correlation between striatal dopamine release and
gambling severity (Joutsa et al. 2012), and dopamine release and gam-
bling excitement (Linnet et al. 2011). These discrepant response pat-
terns are reflected in two main accounts of pathological gambling. On
the one hand, the reward deficiency theory predicts a hyposensitive
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Demographic and neuropsychological characteristics of participants.

Variables, group
means (SD of means)

Pathological
gamblers
(n = 14)

Control
subjects
(n = 15)

Test statistics (2-sample,
2-tailed t-tests and
chi-square tests)

Demographic data
Age (years) 29.43 (6.05) 29.87 (6.06) t(27) = 0.2, P = 0.85
Educational levela,b 3.15 (1.68) 4.6 (1.12) t(26) = 2.72, P = 0.01

Clinical data
Gambling score (SOGS) 11.36 (3.97) 0.33 (0.9) t(27) = 10.48, P b 0.001
Smokersb 4 0 χ2 = 5.39, df = 1,

P = 0.02
Alcohol (AUDIT)b 9.23 (5.32) 8.67 (4.47) t(26) = 0.31, P = 0.76
Handedness (left) 2 4 χ2 = 0.14, df = 1,

P = 0.71

Neuropsychological data
WAIS subtests:
“Vocabulary” 10.36 (2.50) 13.47 (1.25) t(27) = 4.29, P b 0.001
“Information” 10.00 (2.08) 12.80 (2.01) t(27) = 3.69, P b 0.001
Depression (BDI) 17.00 (10.57) 3.47 (2.95) t(27) = 4.77, P b 0.001
Impulsiveness (BIS-11)b 74.93 (7.25) 58.36 (8.63) t(26) = 5.50, P b 0.001
“Attention” 2.25 2.14 t(26) = 1.57, P = 0.13
“Motor” 2.47 1.95 t(26) = 4.35, P b 0.001
“Non-planning” 2.8 2.71 t(26) = 5.63, P b 0.001
Anxiety (GAD-10) 12.57 (9.02) 8.27 (5.89) t(27) = 1.53, P = 0.14
Risk-taking (DOSPERT) t(27) = 1.57, P = 0.13
“Perceived risk” -0.25 (0.25) -0.51 (0.20) t(27) = 3.14, P = 0.004
“Expected benefit of risk” 0.46 (0.41) 0.40 (0.31) t(27) = 0.49, P = 0.63

Behavioral data
Loss aversion, Lambda (λ) 1.45 (0.49) 1.83 (0.83) t(27) = 1.47, P = 0.077c

Response time (ms) 927 (240) 959 (122) t(27) = 0.45, P = 0.66

Abbreviations: SOGS, South Oaks Gambling Screen; AUDIT, Alcohol Use Disorders Identifi-
cation Test;WAIS,Wechsler Adult Intelligence Scale; BDI, Beck Depression Inventory; BIS-
11, Barratt Impulsiveness Scale, 11th ed., GAD-10, Generalized Anxiety Disorder test;
DOSPERT, Domain-Specific Risk-Taking scale.

a Highest educational level (scoring): 1 = Lower/general secondary school, 2 =
vocational education and training, 3 = upper secondary school, 4 = professional college
degree, 5 = bachelors degree or similar, 6 = masters degree.

b One gambler did not complete the AUDIT screen, one did not complete the smoking
and educational screen. One control subject did not complete the BIS-11 questionnaire.

c Non-parametric permutation test used due to non-normal distributions.

343S.V. Gelskov et al. / NeuroImage 128 (2016) 342–352
reward system due to a dysfunctional dopamine D2 receptor found in
substance addicts (Blum et al. 1990; Noble et al. 1991) and gamblers
(Comings et al. 1996; Comings et al. 2001). A lower dopaminergic
tone in the brain would push gamblers to seek higher rewards, in
order to reach the threshold at which a “reward cascade” is initiated
in the brain. On the other hand, the sensitization theory predicts a
strong motivational bias toward objects of addiction (Robinson and
Berridge 1993, 2008) leading to hypersensitivity in dopaminergic re-
gions. In gamblers, the motivation to gamble would be triggered by
gambling cues in the environment, which would override the incentive
value of alternative sources of reward (Goldstein and Volkow 2002;
Goldstein et al. 2007).

These discrepancies underscore that the neural basis of pathological
gambling remains unsettled. While studies contrasting monetary pun-
ishments and rewards can address how decision-values are computed
in the brain, they do not address how gains and losses are integrated
during gambling. Recently, we developed a gambling task that probes
both the magnitudes of gain and loss values separately, as well as how
gains and losses are balanced against each other in “mixed” (gain/
loss) gambles (Gelskov et al. 2015). When balancing gains and losses,
people tend to be more sensitive to potential losses than to equivalent
gains, a decision-bias known as loss aversion (Kahneman and Tversky
1979). In practice, people typically reject 50/50 gambles unless they
can win around twice as much as they can lose. Previous studies using
mixed gambles with healthy participants found that the separate valu-
ation of gains and losses involve reward-relateddopaminergic target re-
gions, specifically the ventral striatum and the vmPFC (Tom et al. 2007).
However, when the entire gain/loss gamble is taken into account
(i.e., potential gain, potential loss, and the consequences of winning or
losing), other studies have found an important role for the amygdala
in loss aversion (DeMartino et al. 2010;Gelskov et al. 2015). In the pres-
ent study, we used this task in a population suffering from gambling ad-
diction as a means to gain insight into aberrant value-based decision-
making.

Recently, a behavioral study found that problem gamblers are less
loss averse than control subjects (Brevers et al. 2012, but see also
Giorgetta et al. 2014). Here, we ask whether pathological gambling
might reflect deficient balancing of possible gains against losses during
decision-making. In a recent study, we found that activity of the amyg-
dala and ventral striatum reflected the degree of loss aversion in healthy
participants when they decided to accept or reject extreme gain–loss
gambles (Gelskov et al. 2015). Here, we used individual gambling be-
havior to investigate how the decision-making process is tuned by
inter-individual variation in loss aversion (i.e. being more or less loss
averse), and whether loss aversion is also reflected in mesolimbic re-
ward-related areas in gamblers. To address these issues, we used fMRI
and a gambling task in which participants had to accept or reject
mixed gambles on the basis of the ratio between the absolute gain
and loss value. Our study design allowed us to address whether patho-
logical gamblers balance positive and negative values differently from
healthy controls andwhether the integration of gain–loss ratios in gam-
bling decisions is associated with abnormal activity in brain regions in-
volved in value-based decision-making.

