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Systems biology is a new and highly interdisciplinary field that combines elements from 
molecular biology and physiology with quantitative modelling approaches from disciplines 
such as engineering, physics, computer science, and mathematics. The term ‘systems 
biology’ was used originally in 1968 by Mesarović to urge the use of systems theory to 
understand biological systems (Mesarović 1968); some commentators would trace the 
historical roots even further back (Green and Wolkenhauer 2013). But when the term is used 
in the context of contemporary bioscience it typically refers to a much more recent approach, 
initiated in the late 1990s as a response to the new experimental techniques and fast 
computers that allowed the rapid sequencing of DNA and automated measurements of 
molecular interactions (Ideker et al. 2001; Kitano 2001). These innovations afforded major 
new initiatives in the life sciences but also produced unforeseen challenges. Systems biology 
addresses one of these, namely the interpretation of extensive quantitative data via 
mathematical and computational modelling (Alberghina and Westerhoff 2005; Boogerd et al. 
2007). 

Research in systems biology is driven by complex problems that require 
multidisciplinary integration (Carusi 2014; MacLeod and Nersessian 2014; O’Malley and 
Soyer 2012). Consequently, it is a diverse field. Some proponents pursue strategies that 
extend molecular biology with sequence-based tools (see Chapter 24), while others explore 
the relevance of abstract mathematical systems theory to molecular interactions (O’Malley 
and Dupré 2005). Common to all branches of systems biology is the willingness to borrow 
reasoning and representation tools from engineering and the physical sciences, including 
network diagrams and graph-theory, other types of mathematical modelling (primarily 
ordinary differential equations) and computational simulations. We focus on just one of the 
many possible questions about systems biology: To what extent can the modelling strategies 
and explanations in systems biology be characterized as mechanistic? 

1. Dynamic Mechanistic Explanation and Other Modelling Aims 

A hallmark of mechanistic research is to understand a complex whole by decomposing it into 
component parts, and by localizing phenomena of interest to certain parts of the system 
(Bechtel and Richardson 1993; Craver 2007; see Chapters 9 and 19). Models in systems 
biology are similarly based on empirically measured molecular entities and interactions. 
Given the abundance of different molecules and pathways in every cell, modelling involves 
the selection of components relevant to the system being investigated (Donaghy 2014). But 
the role of mathematical models and computational tools—as distinctive aspects of systems 
biology—was not addressed in original philosophical accounts of mechanistic explanations 
(see Chapter 16), primarily because molecular systems biology is so new. Lately, the 
relationship between models in systems biology and mechanistic accounts has become an 
important philosophical topic of debate, with some commentators arguing that a traditional 
mechanistic account is sufficient to describe research in systems biology (e.g., Richardson 
and Stephan 2007), and others instead stressing the need for a more pluralistic perspective of 
explanatory integration (e.g., Braillard 2010; Fagan 2016; Mekios 2015). 
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Although it is possible to focus on differences between dynamic models in systems 
biology and mechanistic explanations in general (Issad and Malaterre 2015; Théry 2015), 
Bechtel and Abrahamsen (2010) instead highlight the continuity between the two by 
introducing the notion of ‘dynamic mechanistic explanation.’ Dynamic mechanistic 
explanations are also based on concrete entities and interactions, but they extend mechanistic 
explanation by mathematically or computationally capturing the dynamical operation of the 
system and its parts across time. In fact, in the case of complex systems, mathematical 
models are required for the purpose of mechanistic explanation (Baetu 2015; Bechtel 2012; 
Brigandt 2013; see Chapter 20). How is this the case? 

In addition to decomposition and localization as strategies for discovering mechanism 
components, mechanistic explanations must reassemble those components and specify 
epistemically how their organization and operation result in the overall features of the 
mechanism to be explained (Bechtel and Abrahamsen 2005). Bechtel illustrates the 
importance of mathematical models with circadian rhythms, which are endogenous 
oscillations of about 24 hours present in most organisms. A mechanism diagram can depict 
various components of the underlying mechanism, including specific genes and proteins, 
some of which have oscillating expression levels. The diagram can also represent the 
activation or inhibition of interactions among proteins and other entities, thereby depicting 
positive as well as negative feedback loops (see Chapter 18). For some simple mechanisms, 
mental simulation (using a mechanism diagram) suffices to show how the phenomenon to be 
explained is generated (Bechtel and Abrahamsen 2005). However, in the case of circadian 
rhythms, only mathematical models are able to reveal that over time the component 
interactions—which involve changing protein concentrations, several feedback loops and 
time-delaying gene expression pathways—actually produce sustained periodic oscillations 
(see also Brigandt 2015). 

