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Acute myeloid leukemia (AML) is an aggressive and rapidly fatal blood cancer that affects patients of any age
group. Despite an initial response to standard chemotherapy, most patients relapse and this relapse is mediated
by leukemia stem cell (LSC) populations.We identified a functional requirement for telomerase in sustaining LSC
populations inmurinemodels of AML and validated this requirement using an inhibitor of telomerase in human
AML.Here,we describe in detail the contents, quality control andmethods of the gene expression analysis used in
the published study (Gene Expression Omnibus GSE63242). Additionally, we provide annotated gene lists of tel-
omerase regulated genes in AML and R code snippets to access and analyze the data used in the original
manuscript.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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geo/query/acc.cgi?acc=GSE63242
MR Berghofer Medical Research

. This is an open access article under
2. Experimental design, materials and methods

2.1. Objective

To determine whether the gene expression changes induced by
telomerase loss in a mouse model of acute myeloid leukemia have rele-
vance to human disease.

2.2. Preparation of mouse microarray samples

2.2.1. Generation of murine leukemia
MurineAMLwas generated by isolatingpurifiedhematopoietic stem

and progenitor cell populations using fluorescent activated cell sorting
(FACS on lineagenegativeKit+Sca1+) from wild type C57Bl6 (WT) or
3rd generation Terc−/−mice. Stem cellswere transducedwith retrovi-
rus pMIG-MLLAF9 [4,10] and injected into irradiatedWT recipient mice
(5.5Gy radiation) via the lateral tail vein. At disease onset, bonemarrow
was harvested from the mice and purified leukemia stem cell enriched
populations were obtained by FACS (GFP+lineagenegativeKit+Sca1−

FcgR+).

2.2.2. Preparation of microarray samples
WT and G3 Terc−/− MLL-AF9 LSC were purified from primary re-

cipients at AML onset. RNA was extracted with a QIAGEN RNeasy
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Micro Kit, preamplified with the Illumina TotalPrep RNA Amplification
Kit, and hybridized on Illumina MouseWG-6 v2.0 BeadChip array.

2.3. Analysis of microarray data

2.3.1. Mouse Terc−/− expression array pre-processing
Illumina MouseWG-6 v2 BeadChip array images were processed

with default parameters by Illumina GenomeStudio including trimming
and collapsing of beads. The arrays were processed using a single color
to determine the expression intensities (green). In R (programming lan-
guage for statistical computing) [13]we imported the expression inten-
sities from the resulting idat files using IDATreader (http://www.
compbio.group.cam.ac.uk/software/idatreader). The IDATreader pack-
age imports the binary .idat-files and returns a data frame with values
from GenomeStudio summarized over beads, including statistics on
the background intensity and the number of good beads used for the
trimmed, averaged, and binned final value for each probe that we
used for further processing. The Illuminabin codeswere used to correct-
ly annotate each bin to probe with information acquired from Illumina
webpage (http://support.illumina.com/array/downloads.html).

In order to import the dataset into R andmake a standard expression
Set class run the following code:

#install library if not present, and import

if (!"GEOquery" %in% installed.packages())
{source("http://bioconductor.org/biocLite.R");

biocLite("GEOquery")};
library(GEOquery);

#download the data
geoData b-getGEO('GSE63242')

#extract the expressionSet class
Geset b-geoData[[1]]

# use sample names in the expression matrix
colnames(exprs(Geset))=as.character(pDta(Geset)[['title']])

2.3.2. Quality control
In order to test for quality of the arrays we used the Bioconductor [5]

package arrayQualityMetrics [9]. Here we found that one array failed
Fig 1. Density distribution of expression intensities of probes for the 12 arrays. One sampl
(7166151049_F).
(7166151049_F) and the density distribution was slightly more
narrow (Fig. 1, higher blue stippled line). In the principle compo-
nent analysis plot, which allows 2D inspection of the relation be-
tween samples using information from all probes (full
dimensionality), we see that the sample marked for low quality
lies in between all the rest of the samples, and does not look like
an outlier. Hence, the biological signal (although having less quan-
titative intensity) is in line with the rest of the samples. We there-
fore decided to include it in the further analysis. The signal appears
to be weaker, but not diverging from the replicates. For reuse of
this data set some attention should be given to whether the
signal in the sample is strong enough, if none of the replicates
are used. Furthermore, we decided to include a technical replicate
(7166151048_F_Grn) in the analysis to be able to better model
between-array variance.

The data were background corrected with bgAjust, using the
Illumina control probes and normalized using variance stabilization
transformation [12] and quantile normalized (quantile bin size = 1, as
described by Bolstad et al. [2]) in the multistep function lumiExpresso
in the R package lumi [5] (Fig. 2).