Material and methods

Participants

Fourteen male, un-medicated pathological gamblers (mean age in
years: 29.43; SD: 6.05; range: 20–40) and 15 healthy control subjects
(all male; mean age in years: 29.87; SD: 6.06; range: 21–38) were re-
cruited specifically for this study. Two additional gamblerswere initially
scanned but excluded before inclusion in the analysis because theymis-
understood the task: One participant only responded when accepting a
bet, while another participant thought that all gambles would be paid
out at the end of the session. Gamblers were recruited through a Danish
treatment center for pathological gambling. No participant had addi-
tional mental health issues apart from pathological gambling based on
the structural clinical interview for DSM-IV, Axis I (SCID-I, Research ver-
sion, patient and nonpatient versions; First et al. 2002), including disor-
ders such as drug use or dependency. The presence of pathological
gambling was confirmed by structural interview based on the SCID
module for pathological gambling. All gamblers had a South Oaks Gam-
bling Screen (SOGS) score above 5 (Table 1; Lesieur and Blume 1987;
Danish versions of SOGS and SCIDmoduleswere translated by J. Linnet).
Participants were screened forMR compatibility, history of neurological
disorders, and signed informed consent forms. The study was approved
under the ethical protocol KF 01–131/03, issued by the local ethics
committee.

Participantswere tested on two separate days 1–2weeks apart. Dur-
ing the first test session, participants underwent neuropsychological
testing, questionnaires, and interviews (see Table 1). Participants were
also endowed with 200 Danish Kroner (i.e., the Danish monetary cur-
rency, DKK, 1 DKK ≈ 0.16 US dollar), which they were told to bring
back the following week for the fMRI test session as a gambling stake.

Gambling task and stimuli

During the fMRI session, participants performed a gambling task,
which required them to accept or reject mixed gain–loss gambles with
equal probability of winning or losing (Fig. 1A). On each trial, subjects
were presented with a pie chart with either a potential gain amount
or a potential loss amount, according to main condition (i.e. “loss first”
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or “gain first” conditions). After a varying display time (2–5 s), the sec-
ond amount of the mixed gamble was presented and subjects decided
to accept or reject the current gamble by pressing one of two buttons
in the scanner. Both, the first “magnitude presentation phase” and the
ensuing “decision phase” were jittered in steps of 0.5 s (i.e., 2, 2.5, 3,
3.5, 4, 4.5, and 5 s) pseudo-randomly from trial to trial. Instructions
were read aloud to the participants, where after they completed a
short training session until theywere familiarwith the task. Participants
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the gambling session, would be “played out” and participants would ei-
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pants were told to follow their “gut feelings” and that there was no
right or wrong answers.
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Stimuli consisted of mixed gambles presented on yellow and purple
pie charts with onemonetary amount (i.e., potential gains and losses in
Danish currency) presented in each half of the chart (Fig. 1A). The 64
stimuli combined the 8 potential gain amounts (68–166 DKK; in incre-
ments of 14 DKK), with the 8 potential loss amounts (34–83 DKK; in in-
crements of 7 DKK; see gain/loss ratio matrix in Fig. 1B). The 64 mixed
gambles were presented once in a “gain first” and once in a “loss first”
condition, yielding a total of 128 trials. Each of the stimuli belonged to
one of 8 classes, identified by the angle of the pie chartwhichwas rotat-
ed with 45° (0°–360°) for each class. Thus, although each amount (e.g.
+82 DKK) appeared 16 times, it was only presented once in the same
physical position on the screen per main condition (gain or loss first),
as to avoid any low-level repetition effects. To ensure that subjects
were attentive to the task and to increase the amount of ratios below
1, we added 18 highly disadvantageous catch trials. These trials com-
bined 3 low-gain amounts (i.e., 34, 41, 48 DKK) with 3 high-loss
amounts (i.e., 138, 152, 166 DKK). All subjects rejected at least 89% of
the catch trials, indicating that subjects paid attention to the task (gam-
blers rejected 98% of all catch trials; range: 95–100%; control subjects
rejected 98.9% of catch trials; range 89–100%). There was no difference
in proportion of rejected catch trials between groups (P = 0.61,
t(27) = 0.52, SD = 2.99). Finally, we added 24 “baseline” trials:
empty pie charts without any amounts (note that neither catch trials
nor baseline trials were used in the behavioral analysis or included as
regressors of interest). Stimuli were presented and button presses re-
corded using the E-Prime 2.0 software (Psychology Software Tools,
Pittsburgh, PA).

Based on the participant's choices on the 128 regular trials, we calcu-
lated the individual degree of loss aversion, lambda (λ), by fitting a lo-
gistic regression to each participant's binary response (accept/reject).
In contrast to Tom et al. (2007), we used the full gain/loss ratio of the
mixed gambles as independent variable to derive the individual “deci-
sion-boundary” lambda in each participant. This was due to our focus
on the full gamble ratio in the fMRI analyses, rather than the single
gain and loss values. Lambda was estimated as the gain/loss ratio for
which the probability of accepting a trial was equal to the probability
of not accepting a trial (i.e. 0.5).

Magnetic resonance imaging

Functional and structural brain scanswere acquired using a Siemens
Magnetom Trio 3 T MRI scanner with an 8-channel head coil. Blood ox-
ygen level dependent (BOLD) functional MRI was collected using a T2*-
weighted echo-planar imaging sequence (295 volumes; 41 slices; 3mm
isotropic resolution; repetition time: 2430 ms; echo time: 30 ms; flip
angle: 90°; field of view: 192 mm, horizontal plane) optimized for de-
tecting BOLD signal in the orbitofrontal cortex (Deichmann et al.
2003). Slices were oriented axially and the phase encoding direction
was anterior–posterior. Note that the orientation of the field of view
did not allow full coverage of the superior parietal cortex. A high-
resolution three-dimensional structural scan of thewhole brain was ac-
quired using a T1-weighted magnetization prepared rapid acquisition
gradient echo (MPRAGE) sequence for the purpose of manual co-
registration (1 mm isotropic voxels; FOV: 256 mm; acquisition matrix
256 × 256; TR: 1540; TE: 3.93 ms, inversion time: 800 ms, and a flip
angle of 9°) and creating a group-specific normalized anatomical tem-
plate for display of functional maps in the figures. The first two volumes
were discarded as dummy scans to allow the field to reach steady state.