Computational modelling strategies in systems biology can thus extend mechanistic 
accounts in various ways. By providing mathematical tools for modelling the dynamics of 
large systems of nonlinear organization, computational models can help researchers 
recompose knowledge about subsystems that have been taken apart for functional analysis. It 
is well-known that there is cross-talk between different mechanisms, and computational tools 
can afford a better understanding of how mechanisms relate to one another dynamically 
(Bechtel 2015b; Fagan 2012). Among the many examples are computer simulations of whole 
cells (and even organs) that explore dynamic interactions between different functional 
subsystems (Bassingthwaighte et al. 2009; Karr et al. 2012). If a mechanistic explanation is 
characterized as accounting for how a system behaviour is causally generated by the 
organized interaction of its particular parts, computational models of circadian rhythms or 
large-scale simulations can indeed be interpreted as vehicles for mechanistic explanations. 

However, we should be careful about assuming that modelling in systems biology is 
always geared towards mechanistic explanations. First, ethnographic studies of research 
practices in systems biology show that scientists may not even frame their modelling aims in 
terms of explanation, but instead, in terms of control or prediction (MacLeod and Nersessian 
2015). Practical concerns (application) and pragmatic constraints (not all parameters can be 
measured and modelled mathematically) direct particular modelling aims. MacLeod and 
Nersessian make this point with the example of how reducing the amount of cell-wall 
hardening lignin in plants is highly desirable for biofuel production. But because the relevant 
model of the lignin synthesis pathway depends on estimated parameters, it indicates primarily 
a robust relation between particular system components and the lignin output. The model’s 
main achievement, therefore, is to reveal an angle of technological control. Although it does 
give partial insight into how the system works, this model might not yield a mechanistic 
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explanation in the sense of accounting for the behaviour of the whole in terms of its parts and 
their properties (MacLeod and Nersessian 2015). Second, even when systems biologists have 
explanation as an explicit target, they may not be offering causal explanations of specific 
systems. Instead, they may intend to provide more abstract functional classifications of all the 
variants of system organization that could possibly realize a particular function (see Section 
3). 

The lesson we draw from these observations is that while systems biology can fruitfully 
extend philosophical accounts of mechanistic explanation to include dynamical and 
quantitative aspects by means of mathematical models and simulations, philosophers 
investigating systems biology also need to pay attention to the diverse practices across this 
field, and to the actual, context-dependent aims of the modellers and experimental 
researchers. We will take this finding into account as we explore mechanisms in systems 
biology further via the use of network analysis. 

2. Network Models: From Motifs to Global Topologies 

Because cellular systems are highly complex webs of molecular interactions, one approach in 
systems biology involves the investigation of networks. A network can be represented and 
studied computationally as a graph, in which the nodes correspond to molecular entities, 
while an edge between two nodes represents an interaction between them. A graph can be 
undirected, such as a protein interaction network that depicts all the interactions in which the 
protein types inside a cell engage, or it can be directed. The latter category includes metabolic 
reaction networks, signal transduction networks, and gene regulatory networks that depict 
genes activating other genes. 

While decomposition and localization have proven to be useful strategies of mechanistic 
research, additional methods (e.g., graph-theoretic and computational) are needed in systems 
biology to process large data sets and analyse highly integrated systems. One particular 
approach is to screen larger networks for the repeated occurrence of the same type of small 
connectivity patterns called network motifs (Figure 1; Alon 2007). The functionality of any 
network motif can then be investigated computationally. Consider for example a feedforward 
loop, in which X has a direct as well as a mediated input on Z (Figure 1A). Using engineering 
language, systems biologists might say that Z processes its two potential inputs as an AND-
gate, which is when both inputs are needed for activation. In this case, the motif will function 
as a persistence detector. In other words, output Z will be activated only upon sustained 
activation of X, which can be turned on by some external signal. The reason is that when 
receiving an input by means of the time-delayed pathway via Y (involving two activation 
steps), Z would not receive a second input (directly from X) unless X has already been active 
for some time. Such a persistence-detector design makes biological sense when it is 
energetically costly for an organism to synthesize an enzyme that processes a particular 
substrate. In that case, synthesis is best initiated only if the substrate is reliably present. 
Particular design motifs are expected to function in the same general way, whatever the 
particular biological and environmental contexts of their implementation (but see Section 4). 
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Figure 1. Examples of network motifs. A: Feedforward loop; B: Single-input motif; C: Dense 
overlapping regulons. Adapted with permission from Alon (2007), copyright Taylor and 