It has been previously described that the provided probe annotation
from Illumina includes imprecise or erroneous entries [2]. Therefore
probes were re-annotated using a multiple sequence alignment based
directory as described previously [7] (version mm9_V1.0.0_Aug09).
For analysis where a very high specificity is preferred at the cost of the
total measured transcripts a filtering for poor or unspecific probes was
performed as described previously [1].

For differential expression analysis betweenWild type mouse (WT)
and Terc−/− groups, we used the standard limma package pipeline
using eBayes on the lm Fit object of an expressionSet of all 12 samples.
A top 140 probes were selected, corresponding to an unadjusted alpha
of 0.001 (Table 1).
2.4. Translation of murine telomerase regulated genes into human AML

In order to translate differentially expressed genes into human ho-
mologs we used HomoloGene (downloaded at http://www.ncbi.nlm.
nih.gov/homologene, build 67), which is a dictionary of species-
specific genes translated into cross species genes identifiers. Currently,
a more direct and precise solution for species conversion of genes
could be obtained though the R interface to Biomart (http://www.
e was marked outlier by arrayQualityMetrics based on a more narrow density profile

http://www.compbio.group.cam.ac.uk/software/idatreader
http://www.compbio.group.cam.ac.uk/software/idatreader
http://support.illumina.com/array/downloads.html
http://www.ncbi.nlm.nih.gov/homologene
http://www.ncbi.nlm.nih.gov/homologene
http://www.biomart.org


Fig. 2. Principle component analysis of microarrays, showing clustering of wild type and G3 Terc−/− samples. Furthermore, one sample marked for low quality (sample 12, triangle) lies
in center of the plot and does thus not drag the axis of the PCA, having a signal which isweaker than the rest of the samples, but not diverging from them. Right plot shows the normalized
data (lumi package for R) and left is the un-normalized data. Here, the technical replicates are closely associated, as expected.
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biomart.org). From this conversion 112 genes could be translated into
human counterparts (see Table 1).

To assess whether differentially expressed genes from our mouse
model could separate patient data we used unsupervised Hierarchical
clustering with the 112 genes in R with the Hartigan–Wong algorithm
[7] with ten random starts for robust clustering. The patient data was
publicly available data from GSE15210, where the survival information
can also be found. We did indeed see that the 5 groups of patients with
distinct expression patterns of these genes displayed significantly dif-
ferent survival patterns.

In order to pinpoint the TERC related genes thatwere driving the dif-
ference in patient survival we used Random survival forest (RSF)
models [3]. We built the RSF using censored (known date of death)
and uncensored survival observations in a survival model as imple-
mented by Ishwaran and Kogalur, 2010 [8]. We doubled the number
of deregulated gene homologs from the Terc−/− experiment as train-
ing set for themodel, in order to gain some depth of the trees, while still
retaining only TERC associated genes. Our RSF consisted of 20,000 deci-
sion trees, each trained on a subset of the data (bootstrapping), in such a
way that it best explains the survival of the patients; lastly a majority
vote between the trees gives the final prediction for new samples. RSF
analysis for survival models is a powerful way to assess driving genes
since many genes are known to be co-regulated or otherwise show cor-
relating expression patters. Since RSF is an ensemble model (results are
summarized over multiple models) made with bootstrapping (only
some of data is used tomake eachmodel) it is not sensitive to collinear-
ity between the covariates, that is, the highly correlating genes A and B
will not be featuring together in all models, and hence correct assess-
ment of the impact of the individual contribution of A will be less de-
pendent on B. Current standards like Cox proportional hazard
regression assume no collinearity. In order to assess which genes are
driving survival for the Terc−/− signature we used random permuta-
tion of a random selection of the labels, and thus the importance mea-
sure was the increase in error rate when a label was permuted,
summarized over all the trees. In this way we are able to find which
genes in our signature drive the importance of survival.

In order to work with the validation data from Metzeler et al. use
GSE15210.
Random survival forest can be built on an expression matrix (here
“training set”) that should include two columns providing information
on overall survival (“os”) and censorship (“status”).

RSF=rsf(Surv(os,status)~.,ntree=20000,importance="permute",
proximity=TRUE, data=trainingset)

IMPORTANT_GENES=varSe1 (Surv (os, stat) ~ ., ntree=20000,
data=trainingset)

3. Discussion

The healthy human hematopoietic system and the transformation to
leukemia provide excellent, accessible and tractable models of normal
cellular development and cancer progression. A number of high quality
and well-annotated datasets from human donors with acute myeloid
leukemia are publicly available for data driven cohort studies in a highly
aggressive cancer. Here we describe a protocol for using these public
datasets for hypothesis driven research, where they make findings
from a knockout experiment in a model organism directly relevant
in a clinical context. We translate a murine genetic signature of a
140 genes into 112 human homologs based on sequence similarity on
protein and level and can show that the homolog signature impacts
on patient survival, as expected from the mouse phenotype, and
further we identify key driver genes in the signature.