Analysis of fMRI data

The fMRI data were analyzed using SPM8 software (Wellcome De-
partment of Cognitive Neurology). Pre-processing included slice time
correction, spatial realignment to the mean image, manual co-
registration of images, normalization to a standard EPI image (i.e., MNI
template image; functional voxels of 2 × 2 × 2 mm), smoothing using
an isotropic 8 mm full-width at half maximum Gaussian kernel, and
high-pass temporal filtering (cut-off frequency 1/128 Hz). The general
linear model (GLM) estimated a 24-parameter Volterra expansion of
the 6 estimated motion rigid body realignment parameters, which
were included as regressors of no interest as described in Friston et al.
(1996). We also included additional regressors for catch trials, error tri-
als (i.e., 250ms N reaction time N 2500ms and trials with no answer) as
well as two “button-press regressors” modeling out the motor activa-
tion related to finger button presses. In five subjects, brain volumes
were excluded because of excessive head movement (i.e., global head
movement above 8 mm, local head movement above 2 mm), and
DVARS (i.e., the root mean squared (RMS) change in BOLD signal from
volume to volume, where «D» refers to the temporal derivative of time
courses and «VARS» to the RMS variance over voxels above 5% change
in global BOLD signal as defined in Power et al., (2012)).

In each participant, we captured task-related BOLD signal changes
using a GLM,whichmodeled themagnitude presentation phase and de-
cision phase of each trial (see Fig. 1A). The BOLD signal changes during
the magnitude presentation phase was divided into separate “gain
events” and “loss events,” each modeled with their individual amounts
as parametric linearmodulations. BOLD signal changes during decision-
making were parametrically modulated with the absolute gain–loss
ratio including a first (i.e. linear) and second (i.e. quadratic) order poly-
nomialmodulation (i.e (gain/loss)2). All regressors of interestwere con-
volved with the canonical hemodynamic response function.

The individual parameter estimates for first and second order poly-
nomial modulation of increasing gain–loss ratios was then entered in
two separate second-level group analyses. These second-level t-tests in-
cluded the individual loss aversion score (i.e., lambda) as covariate to
model the influence of individual differences in loss aversion. A separate
second-level model included the individual SOGS scores as index of
gambling severity. Differences in regional BOLD response between gam-
blers and controls were assessed using two-sample t-test. At the group
level, clusters were considered significant if they exceed a threshold of
P b 0.05 corrected for multiple comparisons with family-wise error cor-
rection across the whole brain (i.e. on a cluster level), using an entry
threshold of PUncorrected b 0.001. In addition, various trend activations
in relevant cortico-limbic structures are reported at PUncorrected b 0.001.
Coordinates are displayed in MNI stereotactic space. For the purpose of
highlighting the main BOLD activation clusters (i.e. caudate and DLPFC,
Fig. 4) and performing scatter plots of parameter estimates based on in-
dividual behaviors (i.e. plotting loss aversion in amygdala and gambling
severity in precuneus, Fig. 5), we created anatomical masks for these re-
gions using theWFU PickAtlas (Maldjian et al. 2003). For themasks cov-
ering bilateral caudate, amygdala, and precuneus, we used predefined
“AAL” atlas masks (Tzourio-Mazoyer et al. 2002), while for the DLPFC
mask, we constructed a mask covering Brodmann areas 8–10, 46, and
the middle frontal gyrus (MFG). Note that none of these masks were
used to ameliorate any of the fMRI results reported in the main text or
in the tables.
Results

Demographic and neuropsychological data

Demographic and neuropsychological data are listed in Table 1.
Groups did not differ significantly with respect to age, handedness, gen-
eral anxiety, or alcohol dependency. However, gamblers showed slight-
ly higher smoking dependency, lower educational level, higher overall
impulsiveness and differed in the way they perceived risks compared
to non-gambling controls. Importantly, all gamblers had a SOGS of
more than 5, indicating that theywere all in the pathological range (me-
dian: 10; range: 6–19). In contrast, all but two control subjects scored 0
on the same test (median: 0; range: 0–3), indicating no problems with
gambling.



Fig. 2. Color-coded statistical t-score maps: Brain regions showing a positive linear
relationship between the BOLD response and increasing gain–loss ratios of the gambles
A) in gamblers, B) in controls, and C) contrasting the two groups. When contrasting
groups, BOLD activation revealed a trend difference in pregenual ACC (gamblers N

controls). Maps are thresholded at P b 0.001 (uncorrected) and displayed on a group-
specific normalized anatomical template based on structural T1 images.
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Depression is a common co-morbidity in pathological gamblers, and
consistently, we also found a substantial increase in depressive symp-
toms in the gambling group compared to the control group. However,
there was no correlation between gambling behavior (i.e., λ) and BDI
scores in the gamblers (R = 0.2739, P = 0.3651).

We also found a significant difference in performance on the WAIS
subtests probing vocabulary and general knowledge (“information”)
levels. Again, we found no correlations between these measures and
gambling behavior (i.e., correlation between WAIS information and λ:
R = 0.0124, P = 0.9679; and between WAIS vocabulary and λ: R =
0.2320, P = 0.4456).

Behavioral data

Fig. 1C shows the distribution of accepted gambles for a given gain–
loss ratio for gamblers and controls. Most participants consistently
showed loss averse behavior: They accepted a given gamble only
when the gain amount clearly exceeded the loss amount (i.e.
lambda N 1). Gamblers tended to be less loss averse. The mean propor-
tion of accepted vs. rejected trials in gamblers was 65% vs. 35%, and in
controls, 55% vs. 45%, but inter-individual variability was substantial in
both groups: median lambda in gamblers was 1.45 (SD = 0.49;
mean = 1.45; range: 0.56–2.59), with a positively skewed distribution
of λ's (skewness coefficient of 0.42), while median lambda in healthy
controls was 1.82 (SD= 0.83; mean= 1.83; range: 1.01–3.83; positive
skewness: 0.93). Therefore, the difference in lambda between groups
only reached borderline significance (P = 0.077; t(27) = 1.47). Note
that the lambda distribution was non-normal (Shapiro–Wilks test of
normality: P=0.0353,W=0.9218).We therefore employed a random
permutation test based on resampling (also known as a randomization
test) to assess differences in lambda betweenpathological gamblers and
healthy controls. The number of iterations used was 10.000.