Francis Group LLC Books. 

. 

Network motifs abstract away from a good deal of molecular detail. They neither specify 
what kinds of entities the nodes are, nor do they indicate the actual means by which one 
entity would activate another (e.g., that a eukaryotic gene is transcribed to RNA, which when 
transported outside the nucleus is translated to a protein, which later binds to a different gene 
so as to activate it). Despite this loss of mechanistic detail, Levy and Bechtel (2013) argue 
that the analysis of a network motif is still a dynamic mechanistic explanation. This is 
because once abstracted, the network account points directly to the organization of the 
mechanism that is responsible for the phenomenon to be explained. Generally, this sort of 
abstraction occurs widely in systems biological modelling, including the examples already 
mentioned in Section 1 (see Chapters 17 and 35). 

Even though the analysis of an individual network motif’s functionality might be largely 
mechanistic, what makes research on network motifs distinctively systems-biological stems 
from the fact that large networks are screened to determine the frequency with which motifs 
occur (e.g., the feedforward loop is known to be highly abundant). Doing so reveals both 
common and uncommon elements of biological design, and draws attention to the former, 
which are likely to be more biologically important. Moreover, different kinds of large 
networks, from gene regulatory to neural networks, can be screened for the same design 
element. This generalizability also applies to networks from different taxa, whether 
prokaryotes or eukaryotes. These strategies indicate that abstract organizational schemes, 
which systems biologists call design principles, transcend the organization of a single 
mechanism, and even a single species (Green 2015b). We will elaborate on design principles 
in Section 3. 

While the scrutiny of an individual motif pertains to a very small network, research at the 
other end of the spectrum investigates large networks for their global properties, also via 
graph-theoretical means. Earlier work initially addressed regular networks (where each node 
has the same number of edges) and random networks (where a certain proportion of nodes is 
randomly connected by edges; Figure 2, left). In the last fifteen years, however, small-world 
and scale-free networks have gained prominence due to their interesting properties and 
widespread occurrence among real biological systems. A small-world network is defined in 
terms of the global property of the average path length between two nodes—averaged across 
all pairs of the network’s nodes—which grows logarithmically as the number of nodes 
increases. This means that for two randomly chosen nodes, the shortest distance between 
them (in terms of a path of intermediate nodes connected by edges) will be small relative to 
the size of the network. This global property usually entails that a signal propagates quickly 
from one part of the network to another. For a biological system this can have the advantage 
of enabling rapid reaction times. Many protein-interaction networks are small-world for this 
reason (Albert 2005). 

A                                       B                                                C
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A network’s degree distribution P(k) is the network-wide proportion of edges that is 
connected to k other nodes (i.e., the network’s proportion of nodes connected to only one 
other node, the proportion of nodes connected to two other nodes, and so on). The degree 
distribution is thus a global characteristic. A scale-free network is defined as a network that 

has a degree distribution that follows a power law of the form . This 
exponentially declining function means that across any scale-free network there are many 
nodes that are connected to only one or a few other nodes, while only few nodes are so-called 
hubs, which are connected to many other nodes (Figure 2, right). From this global property, 
predictions can be made about the network’s functionality. One is that it will exhibit 
robustness, which is the biologically important feature that a system will maintain its 
functionality despite perturbations. While the elimination of a node that is connected to one, 
or only a few other nodes, is unlikely to affect a network’s functionality, eliminating a node 
that is a hub may seriously impact how the network functions. But in a scale-free network 
there are comparatively few hubs, meaning that such a network is generally robust. A variety 
of actual biological networks of interest to systems biology are approximately scale-free, 
including metabolic networks and the gene regulatory networks of prokaryotes and 
eukaryotes (Albert 2005). 