Interspecies translations have given rise to a number of disappoint-
ments in the drug development industry and recently the species effect
on gene expression was estimated higher than the tissue effect in the
ENCODE mRNA expression studies [15], which was later confirmed
[11]. However, careful reanalysis has greatly questioned this notion
[6], also in line with previous studies [14]. The method proposed in
this study, where a small binary list of genes, translated by evolutionary
protein family, is used for investigating the clinical effect only is more
conservative in both themeans and conclusions. Furthermore, the effect
of single genes, potentially misclassified, is greatly reduced by the
following RSF model analysis for important contribution to survival.
Rather than a species comparison we utilize a patient cohort study to
enrich our data, support our findings from the animal model system,
and further provide direct clinical relevance.

http://www.biomart.org


Table 1
Designated Terc−/− regulated AML gene set (Table 1).

Probe number Illumina probe ID mgi Symbol Gene group HUGO homolog Terc −/− vs WT

1,770,767 ILMN_2483493 abParts NA DOWN
3,120,619 ILMN_2815138 Myom1 31,196 MYOM1 DOWN
70,431 ILMN_2428798 5031439G07Rik 15,140 KIAA0930 DOWN
7,210,458 ILMN_1259339 Cdk5r1 31,200 CDK5R1 DOWN
5,050,072 ILMN_2481902 Plxnc1 4211 PLXNC1 DOWN
130,437 ILMN_2642571 Mxd3 32,333 MXD3 DOWN
3,710,544 ILMN_1238479 Mgst3 3327 MGST3 DOWN
7,160,133 ILMN_2507232 Gas2l3 18,386 GAS2L3 DOWN
1,710,377 ILMN_1251616 Skp2 55,942 SKP2 DOWN
4,640,414 ILMN_2541675 5830418K08Rik 27,936 KIAA1731 DOWN
2,070,242 ILMN_2643883 Brip1 32,766 BRIP1 DOWN
6,980,315 ILMN_1241320 Clspn 11,138 CLSPN DOWN
6,420,215 ILMN_1235363 Gsg2 49,236 GSG2 DOWN
4,210,619 ILMN_2615035 Mgst3 3327 MGST3 DOWN
110,039 ILMN_2785454 Hist2h2ab 111,318 HIST2H2AB DOWN
6,290,689 ILMN_1237886 Enc1 2694 ENC1 DOWN
1,510,132 ILMN_1243663 G2e3 32,362 G2E3 DOWN
5,860,139 ILMN_2817151 Chchd8 9567 COA4 DOWN
50,446 ILMN_2589960 Gins3 41,496 GINS3 DOWN
2,320,102 ILMN_2524519 Rasgef1a 17,067 RASGEF1A DOWN
6,760,088 ILMN_1258300 Ifngr2 4041 IFNGR2 DOWN
4,050,711 ILMN_2627660 Lig1 197 LIG1 DOWN
70,546 ILMN_2981801 Hist1h2ag 69,326 HIST1H2AG DOWN
730,743 ILMN_2537961 Mcm7 4323 MCM7 DOWN
160,253 ILMN_2760244 Snx7 22,941 SNX7 DOWN
5,090,332 ILMN_1224268 Mrps15 32,636 MRPS15 DOWN