The number of error trials was comparable between groups. Gam-
blers as a group had 30 error trials (15 non-response, 15 very fast or
slow responses) with 0–8 error trials per subject. Control subjects
made in total 27 errors (16 non-response, 11 very fast or slow re-
sponses) with 0–8 error trials per subject. Mean response times were
also similar between groups (P = 0.66; t(27) = 0.45; gamblers:
927 ms; SD = 240; controls: 959 ms; SD = 122). Decisions to accept
or reject a gamble were more difficult when the subjective utility of
gains and losses were similar. This was reflected in response times, as
both groups responded slower when the Euclidian distance between
the individual gain/loss ratio and the group mean lambda decreased
(gamblers: R = 0.15, P b 0.001; controls: R = 0.15, P b 0.001).

Linear increase in neural activity with increasing gain–loss ratios

In the decision-making phase, a large bilateral cluster in the anterior
cingulate cortex (ACC) and the vmPFC (P b 0.001; x, y, z = −8, 40, 6;
Z = 4.75; k = 759), bilateral mid-cingular cortex and adjacent
precuneus, (P b 0.001; x, y, z = −10, −30, 52; Z = 4.43; k = 1933),
and superior frontal gyrus (SFG; P b 0.001; x, y, z = 18, 38, 56; Z =
4.34; k=633) showed a linear increase in BOLD responsewith increas-
ingly appetitive gain–loss ratios across all 29 participants. Fig. 2 shows
that this linear effect was mainly driven by the gamblers, who showed
a gradual increase of the BOLD response with increasingly appetitive
gamble ratios in the pregenual portion of ACC (P b 0.001; x, y,
z = −8, 36, 8; Z = 5.18; k = 518; Fig. 2A) and the right vmPFC (P =
0.003; x, y, z= 8, 34,−10; Z=4.23; k= 307) aswell as in themid cin-
gulum/precuneus (P = 0.031; x, y, z = −10, −30, 52; Z = 4.40; k =
188), right inferior temporal gyrus/parahippocampus (P = 0.002; x, y,
z = 34, 2, −30; Z = 4.23; k = 329), and postcentral gyrus (P =
0.001; x, y, z = 62; −20, 44; Z = 4.11; k = 356). Control subjects, on
the other hand, showed dispersed activation clusters in a range of
areas (left precuneus: P b 0.001; x, y, z = −6, −58, 32; Z = 4.72;
k = 1010; right lingual gyrus: P = 0.002; x, y, z = 18; −86, −8; Z =
4.67; k = 332; left cuneus: P = 0.028; x, y, z = −14, −100, 10; Z =
4.27; k = 193; and right posterior lobe of the cerebellum: P = 0.001;
x, y, z = 42, −70, −34; Z = 4.09; k = 351) with peak activation in
the left angular gyrus (P b 0.001; x, y, z = −48, −60, 30; Z = 5.06;
k= 433; Fig. 2B). Althoughwe found no significant decreases in activa-
tion for increasingly appetitive bets, we did find trends in the anterior
insula of the control group (L: P b 0.001, uncorrected; x, y, z = −32,
24, −2; Z = 3.83; k = 74; R: P b 0.001, uncorrected; x, y, z = 42, 24,
4; Z=3.64; k=14).When contrasting the groups, no significant differ-
ences were found. However, gamblers showed a trend toward a higher
increase in activity with increasingly appetitive gambles in the left
pregenual ACC (P b 0.001, uncorrected; x, y, z = −8, 36, 6; Z = 4.33;
k = 98; Fig. 2C). Results showing the impact of individual degree of
loss aversion on the linear increase in neural activity with increasing ra-
tios can be found in Supplementary Fig. 1 and Supplementary Table 1.

Quadratic increase in neural activity with increasing gain–loss ratios

When combining BOLD signal from all participants, a large network
of prefrontal areas in the dorsal and mesial frontal lobe showed a qua-
dratic increase in neural activity with increasing gain–loss ratios
peaking in right dorsal SFG (P b 0.001; x, y, z = 12, 24, 60; Z = 5.38;
k= 1769). Further activations for this contrast included the left middle
frontal gyrus (P b 0.001; x, y, z = −38, 10, 50; Z = 4.81; k = 605), bi-
lateral angular gyri (L: P = 0.022; x, y, z = −42, −64, 40; Z = 4.24;
k= 227; R: P b 0.001; x, y, z = 52,−56, 38; Z=4.68; k= 488), left in-
ferior frontal gyrus (P = 0.004; x, y, z = −42, 26,−16; Z= 4.09; k =
330), and right inferior temporal gyrus (P = 0.001; x, y, z = 66, −14,
−22; Z = 4.30; k = 409). As shown in Fig. 3, separate analyses for
each group reveal that this effect was only consistent in gamblers. In
gamblers, several brain areas showed quadratic increases as a function
of gamble ratios, including a large bilateral prefrontal cluster covering
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Fig. 3. Color-coded statistical t-score maps: Brain regions showing a positive quadratic
relationship between the BOLD response and increasing gain–loss ratios of the gambles
in A) gamblers, B) controls, and C) contrasting the two groups. Maps are thresholded at
P b 0.001 (uncorrected).

Table 2
Functional MRI results: quadratic increases in regional BOLD activity with increasing gam-
ble ratios.

Cluster peak Left/
Right

x y z Z
value

P-value Cluster
size
(k)

Gamblers: Quadratic increase in regional activity with gamble ratios
Dorsolateral prefrontal
cortex

Right 34 24 50 5.45 b0.001 6941

Superior frontal gyrus⁎ Right 12 26 60 5.44
Dorsolateral prefrontal
cortex⁎

Left −36 10 46 5.25

Caudate Left −14 20 −2 5.01 b 0.001 776
Caudate⁎ Right 14 10 12 4.17
Caudate⁎ Right 6 14 −2 4.13
Parahippocampus Right 22 −40 −4 4.90 b 0.001 448
Inferior temporal gyrus Right 54 −6 −34 4.71 b 0.001 667
Middle temporal gyrus⁎ Right 60 −40 −8 4.41
Middle temporal gyrus⁎ Right 66 −16 −20 4.28
Angular gyrus Right 50 −58 40 4.49 0.001 394
Inferior frontal
gyrus/operculum

Left −60 16 16 4.37 b 0.001 674

Superior temporal gyrus Left −40 −58 16 4.04 b 0.001 613
Angular gyrus⁎ Left −42 −64 40 4.02

Controls: Quadratic increase in regional activity with gamble ratios
No significant activation