 

 

 

 

Figure 2. An illustration of two kinds of large-scale networks. In the scale-free network, 
highly connected hub nodes are visualized in lighter grey. Reprinted from Barabási and Oltvai 
(2004) with permission from Nature Reviews Genetics, Macmillan Publishers Ltd, copyright 

2004. 

Huneman (2010) coined the term ‘topological explanation’ for explanations of 
phenomena in terms of topological properties (including the structural properties of a graph). 
Although his focus is on ecological systems and evolutionary contexts, one important 
explanandum he addresses is equally relevant in systems biology: namely, robustness. 
Huneman argues that an explanation of a system’s general robustness to random node 
elimination in terms of its scale-free network structure is a topological explanation. A 
topological explanation appeals to a system’s basic organization, in the same way the 
network motif explanations mentioned above do (Levy and Bechtel 2013), but it abstracts 
away from even the generic interactions or temporal features seen in motifs. This is at odds 

γkckP )(
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with mechanistic explanation, if the latter is to include significant physical detail (Craver 
2007; Kaplan and Craver 2011), or if a mechanistic account’s explanatory status is taken to 
increase when more detail is added (Kaplan 2011; see Chapter 20). In any case, the fact that 
topological explanations neither list specific activities nor trace their operation from set-up to 
termination conditions is Huneman’s primary reason for contrasting this type of explanation 
against mechanistic explanation. 

Another case of topological explanation in the context of systems biology is the 
explanation of vulnerability (the opposite of robustness) in terms of bowtie structure (Jones 
2014). A bowtie structure is a molecular network with the shape of a bowtie (Figure 3), in 
which it is obvious that the bowtie’s core is the weakest link because its deactivation 
(compared to any other node) will probably damage the whole network’s functionality. A 
concrete example is the explanation of why the human immune system is vulnerable to 
attacks on CD4+ T-cells (by HIV). The reason is that the molecular network of intercellular 
interactions and signalling pathways forms a bowtie that has the CD4+ T-cell type as its core 
(Figure 3; Kitano and Oda 2006). Generally then, it holds for scale-free networks that they 
are robust to random perturbations but vulnerable to attacks on the highly connected nodes 
(hubs or bowtie cores) that participate in a large number of interactions. Topological 
explanations such as these may well be instances of what some philosophers have discussed 
as distinctively mathematical explanations in natural science, which have even been claimed 
to offer non-causal explanations of physical phenomena (Lange 2013). Our reason for 
invoking topological explanation, however, is simply to show how it contrasts with classic 
mechanistic accounts (see Bechtel 2015a; Woodward 2013). 

 

Figure 3: Bowtie network of CD4+ T-cells. Reproduced from Jones (2014) with permission 
from Erkenntnis, Springer, copyright 2014. 

Despite these insights, the value of graph-theoretical analysis for biological research is a 
contested issue, and critics have pointed to problems with the generalizations made about 
such networks (Arita 2004). For instance, whether gene regulatory networks are scale-free 
has been disputed, because some biological networks also exhibit properties similar to 
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random networks (Barabási and Oltvai 2004; Keller 2005). Another common challenge is 
that networks usually provide a static picture of cellular systems, because the data that 
network edges are based on combine the totality of interactions that have been measured. 
However, all the edges represented need not be active at the same time or in the same 
location in vivo. A recent development, therefore, is to include temporal change when 
constructing topological mappings. When time-course data is used, distinctions can be made 
between a ‘party hub’, which interacts with many entities at the same time, and a ‘date hub’, 
which interacts with only a few other entities despite having many overall connections and 
interaction partners (Han et al. 2004). In yeast metabolism research, protein interaction and 
gene expression data has been used to develop a time-dependent network that is sensitive to 
which proteins interact at a particular phase of the cell cycle (de Lichtenberg et al. 2005). 
This has provided new insight into the processes underlying the periodization of protein 
synthesis. 

