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Abstract

A unified view on multi-class support vector machines (SVMs) is presented, covering most
prominent variants including the one-vs-all approach and the algorithms proposed by We-
ston & Watkins, Crammer & Singer, Lee, Lin, & Wahba, and Liu & Yuan. The unification
leads to a template for the quadratic training problems and new multi-class SVM formu-
lations. Within our framework, we provide a comparative analysis of the various notions
of multi-class margin and margin-based loss. In particular, we demonstrate limitations of
the loss function considered, for instance, in the Crammer & Singer machine.

We analyze Fisher consistency of multi-class loss functions and universal consistency of
the various machines. On the one hand, we give examples of SVMs that are, in a particular
hyperparameter regime, universally consistent without being based on a Fisher consistent
loss. These include the canonical extension of SVMs to multiple classes as proposed by
Weston & Watkins and Vapnik as well as the one-vs-all approach. On the other hand, it is
demonstrated that machines based on Fisher consistent loss functions can fail to identify
proper decision boundaries in low-dimensional feature spaces.

We compared the performance of nine different multi-class SVMs in a thorough empir-
ical study. Our results suggest to use the Weston & Watkins SVM, which can be trained
comparatively fast and gives good accuracies on benchmark functions. If training time is
a major concern, the one-vs-all approach is the method of choice.

Keywords: support vector machines, multi-class classification, consistency

1. Introduction

Support vector machines (SVMs, Boser et al., 1992; Cortes and Vapnik, 1995) are founded
on the intuitive geometric concepts of large margin separation and regularized risk mini-
mization, and they are well embedded into statistical learning theory. However, there is no
unique canonical extension to the case of multiple classes, neither from a geometric nor from
a learning theoretical point of view. Instead, several variants relying on slightly different
notions of margin and margin-based loss have been proposed. We present a unified view on
multi-class SVMs. This view allows to identify similarities and differences between exist-
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ing approaches. It provides a thorough framework for analyzing, designing, and efficiently
training multi-class SVMs.

There exist generic ways of doing multi-category classification based on arbitrary binary
learning machines by combining hypotheses from independently trained binary classifiers.
In contrast, the focus of this study is on multi-class extensions of SVMs that aim at gen-
eralizing the notions of margin and large margin loss. These so-called all-in-one machines
cast the learning problem into a single quadratic program, which allows them to take all
class relationships into account simultaneously. The first of these all-in-one formulations
was independently proposed by Weston and Watkins (1999), Vapnik (1998), and Breden-
steiner and Bennett (1999). Crammer and Singer (2002) modified this machine, and their
approach is frequently used, in particular when dealing with structured output. In addition
to these popular methods, we consider the machine by Lee et al. (2004), a variant proposed
by Liu and Yuan (2011), as well as multi-class maximum margin regression (Szedmak et al.,
2006). The latter is equivalent to a multi-class SVM suggested by Zou et al. (2008). From a
geometric point of view, the various approaches differ in the way they extend the concepts of
margin and margin violation (or, to be more precise, margin-based loss) to multiple classes.
Differentiating the machines form a learning-theoretical perspective is more difficult. Al-
beit there have been extensions of generalization bounds derived for binary SVMs to the
multi-class case (e.g., Guermeur, 2007; Doğan et al., 2012), these do not allow to deduce
relative advantages or disadvantages of certain multi-class SVM formulations. But there
are hints from theoretical analyzes of consistency. In particular, the loss function proposed
by Lee et al. was the first multi-class large margin loss known to be Fisher consistent (Lee
et al., 2004; Tewari and Bartlett, 2007; Liu, 2007). The only other loss functions we are
aware of sharing this property are those proposed in the work of Liu and Yuan (2011).
In practice, however, the decision of which multi-class SVM to use is most often not gov-
erned by theoretical arguments, but by training-time considerations and the availability of
efficient implementations. For instance, the canonical extension of binary SVMs to mul-
tiple classes proposed by Weston and Watkins and the machine by Lee et al. are rarely
used. These approaches are theoretically sound and experiments indicate that they lead to
well-generalizing hypotheses, but efficient training algorithms have been lacking so far.