Gamblers N controls: Larger quadratic increase in regional activity with gamble ratios
in gamblers

Caudate Left −14 20 −2 5.36 b 0.001 6781
Dorsolateral prefrontal
cortex⁎

Right 34 24 50 5.36

Precentral gyrus/sub gyral⁎ Left −32 −16 32 4.84
Parahippocampus Right 22 −40 −4 5.16 b 0.001 3463
Calcarine gyrus Left −26 −66 12 4.89
Parahippocampus/sub
gyral⁎

Left −24 −50 0 4.78

Cerebellum posterior lobe Right 26 −68 −26 4.44 b 0.001 899
Cerebellum anterior lobe⁎ Right 12 −54 −32 4.18
Inferior frontal gyrus/
operculum

Left −60 16 16 4.39 0.031 208

Insula Left −32 4 −14 4.03 0.002 370
Insula Right 42 −2 −10 4.02 0.045 187

Controls N gamblers: Larger quadratic increase in regional activity with gamble ratios
in controls

No significant group
differences

P b 0.05, FWE corrected at cluster level.
⁎ Local maxima within cluster with Z score N 4.
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the dorso-lateral parts of middle and superior frontal gyri, and a focal-
ized subcortical cluster covering head and body of both left and right
caudate nuclei (Fig. 3A; full list of activations can be found in Table 2).
In contrast, the activity profile in controls did not reflect any quadratic
modulation of activity with increasing gain–loss ratio (Fig. 3B; Table 2).

When contrasting gamblers with controls, we found significantly
stronger quadratic modulation of neural activity with gain–loss ratio
in a large set of brain regions (Fig. 3C), including the large bilateral
cortico-striatal cluster. Within this cluster, the left caudate nucleus
showed the strongest group difference at the subcortical level and the
right DLPFC displayed the strongest group effect at the cortical level.
The full list of activation clusters is given in Table 2. Noteworthy, no
clusters displayed stronger quadratic modulation of neural activity
with gain–loss ratio in controls compared to gamblers.

It should also be noted that the quadratic BOLD increase to aversive
and appetitive gambles survived in gamblers even when including BDI
or the WAIS scores as covariates in the second-level t-tests (i.e. model-
ing out the effect of depression, vocabulary or general knowledge levels,
which were differing between groups according to behavioral tests, see
Table 1). Results, where the effect of depression has been modeled out
of the quadratic increase in neural activity with increasing ratios, can
be found in Supplementary Fig. 2.

To illustrate the underlying shape of the quadratic modulation of
BOLD signal during decision-making, we assigned each of the 64 gain–
loss ratios to one of 16 adjacent”bins” in a post hoc GLM.When plotting
activation in each of these bins as a function of increasing gain–loss
ratio, we found that the BOLD response profile in gamblers was U-
shaped (Fig. 4B). In order to determine if a linear or a cubic model was
more appropriate to describe the effect, we tested if the additional var-
iance explained by including higher order polynomial terms (quadratic
and cubic) were significant. In gamblers but not controls, a nested re-
gression model verified that the quadratic fit was more appropriate to
describe the nature of the curve, than a linear fit. Note that these
descriptive data should not be seen as separate results, but merely a
complementary analysis to illustrate the underlying shape of the BOLD
response profiles.

Impact of individual loss aversion

Across both groups, the individual degree of loss aversion, indexed
by the individual decision-boundary lambda, enhanced the sensitivity
to extreme gain–loss ratios of mixed gambles in a network of brain re-
gions with peak activation in right amygdala (P b 0.001; x, y, z = 24,
−4, −26; Z = 5.01; k = 1988). Apart from the main activation peak
in the amygdala, regions included the DLPFC/SFG (P b 0.001; x, y, z =
32, 24, 56; Z=4.86; k= 2372), left middle temporal/parahippocampal
gyrus (P b 0.001; x, y, z = −44, −24, −24; Z = 4.59; k = 1435),
precuneus (P b 0.001; x, y, z = −4, −62, 26; Z = 4.40; k = 1169),
and vmPFC (P = 0.009; x, y, z = 8, 26, −18; Z = 4.31; k = 281).

In pathological gamblers, the individual degree of loss aversion was
associated with an enhanced sensitivity to extreme gain–loss ratios in a
dorsal frontal network with a regional peak in the DLPFC (Fig. 5A; see
also Table 3 for full list of activations). This cortical network closely
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Fig. 4. U-shaped modulation of the BOLD response to increasing gain–loss ratios in pathological gamblers. A) Color-coded statistical parametric maps showing clusters with higher
sensitivity to extreme positive and negative gain–loss ratios in gamblers compared with controls. Maps are thresholded at P b 0.001 uncorrected. To highlight the two principal regions
differing between groups, anatomical masking of the caudate nuclei (top) and DLPFC (bottom) is used. B) These scatter plots are based on a “post hoc” GLM analysis created for
illustrative purposes, where adjacent gain–loss ratios were clustered together into 16 ratio-“bins” (the range of ratios is displayed on the x-axis). The y-axis indicates regional neural
activity (as estimated by the BOLD response in an 8-voxel sphere around peak activation) in the decision phase for gamblers (red) and controls (black). A nested regression model
suggest that activation is better explained by a quadratic compared to a linear relationship with gain–loss ratio in the caudate nucleus (P = 0.02) and DLPFC (P = 0.02) in gamblers
(left panel) but not in controls (right panel).
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resembled the prefrontal areas showing a U-shaped activity increase
with increasing gain–loss ratios in gamblers presented in Fig. 3.

In non-gambling controls, a more ventral and posterior network
showed enhanced sensitivity to extreme gamble ratios as a function
of loss aversion, with the right amygdala having the strongest effect
size (Fig. 5A, middle right panel; Table 3). The direct comparison of
the two groups yielded a significantly stronger effect of loss
Fig. 5.Modulation of the U-shaped relationship between neural activity and gain–loss ratios by
parametricmaps illustrating how degree of individual loss aversion (reflected by high individua
in pathological gamblers (left panels) or controls (right panels). The below graph illustrates the
neural activity and gain–loss ratios (y-axis) and individual loss aversion (x-axis) in the bilatera
coded statistical parametric map showing a bilateral cluster in precuneus, where the neural se
Right: The scatter plot shows the linear relation (P = 0.016; R2 = 0.63) between individual
precuneus region (y-axis) and the individual gambling severity expressed by individual SOGS
P b 0.001 (uncorrected).
aversion on the activity profile in the DLPFC for gamblers compared
to controls (Table 3), whereas the modulatory effect of loss aversion
on amygdala activity was not significantly different between
groups.