As Section 1 discussed, research methods in systems biology have huge potential not 
only for extending mechanistic research but also for providing novel insights into how and 
why biological systems are organized into generalizable schemes with broad applications. As 
we have demonstrated, graph-theoretical analysis affords a quantitative understanding of 
biological function and makes possible a comparison of organizational schemes in different 
functional systems. As well as cellular systems, neuronal, ecological, and even non-biological 
communication and transport networks are often scale-free or small-world networks, and can 
be analysed accordingly. Now we will show how network and systems analysis can be taken 
even further epistemically, in a way that provides additional philosophical insight into the 
relationship between systems biology and mechanistic research. 

3. Searching for and Using Design Principles 

An important research question in systems biology is the extent to which biological functions 
rely on general design principles that are largely independent of specific causal details and 
particular contexts of implementation (Poyatos 2012). Design principles are abstractions that 
describe characteristic organizational features of importance for a system’s functionality, 
such as negative feedback control, network motif configurations, or common architectures of 
biological and engineered networks. Aside from understanding how these design principles 
are causally instantiated in specific biological systems, an important explanatory question is 
why the same basic principles can describe the functioning of so many different systems. 
Some philosophers have recently argued that certain abstract models in systems biology, 
when answering that question, provide non-mechanistic design explanations that focus on 
generalizable constraints for biological functions (Braillard 2010; Green 2015b). In contrast, 
discussions of mechanisms have typically interpreted abstract models solely as heuristic tools 
or as mechanism schemas that guide the formulation of more realistic models (Matthiessen 
2015; see Chapter 19). This resonates with the perspective of many experimental biologists, 
but has long been opposed by proponents of systems theory (Green and Wolkenhauer 2013). 
Rather than assuming that a model is useful only insofar it explains a biological system in 
concrete detail, current philosophical investigations of design explanations (and of 
topological explanations) are motivated by the goal of making sense of why some scientists 
rely on abstract models even in situations where more detailed models exist. 

One illuminating example is how biologists investigate systems exhibiting robust perfect 
adaptation (RPA) from an engineering perspective. RPA is the capacity of a system with 
sensors to return to the exact pre-stimulus activity after a stimulus-response reaction. This is 
important because it maintains the responsiveness of sensors. Creating designs with RPA is a 
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goal in engineering human-made systems. Biological systems also exhibit RPA. Examples 
include the regulation of calcium homeostasis in mammals and membrane turgor pressure in 
yeast (Briat et al. 2015). In bacterial chemotaxis (movement in response to external chemical 
stimuli), RPA pertains to the regained responsiveness of transmembrane receptors (i.e., 
sensors) that detect changes in the concentration of chemicals in the environment. Adding a 
repellent to the bacterial environment leads to changes in the bacterial tumbling frequency 
(and thereby to random reorientations in space), but the receptor system returns very quickly 
to its equilibrium value. This enables the receptors to become sensitive to new changes, even 
if the repellent concentration continues increasing, which occurs when the bacterium swims 
along a chemical gradient. In the case of the bacterium E. coli, the mechanistic basis of its 
chemotactic RPA is known. It consists of transmembrane receptors, a signal transduction 
pathway inside the bacterium, and its connection to the flagellar motor. A feedback loop from 
the intracellular process back to the transmembrane receptor is important for achieving RPA 
(Barkai and Leibler 1997). 

The explanatory issue we are highlighting with bacterial chemotaxis is the question of 
what generic properties (abstract organizational features) make it possible for any system—
not just E. coli—to exhibit RPA. The answer is integral feedback control (Yi et al. 2000). 
Used in engineering, integral feedback control is known in mathematical control theory as a 
special case of the internal model principle. When the environmental input u changes (see 
Figure 4), the difference between the actual output y1 and the desired output y0—the 
equilibrium value of the receptor—is fed back into the system as the integral of the system 
error. This feedback functions as a signal for the renormalization of the receptor, so that 
integral feedback control is sufficient for RPA. A crucial insight is provided by a theorem of 
Yi et al. (2000), which shows that (at least in linear systems) integral feedback control is 
necessary for achieving RPA. This explains why any system that exhibits RPA has to have an 
organization that instantiates integral feedback control (Iglesias 2013). E. coli should be no 
exception in this regard, and Yi et al. (2000) point out that an influential dynamic mechanistic 
model of RPA in bacteria (Barkai and Leibler 1997) does indeed embody the basic principle 
of integral feedback control. 

 

Figure 4. Diagram showing the abstract principle of Integral Feedback Control. Reproduced 
from Yi et al. (2000), with permission from PNAS, copyright (2000) National Academy of 

Sciences, USA. 