Against this background, we analyze large-margin multi-category classification theoreti-
cally and derive fast training algorithms for established as well as for new learning machines,
which we then evaluate empirically. Several researchers investigated multi-class SVM clas-
sification methods before, either experimentally (Hsu and Lin, 2002; Rifkin and Klautau,
2004) or conceptually (Allwein et al., 2001; Hill and Doucet, 2007; Liu, 2007; Guermeur,
2007). The experimental papers by Hsu and Lin (2002) and Rifkin and Klautau (2004)
focus on the empirical comparison of methods. Some well established multi-class SVMs
are missing in these studies. This also holds true for the conceptually oriented work by
Allwein et al. (2001). The inspiring theoretical studies by Hill and Doucet (2007) and Liu
(2007) completely lack any empirical comparison. The work most closely related to ours
is perhaps the framework proposed by Hill and Doucet. They analyze several multi-class
SVMs and present a solver for machine training, however, our study goes beyond their
important achievements in several aspects. While Hill and Doucet’s framework unifies al-
ready existing methods, one can neither easily develop new machines within the framework
nor clearly identify the conceptual differences between machines. Further, their analysis
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does not provide hints on how loss functions may affect the generalization performance of
different machines. Finally, it is important to provide an extensive and unbiased empirical
comparison.

This article is organized as follows. The next section presents our unifying framework,
which categorizes multi-class SVMs according to their choice of multi-class loss function,
margin function, and aggregation operator in subsections 2.1–2.3. Subsection 2.4 shows how
the existing multi-class machines fit into our scheme. Then we derive new SVM variants
suggested by the framework. Subsection 2.6 states a template for quadratic programs
describing the learning problems induced by machines falling into our framework. Section 3
analyzes how different design choices affect the Fisher and universal consistency of the loss
functions and the classifiers, respectively. The section closes with showcase experiments
on synthetic test problems designed to highlight consequences of certain design choices.
Section 4 presents an extensive experimental evaluation of various SVM variants, both with
linear as well as Gaussian kernels. The theoretical as well as empirical findings finally lead
us to conclusions including recommendations for the use of multi-class SVMs in practice.

2. A Framework for Multi-category SVM Classification

Multi-class SVMs construct hypotheses h : X → Y from training data
(
(x1, y1), . . . , (x`, y`)

)
∈(

X × Y
)`

, where X and Y are the input and label space, respectively. The data points are
assumed to be sampled i.i.d. from a distribution P on X×Y . We restrict our considerations
to the standard case of a finite label space and set Y = {1, . . . , d} (there exist extensions
of multi-class SVMs to infinite label spaces, e.g., Bordes et al. e.g., 2008). The goal of
training a multi-category SVM is to map the training data to a hypothesis minimizing the
risk (generalization error) R(h) =

∫
X×Y

L(h(x), y) dP (x, y), where the loss function L is

typically the 0-1-loss, which is zero if both arguments are identical and one otherwise.

For multi-category classification the binary SVM concept of thresholding a real-valued
decision function f : X → R at zero is insufficient. The canonical extension to d > 2 classes
is to employ a vector-valued linear decision function f : X → Rd, where the maximal
component indicates the decision. Using a kernel-induced feature space, the corresponding
hypothesis takes the form

h : X → Y = {1, . . . , d} ; x 7→ arg max
c∈Y

{
fc(x)

}
= arg max

c∈Y

{
〈wc, φ(x)〉+ bc

}
, (1)

where φ : X → H is a feature map into an inner product space H, w1, . . . , wd ∈ H are
class-wise weight vectors, and b1, . . . , bd ∈ R are class-wise bias/offset values. The feature
map is defined by a positive definite kernel function k : X × X → R with the property
k(x, x′) = 〈φ(x), φ(x′)〉. We presume that the arg max operator in Equation (1) returns a
single class index (ties may, for example, be broken at random). To ease the notation, we
define the risk R(f) to be equal to the corresponding R(h).

Adding the same function g : X → R to all components fc of the decision function does

not change the decision as arg maxc∈Y

{
fc(x)

}
= arg maxc∈Y

{
fc(x) + g(x)

}
. This is often

undesired, for example, for the sake of uniqueness of a solution. This problem can be fixed
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by enforcing the so-called sum-to-zero constraint

d∑
c=1

fc(x) = 0 . (2)

At least for universal kernels (Steinwart, 2002a) the constraint is equivalent to
∑d

c=1wc = 0

and
∑d

c=1 bc = 0. With this constraint we have f2 = −f1 for the special case of binary
classification, and the hypothesis h(x) = sign(f1(x)) maps the first class to +1 and the
second to −1. Thus, the binary SVM can be recovered as a special case of the multi-class
SVM, which is an important design criterion.