When plotting the relationship between BOLD parameter estimates
and loss aversion, individual loss aversion in the healthy controls (but
not gamblers) enhanced the U-shaped relationship between neural
A) individual degree of loss aversion and B) severity of gambling. A) Color-coded statistical
l λ-values) enhanced the U-shaped relationship between neural activity and gamble ratios
relation between the individual parameter estimate for theU-shaped relationship between
l amygdala (controls: P b 0.001; R2 = 0.83; gamblers: P=0.11; R2 = 0.71). B) Top: Color-
nsitivity to extreme gambles increased with gambling severity in pathological gamblers.
parameter estimates of the U-shaped relation between ratio and neural activity in the
scores (x-axis). All BOLD activations are whole brain activations displayed at threshold
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Table 3
Functional MRI results: effect of loss aversion on quadratic increase in regional BOLD activity with gamble ratios.

Cluster peak Left/Right x y z Z value P-value Cluster size (k)

Gamblers: Enhanced quadratic increase in regional activity to gamble ratios with loss aversion
Dorsolateral prefrontal cortex Right 32 24 56 4.91 b0.001 2009
Dorsolateral prefrontal cortex⁎ Left −42 16 54 4.81
Dorsolateral prefrontal cortex⁎ Right 44 22 52 4.70
Middle temporal gyrus Right 66 −24 −16 4.51 b0.001 1007
Fusiform/parahippocampus⁎ Right 32 −8 −32 4.43
Middle temporal gyrus⁎ Right 56 −44 −6 4.40
Inferior temporal gyrus Left −44 −24 −24 4.43 b0.001 626
Temporal lobe/sub gyral⁎ Left −36 0 −28 4.12
Middle temporal gyrus⁎ Left −60 −40 −14 4.06
Precuneus Left −4 −62 26 4.06 0.007 293

Controls: Enhanced quadratic increase in regional activity to gamble ratios with loss aversion
Amygdala Right 28 0 −26 5.50 b0.001 4760
Middle temporal gyrus⁎ Right 60 −8 −12 5.14
Parahippocampus⁎ Right 20 4 −26 4.98
Postcentral gyrus Right 54 −14 50 5.07 0.001 417
Precentral gyrus⁎ Right 40 −20 64 4.70
Cuneus Left −2 −92 22 4.64 b0.001 1178
Middle occipital gyrus⁎ Left −16 −94 14 4.42
Cuneus⁎ Right 10 −80 30 4.21
Lingual gyrus Right 10 −70 −6 4.59 b0.001 551
Lingual gyrus⁎ Right 16 −64 −10 4.02
Middle temporal gyrus Left −46 6 −24 4.59 b0.001 1967
Insula⁎ Left −36 −14 −4 4.52
Postcentral gyrus Left −46 −16 54 4.53 0.004 321
Precuneus/Mid Cingulum Right 4 −32 52 4.17 b0.001 521
Precuneus/Mid Cingulum⁎ Left −4 −42 50 4.11

Gamblers N controls: Larger quadratic increase in activity to ratios with loss aversion in gamblers
Dorsolateral prefrontal cortex Left −42 16 54 4.60 b0.001 761
Superior frontal gyrus⁎ Left −14 20 66 4.21
Superior frontal gyrus⁎ Left −10 28 60 4.11
Dorsolateral prefrontal cortex Right 44 22 52 4.53 b0.001 457
Dorsolateral prefrontal cortex⁎ Right 34 22 56 4.49
Middle temporal gyrus Right 66 −24 −16 4.22 0.028 214

Controls N gamblers: Larger quadratic increase in activity to ratios with loss aversion in controls
Cerebellum posterior lobe Right 30 −58 −46 4.86 b0.001 629
Cerebellum posterior lobe⁎ Right 34 −44 −48 4.63
Cerebellum posterior lobe⁎ Right 14 −66 −40 4.07
Superior occipital gyrus Right 34 −88 28 4.69 0.016 246
Middle occipital gyrus⁎ Right 36 −90 18 4.21
Middle occipital gyrus⁎ Right 40 −92 4 4.03
Anterior prefrontal Left −14 58 4 4.41 0.011 264
Precuneus Left −14 −52 −50 4.40 0.005 318
Cerebllum posterior lobe Left −14 −60 −48 4.15
Inferior frontal gyrus/sub gyral Left −26 34 −4 4.36 0.038 196

P b 0.05, FWE corrected at cluster level.
⁎ Local maxima within cluster with Z score N 4.
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activity in the amygdala (Fig. 5A, bottomgraph. Note that this effectwas
robust to the exclusion of themost loss averse control subject).With the
exception of a few voxels in the right amygdala (see Fig. 5A, middle
panel), loss aversion in pathological gamblers was not linked to altered
amygdala response during decision-making.
Impact of severity of pathological gambling

We investigated whether gambling severity in gamblers as
indexed by the individual SOGS scores modified the U-shaped re-
sponse to extreme ratios during decision-making. A whole-brain
search revealed a focal enhancement of the sensitivity to extreme ra-
tios with gambling severity in bilateral precuneus (P = 0.003; x, y,
z=−6,−48, 40; Z=4.59; k= 335; Fig. 5B, top panel). Accordingly,
the correlation between percent BOLD signal changes in a bilateral
precuneus region (restricting activity to this region through anatom-
ical masking) and gambling severity was highly significant (Fig. 5B,
bottom graph).
Brain responses to single potential gains and losses

Since the win and loss amount of a mixed gamble was presented se-
quentially in each trial, we were able to capture regional changes in the
BOLD signal corresponding to single potential gains and losses (but see
also discussion of the jittering used in the Discussion section). During
this passive evaluation phase, we searched for between-group differ-
ences in BOLD response to gains, losses, increasing gains, and increasing
losses. There were no significant group differences for these contrasts,
but we found a bilateral trend toward a higher BOLD response to
potential gains in gamblers compared to controls in the amygdala
(L: P b 0.001, uncorrected; x, y, z = −26, 2, −22; Z = 3.19, k = 6;
R: P b 0.001, uncorrected; x, y, z = 24, −2, −10; Z = 3.43; k = 7).