We can compare this account of chemotaxis with a standard mechanistic explanation. 
The latter would show how a particular structural organization causally generates and thus 
explains some function (e.g., RPA). In contrast, what Wouters (2007) calls a design 
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explanation proceeds in the opposite direction, as the function to be performed (RPA in our 
case) explains the presence of some structural organization (integral feedback control). Using 
examples from physiology and functional anatomy, Wouters argues that such an explanation 
is non-causal, because it is based on law-like dependency relations between structures and 
functions. It maps out the possible structural realizers of a certain function, without going 
into a diachronic account of how the realizer or the need for the function came about 
causally. But regardless of where one stands on the status of non-causal explanations, in the 
case of bacterial chemotaxis, the design explanation does not just offer a list of the various 
concrete mechanisms that perform RPA (e.g., a transmembrane receptor, six Che proteins, 
and other details in E. coli). This is a non-mechanistic explanation in that it points to the 
abstract organizational feature of integral feedback control as a generic property that any 
system exhibiting RPA must instantiate (Braillard 2010). This explanatory aim addresses a 
why-question that is distinct from the aim of explaining how a behaviour is mechanistically 
produced in some specific system.  

The example of design principles underpinning RPA in engineering and biology also 
provides more general philosophical lessons about the theoretical relevance of delineating the 
space of biological possibility. Mechanistic accounts have typically taken how-possibly 
models to have less explanatory power than how-actually models (Craver 2007; Kaplan 
2011; Kaplan and Craver 2011; see Chapter 19). Yet, understanding the wider constraints on 
biological variation can in some contexts be of higher importance than describing how a 
specific function is causally produced in any specific system. Design principles can help 
researchers understand why the same structural patterns are found across different contexts: 
as a result of the constraints on possible architectures that can realize a given function. 
Importantly, this is not to be understood as a question that presupposes natural selection as 
the answer. Rather, the why-question addressed here is about the physically determined 
boundaries of the design space for a given function. 

Design principles do, however, have significance for evolutionary research as well as 
functional biology. Investigations of the constraints on evolutionary and developmental 
trajectories have often been associated with rather speculative ‘structuralist’ accounts, but 
some of these ideas have gained new relevance in the context of evolutionary systems biology 
(Green et al. 2015; Jaeger and Crombach 2012). Evolutionary systems biology is an umbrella 
term for very diverse approaches (O’Malley 2012), but one important aim is to investigate 
why certain general patterns arise in evolution. This is often done via models that represent 
the in silico evolution of gene regulatory networks. Structures like the network motifs 
discussed in Section 2 are often assumed to be common because of regulatory functions 
favoured by natural selection (Alon 2007). Yet evolutionary simulation studies suggest that 
common structural patterns of networks, such as feedforward loops, may also result from 
constraints on genome evolution. These constraints are inherent in the mutational dynamics 
of gene duplication, deletion and recombination (Cordero and Hogeweg 2006). Research on 
evolutionary design principles, when understood as general patterns occurring from 
evolutionary trajectories, can thus generate insight into the potential and limits of biological 
variation. 

Design principles also identify the generic features that unite diverse systems exhibiting 
similar functional patterns (Green 2015b). By relating specific systems to general functional 
types, such as signal amplifiers, filters, or homeostatic regulators, these abstract principles 
facilitate the transfer of theoretical frameworks across disciplinary borders. Aside from this 
epistemic role, such structure-function mappings can serve practical aims. Similarly to 
Macleod and Nersessian’s (2015) emphasis on practical purposes such as control and 
prediction of modelling in systems biology, research on possibility spaces for biological 
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structures can have practical goals such as templates for synthetic biology designs. Synthetic 
biology is the biological construction of material models, usually guided by mathematical 
modelling. ‘How-possibly models’ can in this context be more important than ‘how-actually 
models’ because they elucidate the necessary structures for a certain function, like RPA, or 
reveal whether there are simpler possible designs than the ones found in nature (Briat et al. 
2015; Ma et al. 2009). 