2.1 Multi-class Loss Functions

Support vector machines select a hypothesis by minimizing the regularized empirical risk
functional

1

2
‖f‖2 + C ·

∑̀
i=1

L(f(xi), yi) , (3)

where L is a large-margin loss function and C > 0 is a user-defined regularization con-
stant. The squared norm is defined as ‖f‖2 =

∑
c∈Y ‖fc‖2 =

∑
c∈Y ‖wc‖2. Most existing

approaches to multi-class large margin classification differ only in the type of loss function,
which should typically be an upper bound on the 0-1-loss, lead to an optimization problem
that can be solved efficiently, and vanish on an open set to allow for sparse solutions. The
key observation for our unifying framework is that multi-class SVM loss functions can be
decomposed into meaningful components, namely a set of margin functions for the different
classes, a large-margin loss for binary problems, and an aggregation operator, combining
the various target margin violations into a single loss value. This decomposition is found
in all existing approaches to large margin multi-class classification. Given a labeled point
(x, y) ∈ X × Y and the value f(x) ∈ Rd of the decision function, the general form of most
multi-class loss functions is

L
(
f(x), y

)
= ∆

(
L̂bin

(
µ(f(x), y), y

))
,

or conceptually “L = ∆ ◦ L̂bin ◦ µ”. Here µ is a margin function, ∆ is an aggrega-
tion operator, and Lbin is a loss function for binary classification, such as the hinge loss
Lhinge(µ) = max{0, 1− µ}, the squared hinge loss, or the Huber loss. With L̂bin we denote
the component-wise application of this loss function to the margin values.

In the next two subsections, we formalize the concepts of margin functions and ag-
gregation operators and give examples of how existing machines can be expressed in our
framework.

2.2 Margin Functions

The following definition extends the concept of a scalar margin of a training example to a
vector-valued margin function.

4
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Definition 1 (margin function) A margin function is a non-constant function

µ : Rd × Y → Rd ; µ = (µ1, . . . , µd)

of a prediction f(x) ∈ Rd and a label y ∈ Y that is linear in its first argument and fulfills
the properties:

1. ∀y ∈ Y : µy(f(x), y) is non-decreasing in fy(x),

2. ∀c, y ∈ Y, c 6= y : µc(f(x), y) is non-increasing in fc(x),

3.
[
∀c ∈ Y : µc(f(x), y) ≥ 0 and ∃c ∈ Y : µc(f(x), y) > 0

]
⇒
[
arg maxc∈Y

{
fc(x)

}
= y
]

Due to linearity in f(x) margin functions are of the form

µc
(
f(x), y

)
=

d∑
m=1

νy,c,m · fm(xi)

and can thus be expressed in terms of coefficients νy,c,m. Property 3 in the above definition
ensures that positive margins imply correct classification. Note that the reverse statement is
not guaranteed, so, correct classification does not necessarily imply that all margin functions
are non-negative. The definition is not as general as it may seem. If we assume an equal
treatment of all classes, then the degrees of freedom in νy,c,m are drastically reduced.

The following types of margins are of primary interest:

Definition 2 (relative and absolute margins) The relative margin function is given
by

µrelc (f(x), y) =
1

2

(
fy(x)− fc(x)

)
and the absolute margin function by

µabsc (f(x), y) =

{
+fc(x) for c = y

−fc(x) for c ∈ Y \ {y}
.

The corresponding coefficients are

νy,c,m =
1

2
(δy,m − δc,m) (relative)

and
νy,c,m = δm,c · (2δc,y − 1) = −(−1)δc,y · δm,c (absolute)

for the relative and the absolute margin, respectively, where δa,b = 1 if a = b and δa,b = 0
otherwise denotes the Kronecker symbol. Both margin functions can be combined, as in
the work of Liu and Yuan (2011). They have a number of interesting properties:
• The coefficients νy,c,m are sparse, so that the computation of a margin value µc from
f(x) is a constant time operation (independent of the number of classes).
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• The “own-class-margin” component µrel
y (f(x), y) of relative margins is always zero.

For a two-class problem, the other component coincides with the margin y · f(x) of
the binary SVM (with labels y ∈ {±1} and real-valued decision function f).
• If the classification according to Equation (1) is correct, then no component of the

relative margin function is negative. This implication does not necessarily hold for
absolute margin functions regardless of whether the sum-to-zero constraint is enforced
or not.
• It holds

∑
m νy,c,m = 0 for relative but not for absolute margins. Adding the same

function to all components fc of the decision function does not change the decision (1).
Hence it is reasonable to demand that adding the same value to all νy,c,m does not
change the margins. This property is violated for absolute margins. This renders both
the sign and the absolute value of a single margin (i.e., a component of the margin
function) meaningless. This issue could be addressed by enforcing

∑
m νy,c,m = 0 also

for absolute margins.
• In principle, the sum-to-zero constraint (2) can be avoided at the level of the decision

function by shifting the coefficients ν such that they fulfill
∑

m νy,c,m = 0. However,
this would destroy the sparsity of the coefficients. Thus, it can be argued that the
sum-to-zero constraint

∑
c fc = 0 is a preferable solution.