Discussion

Contrasting healthy and pathological decision-making with a mixed
gamble task, we measured task-related neural activity during gambling
decisions, which required participants to trade off a possible gain
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against a possible loss. In gamblers, a dorsal cortico-striatal network
displayed a higher neural sensitivity to themost appetitive and aversive
gain–loss ratios compared to healthy matched controls. The stronger
tuning of dorsal cortico-striatal areas to extreme gain–loss ratios indi-
cates that gamblers put more weight on the extremes of the decision
frame offered by the gambling task. Importantly, this U-shaped neural
response to gambling ratios was not observed in controls, suggesting
that this specific hypersensitivity to extreme ratios constitutes a neural
signature of pathological gambling.

Interestingly, the U-shaped tuning of neural activity to the most
aversive andmost appetitive gambleswas not expressed in core regions
of the reward network, such as ventral striatum or orbitofrontal cortex.
Instead, it was expressed bilaterally in a dorsal cortico-striatal “associa-
tive” or “executive” network, including the caudate nucleus and the
DLPFC. The recruited DLPFC included the dorsal and mesial superior
and middle frontal gyri, corresponding to BA 6/8/9 and “9/46d” (Badre
and D'Esposito 2009, Goldstein and Volkow 2011). This dorsal cortico-
striatal network is known to be involved in monitoring recent actions
and anticipating their outcomes (for review see Yin and Knowlton
2006). In particular, the human caudate nucleus has been implicated
in the reinforcement of action–outcome contingencies (Knutson et al.
2001; O'Doherty et al. 2004; Tricomi et al. 2004; Delgado et al. 2005).

Our present results suggest that this dorsal cortico-striatal network
plays an important role in gambling decisions made by gamblers. Ex-
treme gain–loss ratios are characterized as being highly relevant in
terms of possible action–outcomes: the more appetitive a bet is, the
more important it is to accept it; conversely, the more aversive a bet
is, themore important it is to reject it. In healthy subjects, the dorsal stri-
atum has been found to track stimulus salience or arousal, rather than
linearly increasing subjective value (Barta et al. 2013). We infer that in
pathological gamblers, this dorsal cortico-striatal network is hypersen-
sitive and weights these extreme gain–loss ratios more strongly than
in healthy subjects, when making gambling decisions.

Current theories of the neurobiological bases of pathological gam-
bling are compelling in their simplicity, by predicting either a hypo- or
hypersensitivity of the ventral striatum and other ventral core regions
of the reward system such as the vmPFC. Accordingly, previous neuro-
imaging studies in gamblers showed either diminished (Balodis et al.
2012) or enhanced (van Holst et al. 2012; Worhunsky et al. 2014) acti-
vation of ventral striatum during the anticipation of monetary reward.
In the present study, no differences in neural activity between patholog-
ical gamblers and non-gambling controls emerged in the ventral reward
system when they evaluated single loss or gain amounts during the
magnitude presentation phase or when they balanced possible gains
and losses of the mixed gambles in the decision phase. Only the right
and left amygdala showed a trend toward a stronger neural response
to possible gains during the former phase. In other words, the decision
to accept or reject a gamble was not consistently associated with a
hyper- or hyposensitivity of the reward system. This negative finding
is in agreement with a recent study where gamblers showed a normal
reactivity of the ventral striatum tomonetary reward cues but a blunted
sensitivity to cues predicting erotic stimuli (Sescousse et al. 2013). The
lack of a consistent pattern within this literature, with basically either
opposite results or no striatal effect at all, indicate that explaining path-
ological gambling by striatal up- or down-regulation might not be ade-
quate. It has been suggested that the decision-making deficits seen in
pathological gambling could emerge from an imbalance between dopa-
minergic systems involving limbic motivational structures and prefron-
tal control regions, rather than a disruption in either component in
isolation (Clark et al. 2013). One good candidate of such cortico-
striatal networks is the dorsal cortico-striatal loop, which has been
implicated in action selection and processing action outcome contin-
gencies (Yin and Knowlton 2006; Seo et al. 2012). Note that in the pres-
ent study decisions are made based on internal representations of the
balance between gains and losses rather than on outcome-based adap-
tive processes, or strictly anticipatory processes. This is perhaps the
reason why we find areas that are more related to the choice of the ac-
tion (i.e. accepting or rejecting a bet), rather than areas traditionally
coding for anticipating or receiving outcomes.

Here, in non-gambling controls, loss averse behavior during the
gambling task was associated with a stronger sensitivity to extreme
gain–loss ratios in the amygdala. These results correspond well with
our recent findings in a separate group of healthy individuals (Gelskov
et al. 2015), where more loss averse participants showed an increased
neural sensitivity in the amygdala to extreme gain–loss ratios of
mixed gambles. These results persisted despite subtle differences be-
tween studies. The actual game participants played in the scanner
remained the same (i.e. distribution of monetary amounts, duration,
and jittering of visual stimuli, etc.). However, the endowment proce-
dure differed slightly. In the current study, participants received actual
money bills (200 DKK) that they kept for 1–2 weeks before entering
them as a stake in the gamble, while in the previous study, participants
were led to believe they could losemoney from their initial endowment.
This difference in endowment strategy could perhaps explain why the
healthy control subjects in the present study were a bit less loss averse
(median lambda of 1.82) compared to our previous study (median
lambda of 2.08). Although the statistical difference between the two
healthy groupswas not significant (P=0.18, permutation test), the dif-
ference in lambda between the previous healthy group and the current
group of gamblerswas significant (P=0.004, permutation test). Anoth-
er obvious difference between the studies is the age difference, as the
present control group was older in order to match the gamblers (P =
0.0175, t(29)=2.52; 2-sample t-test). However, if anything, this differ-
ence should predict the opposite effect on lambda, since older healthy
subjects tend to be more loss averse than younger. Furthermore, the
two studies differed slightly in the way gamble ratios were modeled.
In our previous study, we found that the amygdala was sensitive to var-
iations in gain–loss ratios in relation to a subject-specific “decision-
boundary” (i.e. the individual lambda score, λ). This model can be con-
ceptualized as “V”-shaped BOLD response to increasing ratio, where the
“low point” of the V was the individual λ-score. Two linear parametric
regressors then classified each trial ratio as beingmore or less appetitive
or aversive, according to how they differed from the individual λ
(i.e., aversive ratios b individual λ b appetitive ratios). However, in the
present study,we could not base ourmodel onλ-scores, since a fewpar-
ticipants simply had a too high or too low acceptance rates. Thus, we
used the non-adjusted gain–loss ratio to evaluate the neural response
to the full continuous spectrum of ratios (i.e. a “U”-shaped BOLD re-
sponse to ratio). Note that the use of this slightly different quadratic
model could be the reason that we do not replicate the amygdala activ-
ity for increasingly appetitive and aversive gambles in healthy subjects.
It might be the case that the amygdala is specifically tuned to the
decision-boundary, λ, and the amygdala activation in our previous
study could be related to the inclusion of theλ-score in themain regres-
sors. This interpretation is in accordance with the fact that both analyt-
ical methods showed that loss averse gambling behavior is associated
with a higher sensitivity of the amygdala to highly aversive and highly
appetitive potential outcomes during decision-making. Taken together,
these findings points to a crucial role of the amygdala in biasing loss
aversive decisions in healthy individuals.