7,210,470 ILMN_2517171 Tuba4a 68,496 TUBA4A DOWN
7,050,605 ILMN_2511401 Upf3a 23,395 UPF3A DOWN
3,360,400 ILMN_2633492 Chek2 38,289 CHEK2 DOWN
5,490,767 ILMN_1255902 Smc4 4015 SMC4 DOWN
6,220,609 ILMN_2461345 Zfp41 65,280 ZFP41 DOWN
4,290,524 ILMN_3080371 Fert2 74,300 FER DOWN
1,980,431 ILMN_1231587 BC030867 69,368 C17orf53 DOWN
2,070,458 ILMN_2989480 Dsn1 49,806 DSN1 DOWN
7,040,612 ILMN_2525289 C330018D20Rik 35,412 C5orf63 DOWN
1,470,050 ILMN_2664593 Hist1h1b 110,910 HIST1H1B DOWN
2,340,403 ILMN_3137980 Zfp41 65,280 ZFP41 DOWN
4,850,059 ILMN_2483253 Dicer1 13,251 DICER1 DOWN
450,678 ILMN_2826161 Taf12 68,477 TAF12 DOWN
5,700,646 ILMN_2658153 Zcchc17 32,319 ZCCHC17 DOWN
3,180,170 ILMN_1248181 Zbtb7a 7820 ZBTB7A DOWN
3,890,519 ILMN_3055904 Cbx5 7257 CBX5 DOWN
5,360,368 ILMN_2511868 2310002B06Rik NA DOWN
4,610,129 ILMN_1248830 Hist1h2an 69,326 HIST1H2AN DOWN
5,810,176 ILMN_1214664 Glrx2 41,098 GLRX2 DOWN
4,890,341 ILMN_2683414 Snf8 5239 SNF8 DOWN
5,490,035 ILMN_2416488 Usp37 10,858 USP37 DOWN
670,739 ILMN_1246108 Hist1h2ah 130,520 HIST1H2AI DOWN
540,037 ILMN_1216285 Creb3 31,375 CREB3 DOWN
3,520,221 ILMN_2694275 Lxn 36,361 LXN DOWN
5,560,451 ILMN_1251771 Cyc1 55,617 CYC1 DOWN
6,250,446 ILMN_1248184 Senp1 8731 SENP1 DOWN
4,830,291 ILMN_2718861 1600012H06Rik 57,051 C6orf120 DOWN
5,960,491 ILMN_2593872 Mrps15 32,636 MRPS15 DOWN
6,840,170 ILMN_2707291 Prdm2 40,822 PRDM2 DOWN
3,990,360 ILMN_3137920 Sel1l 31,286 SEL1L DOWN
4,220,504 ILMN_1256203 L3mbtl2 12,882 L3MBTL2 DOWN
2,340,494 ILMN_2665625 Fadd 2836 FADD DOWN
2,350,221 ILMN_1246502 E330016A19Rik NA E330016A19RIK DOWN
1,990,731 ILMN_2596297 Ddt 1038 DDT DOWN
5,810,564 ILMN_1245139 Scamp3 4164 SCAMP3 DOWN
3,400,754 ILMN_2919433 Cdc45l NA DOWN
7,050,612 ILMN_2822131 Hmgcl 159 HMGCL DOWN
1,300,358 ILMN_2971481 Znrd1 40,960 ZNRD1 DOWN
2,370,474 ILMN_3026137 Dbndd2 12,276 DBNDD2 DOWN
2,140,092 ILMN_2856861 Nudc-ps1 NA DOWN
940,427 ILMN_2686509 Sgol1 23,642 SGOL1 DOWN
3,120,672 ILMN_2542231 Ppig 3520 PPIG DOWN
1,300,725 ILMN_2900216 Ndufb10 3343 NDUFB10 DOWN
2,570,398 ILMN_2983714 Apitd1 66,004 APITD1 DOWN
5,690,593 ILMN_1218592 Tes 41,051 TES DOWN
7,610,450 ILMN_3155180 Itpr2 37,593 ITPR2 DOWN
7,550,121 ILMN_3084954 Tes 41,051 TES DOWN
510,673 ILMN_2488125 Vrk1 2541 VRK1 DOWN
6,900,762 ILMN_1218128 Tatdn1 57,158 TATDN1 DOWN
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Table 1 (continued)