The upshot of this discussion is that abstract models are not always stepping stones 
toward more detailed mechanistic models. Aside from the practical purposes of control and 
technological implementation, abstract design principles afford an understanding of why 
causally different systems in biology and engineering share certain organizational features, 
and how they are situated within larger spaces of physically possible designs. Consequently, 
an exclusive philosophical focus on mechanistic explanation (and even on dynamic 
mechanistic explanation) risks missing out on these diverse epistemic activities in systems 
biology. 

4. Discussion and Outlook 

Research in systems biology shows how strategies of abstraction are used in biology not only 
to simplify the task of identifying mechanisms but also to elucidate system-level patterns of 
organization that may not be visible at the level of the molecular details. Mechanistic 
accounts have usually been framed in opposition to explanatory unification, understood as the 
subsumption of the particular to general laws or explanatory schemas. But network modelling 
and the quest for design principles suggest an alternative way of thinking about the role of 
unification in biology: not via reduction of the particular to the general, but through 
abstraction from causal details for the purpose of identifying generic organizational patterns. 

Mathematical models (including network models and design principles) serve various 
roles in systems biology. Generally, mathematical frameworks provide a more rigorous way 
of exploring the extent to which biological functions are underpinned by characteristic 
organizational structures. Mathematical frameworks can also make engineering analogies 
more precise. Section 2 mentioned the identification of functional network motifs based on 
mathematically guided screening for overabundant circuit types. This search is inspired by an 
analogy to design principles in electronic networks, and the structural decomposition of the 
network preceded the functional analysis of the modules of the network (see Chapter 35). In 
other cases, the biological function is known and systems biologists set out to explore the 
extent to which the function is similarly realized in engineered systems (e.g., robustness). 
Mathematical abstractions and design principles can articulate constraints that delimit the 
search space for an analysis. Delineating search space may serve the development of 
mechanistic explanations. At the same time, network models and design principles provide an 
understanding complementary to mechanistic explanation. Although an important virtue of 
mechanistic explanations is to make sense of biological diversity through attention to specific 
causal difference-makers and material composition, abstraction strategies can help scientists 
see similarities in the way functional systems—from airplanes to organisms—are organized. 

Generally, a focus by philosophers on the issue of mechanistic explanation has left many 
aspects of systems biology unexplored. We have pointed to the use of models for the purpose 
of prediction, control, or the creation of simple and efficient designs that can be implemented 
in synthetic organisms. Another topic of major interest to systems biologists that is 
philosophically rich is robustness. In many cases when a system maintains its functioning 
despite noise and even major perturbations, this is due to dynamic reorganization, where the 
organismal system responds flexibly by changing interaction patterns and levels, including 
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establishing new interactions (Wagner 2005). This puts pressure on the assumption that 
systems biology always investigates mechanisms (on a machine-like conception), or that all 
explanations about systems exhibiting dynamic reorganization or robustness are mechanistic 
(in the sense of referencing the mechanism’s specific organization; Brigandt 2015; Gross 
2015; Woodward 2013). 

Some of the questions that deserve more attention by philosophers pertain to issues that 
are currently controversial within the systems biology community itself. One is the question 
of whether complex living systems can be understood in terms of engineering notions 
(Braillard 2015; Green 2015a), and particularly whether the heuristic assumption of 
modularity is warranted. Research on network motifs is often predicated on the idea that an 
individual motif is modular, meaning that its functionality is unaffected by the system context 
in which it occurs (Section 2). The traditional mechanistic strategies of decomposition into 
distinct components and the localization of some function to a certain component also 
resonate with the assumption that biological systems are modular. However, many systems 
biologists observe highly integrated functionality across large-scale networks, which suggests 
that systems need to be investigated not in terms of modularity but via more connectivist 
perspectives that can capture features emerging from system-wide dynamics (Huang 2004; 
see also Bassingthwaighte et al. 2009; Bechtel 2015a). 

Our discussion draws attention to a wide range of explanatory and modelling strategies 
in systems biology. We have shown how some explanatory aims and outputs are not 
mechanistic according standard philosophical interpretations of mechanistic explanations, 
and indeed, that some of the practices in systems biology lie outside existing philosophical 
frameworks. But well beyond these negative insights, we have depicted the wealth of 
modelling approaches at work in systems biology, and how further philosophical scrutiny of 
them will enhance the investigation of biological systems and philosophical accounts of 
mechanistic explanation and explanation in general. 
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