In gamblers, the relation between loss averse behavior and neural
activity to gamble ratios revealed only a non-significant trend in the
amygdala. Instead, decision-related activity in the DLPFC changed as a
function of loss aversion. This effect was significantly stronger for gam-
blers compared to controls. Interestingly, this effect peaked at the same
location in DLPFC where we found the stronger hypersensitivity to ex-
treme ratios relative to controls. This indicates that in gamblers, the in-
dividual degree of loss aversion is not reflected by areas predicting the
emotional saliency or value of a stimulus such as the amygdala and
the ventral striatum, but instead by the activity profile in the DLPFC. In
this population, it thus seems that a cortical area sub-serving executive
control functions such as working memory, task switching, and
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representing action–outcome contingencies (Elliott 2003; Monsell
2003; Seo et al. 2012) is supplementing the amygdala in biasing loss
averse gambling behavior. However, this proposal needs to be further
investigated in future gambling studies.

Interestingly, we found a tendency toward less loss aversion in gam-
blers. According to traditional economic theories, this behavioral trend
toward less irrational decisions has the counter-intuitive implication
that gamblers acted more rational than controls. However, a more evo-
lutionary account of loss aversion would state that decision-biases
served the purpose of guiding instinctive decisions for instance when
foraging for food. Indeed, loss aversion has been reported in lower pri-
mates such as capuchin monkeys (Chen et al. 2006; but see also
Silberberg et al. 2008) indicating that loss aversion is a deeply rooted
decision-making guideline that might even be an innate bias toward
conservatism. A recent study by Giorgetta et al. (2014) found that path-
ological gamblers who were in later stages of clinical treatment were
more loss averse than gamblers whowere in earlier stages of treatment.
Interestingly, they found that gamblers as a group (across treatment
status)weremore loss averse than healthy controls. In contrast, a previ-
ous study investigating behavioral loss aversion in gamblers found that
active gamblers (i.e. not in treatment)were less loss averse than healthy
controls (Brevers et al. 2012). This raises the question whether effective
treatment can render pathological gamblers loss averse. In the present
study, gamblers were recruited from a treatment center, and most had
participated in cognitive therapy. Perhaps, this is the reason why we
did not find a significant behavioral difference between gamblers and
healthy controls but only a trend in this direction.

Finally, we found that gamblers with more severe gambling symp-
toms, as measured by the SOGS score, had an increased engagement
of the precuneus when evaluating high and low gamble ratios.
Precuneus and posterior cingulate cortex are often found in response
to self-referencing tasks (see review by Cavanna and Trimble 2006),
and a recent study investigating self-control in gamblers showed aber-
rant electrophysiological signals over the posterior cingulate cortex
using MEG (Thomsen et al. 2013). These aberrant signals have been
linked to the well-established fact that pathological gamblers suffer
from increased impulsivity and lower self-control. In our study, the
modulation of precuneus activity as a function of gambling severity
might reflect similar, aberrant mechanisms of self-control. Yet, these
speculations regarding the functional involvement of precuneus in
pathological gambling need to be formally addressed in future studies.

Our results revealed an altered, U-shaped pattern of activity for both
caudate nucleus and DLPFC when pathological gamblers evaluated
monetary bets. Although this activation pattern might stem from co-
occurring, but unrelated, dysfunctions of these brain regions, it might
also originate from alterations in their functional connections. Previous
studies in healthy subjects have provided ample evidence for the con-
nectivity between caudate and PFC, by relying both on functional (e.g.
Robinson et al. 2012) and structural (e.g. Verstynen et al. 2012)
cortico-striatal connectivity. It is thus possible that the pathology of
gambling reflects altered neural connectivity patterns in this specific
cortico-striatal decision-making circuit.

Like inmany previous gambling studies, we included onlymale sub-
jects (e.g. van Holst et al. 2012; de Ruiter et al. 2009; Linnet et al. 2011;
Sescousse et al. 2013). However, although epidemiological studies sug-
gest that men represent the large majority of pathological gamblers
(Kessler et al. 2008), pathological gambling also affectswomen. Because
studies have shown differences between women and men in terms of
gambling preferences (e.g., more solitary gambling forms such as slot
machine vs. more socially engaging forms such as poker) and motiva-
tional backgrounds (e.g., escaping negative emotions vs. sensation-
seeking behaviors; see review by Raylu and Oei 2002), the present re-
sults cannot be generalized to the female population. Therefore, it re-
mains to be clarified whether female gamblers would show the same
aberrant neural signatures of decision-making as the male gamblers in
this study.
Apoint of improvement for future studies is the amount of gambling
subjects included in this study (n = 14). Although the group size was
comparable to previous fMRI studies (Crockford et al. 2005; Reuter
et al. 2005; Thomsen et al. 2013; Balodis et al. 2012) and patients
were well characterized, it would have been desirable to study a larger
group. Further limitations include the method of jittering between
events of interest. Since a fast and seamless gamble was prioritized,
we chose to jitter the events themselves, and not introduce a jittered
inter-trial interval (ITI) between them, although there was an ITI of
1.2 s between each decision-making phase and the magnitude presen-
tation the lack of jittering here could in principle contribute to the fact
that we did not find differences between groups in the magnitude pre-
sentation phase.

In sum, we show that a dorsal cortico-striatal network involved in
action–outcome contingencies expresses a hypersensitivity to extreme
gain–loss ratios in gamblers. The U-shaped response profile in DLPFC
and precuneuswas related to the individual degree of loss aversion dur-
ing gambling task and severity of pathological gambling, respectively.
These results stimulate future research to extend the focus of neuroim-
aging from the core reward system to dorsal cortico-striatal networks in
pathological gambling.
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