Probe number Illumina probe ID mgi Symbol Gene group HUGO homolog Terc −/− vs WT

4,540,619 ILMN_1259294 Tmem126b 10,222 TMEM126B DOWN
5,130,497 ILMN_1221592 Sec11c 8624 SEC11C DOWN
2,320,367 ILMN_2798803 Vps4a 69,132 VPS4A DOWN
4,390,075 ILMN_2802103 Mfap1b 4332 MFAP1 DOWN
1,450,731 ILMN_1240146 Tor1b 56,677 TOR1B DOWN
6,020,047 ILMN_1214907 Stk10 38,122 STK10 DOWN
4,780,398 ILMN_2462791 Zfp322a 23,460 ZNF322 DOWN
5,080,632 ILMN_2742498 Nup88 1901 NUP88 DOWN
3,400,619 ILMN_2952114 Smc1a 4597 SMC1A DOWN
5,290,215 ILMN_2963412 Ikzf5 23,363 IKZF5 DOWN
110,327 ILMN_2613904 Hspb2 68,189 HSPB2 DOWN
6,020,161 ILMN_3046362 Traf5 27,079 TRAF5 DOWN
7,380,193 ILMN_2450147 Zfp238 21,276 ZNF238 DOWN
3,120,438 ILMN_2536365 Nrbf2 41,473 NRBF2 DOWN
2,450,612 ILMN_2429469 Otud7b 10,624 OTUD7B DOWN
2,680,630 ILMN_2659762 Mrpl18 8566 MRPL18 DOWN
6,370,746 ILMN_2466190 Cyb5rl 45,506 CYB5RL DOWN
3,400,632 ILMN_1253970 Sirt7 56,152 SIRT7 DOWN
5,860,398 ILMN_2620061 Tbcb 981 TBCB DOWN
6,480,184 ILMN_2830060 Wfdc10 86,879 WFDC10 DOWN
4,260,019 ILMN_2998548 Pycr2 8343 PYCR2 UP
4,120,039 ILMN_2691135 Itpkb 1672 ITPKB UP
6,860,398 ILMN_1251074 Rffl 12,116 RFFL UP
4,180,192 ILMN_1242872 9230110K08Rik NA UP
3,190,427 ILMN_2814333 Lgtn NA UP
1,030,703 ILMN_2790636 Sar1a 90,897 SAR1A UP
2,970,196 ILMN_2698606 Tmed4 5308 TMED4 UP
3,520,634 ILMN_2700505 Tmem43 11,532 TMEM43 UP
6,110,044 ILMN_2698699 Farsa 3280 FARSA UP
4,810,347 ILMN_3112185 Ensa 37,924 ENSA UP
2,100,528 ILMN_2649101 Ncf2 374 NCF2 UP
6,550,474 ILMN_1230339 Slc9a8 75,041 SLC9A8 UP
5,560,408 ILMN_2759335 Rnmt 2816 RNMT UP
1,780,725 ILMN_2580895 Gns 1568 GNS UP
70,608 ILMN_2744121 Tmem181 44,787 TMEM181 UP
7,050,370 ILMN_2880536 Uck2 40,850 UCK2 UP
4,780,328 ILMN_1231573 Serpinb1a 69,399 SERPINB1 UP
5,360,474 ILMN_2627217 Pi4k2b 32,405 PI4K2B UP
2,470,309 ILMN_2452717 AK011460 NA UP
4,850,133 ILMN_1248389 Inpp5k 75,059 INPP5K UP
5,810,070 ILMN_1242013 Uck2 40,850 UCK2 UP
4,490,639 ILMN_1254631 Uck2 40,850 UCK2 UP
1,990,524 ILMN_2557957 Eprs 5870 EPRS UP
6,980,601 ILMN_2564872 Ddhd2 66,646 DDHD2 UP
770,445 ILMN_1224840 Bcl9 3191 BCL9 UP
5,090,156 ILMN_2766253 Mbnl1 23,186 MBNL1 UP
1,850,402 ILMN_2568028 Il2rg 172 IL2RG UP
6,020,400 ILMN_2646322 Samsn1 11,148 SAMSN1 UP
770,575 ILMN_1254736 Myo5a 20,100 MYO5A UP
150,019 ILMN_2665490 Litaf 37,974 LITAF UP
3,310,291 ILMN_1225045 1700109H08Rik 130,776 1700109H08RIK UP
1,450,735 ILMN_3122845 H1fx 4397 H1FX UP
3,840,600 ILMN_2681601 Slc44a2 10,711 SLC44A2 UP
4,670,504 ILMN_1245263 Tmem181 44,787 TMEM181 UP
1,980,021 ILMN_2628567 Phlda3 8233 PHLDA3 UP
4,150,370 ILMN_1233117 Anxa2 20,857 ANXA2 UP
2,630,605 ILMN_2603976 Cass4 75,128 CASS4 UP
5,560,315 ILMN_2466453 AK005145 NA UP
5,090,204 ILMN_2805207 B020018G12Rik NA UP
1,240,338 ILMN_1239814 AK011411 NA UP
290,328 ILMN_2923607 Phlda3 8233 PHLDA3 UP
2,570,037 ILMN_2813484 Per1 1966 PER1 UP
2,690,348 ILMN_2700354 Dennd5b 44,911 DENND5B UP
2,570,053 ILMN_2702102 D630023F18Rik 129,674 C2orf80 UP
160,463 ILMN_1258526 Lgals3bp 4067 LGALS3BP UP
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In conclusion,we devise a protocol for analyzing gene expression ef-
fects from model organisms in patient cohorts, by means of homology
translation and RSF models. We present our pipeline for analyzing a
two-condition Illumina expression array study, with considerations on
probe re-annotation, outlier detection and batch effects. All the present-
ed data are available in raw and processed on GSE63242.
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