• A regularizer of the form
∑d

c=1 ‖wc‖2 has the effect that the optimal solution of a
relative margin SVM always fulfills the sum-to-zero constraint. This has been observed
for particular machines by Guermeur (2007) and by Wu and Liu (2007), but can be
shown to be true for all relative margin SVMs. Adding the same vector w to all
weight vectors wc (or the same function g(x) = 〈w, φ(x)〉 to all components fc) does
not affect relative margins and thus the empirical error term in the primal problem.
Thus, to find the optimal w we have to minimize the complexity term

d∑
c=1

〈wc + w,wc + w〉 =
d∑
c=1

〈wc, wc〉+ 2 ·
d∑
c=1

〈wc, w〉+ d · 〈w,w〉

w.r.t. w. Setting the derivative 2 ·
(∑d

c=1wc + d · w
)

to zero gives w = −1
d

∑d
c=1wc,

which results in
∑d

c=1(wc + w) = 0.
• Undesired situations can occur if the absolute margin function is applied without the

sum-to-zero constraint. Consider, for instance, the case of all components of f being
negative. In this case the “own class” margin µy is negative while all “other class”
margins µc, c 6= y, are positive, and the example could still be classified correctly. This
seems counter-intuitive, although formally allowed by Definition 1. Thus, we argue
that the sum-to-zero constraint should be demanded for any multi-class SVM. The
one-versus-all machine (OVA, see below) relies on absolute margins, but the sum-to-
zero constraint is not enforced. However, in OVA it is not possible that all components
of the margin function are negative.
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2.3 Aggregation Operators

Definition 1 ensures that positive margins µc indicate correct classification. Therefore it is
natural to construct a large margin loss from target margin violations, defined as

vc(f(x), y) = max
{

0, γy,c − µc
(
f(x), y

) }
.

The target margins γy,c are typically chosen to be γy,c = 1, which we assume in the following
if not stated otherwise. The margin violations vc = Lhinge(µc(f(x), y) correspond to the
hinge loss applied to the different margin components. As indicated above, other binary
SVM loss functions can be applied at this point. In this case the resulting multi-class SVMs
will be compatible with the corresponding binary SVM based on that surrogate loss (e.g.,
the squared hinge loss is considered by Guermeur, 2012).

The d margin violations need to be combined into a single cost value:

Definition 3 (aggregation operator) An aggregation operator is a non-constant func-
tion

∆ : (R+
0 )d × Y → R+

0

of margin violations v = (v1, . . . , vd) and a label y ∈ Y with the properties

• ∆
(
(0, . . . , 0), y

)
= 0, and

• ∆((v1, . . . , vd), y) is monotonically increasing in all components vi of the first argu-
ment.

The following aggregation operators are employed in machines that have been proposed in
the literature:

Definition 4 We define the following aggregation operators:

∆self
(
(v1, . . . , vd), y

)
= vy (self operator)

∆t-max
(
(v1, . . . , vd), y

)
= max

c∈Y

{
vc

}
(total-max operator)

∆o-max
(
(v1, . . . , vd), y

)
= max

c∈Y \{y}

{
vc

}
(max-over-others operator)

∆t-sum
(
(v1, . . . , vd), y

)
=
∑
c∈Y

vc , (total-sum operator)

∆o-sum
(
(v1, . . . , vd), y

)
=

∑
c∈Y \{y}

vc . (sum-over-others operator)

These operators can be understood as computing the value of a linear program, as outlined
in the supplementary material (Section A).
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2.4 Unification of Existing Machines

This study considers all-in-one approaches to SVM multi-class classification. These methods
extend the SVM concept of large-margin classification to the multi-class case and cast the
learning task as a single optimization problem. The first all-in-one methods proposed inde-
pendently by Weston and Watkins (1999), Vapnik (1998, Section 10.10), and Bredensteiner
and Bennett (1999) turned out to be equivalent, up to rescaling of the decision functions
and the regularization parameter C > 0. We refer to this method as WW or as WW-SVM.
It is expressed within our framework as the machine relying on the sum operator1 applied
to relative margins.

An alternative multi-class SVM was proposed by Crammer and Singer (2002). Like the
WW-SVM, the CS machine takes all class relations into account simultaneously and solves
a single optimization problem, however, with fewer slack variables in its primal optimization
problem. It corresponds to combining relative margins with the max-over-others operator.

There are two key differences between the WW- and CS-SVMs. First, the aggregation
operators are different. Second, the CS-SVM has originally been defined only for hypotheses
without bias term. The machine can be extended to hypotheses with bias (Hsu and Lin,
2002), but efficient training algorithms have been missing for this extension. In our frame-
work we do not distinguish between hypothesis classes with and without bias; all machines
are defined for both classes.

Lee, Lin and Wahba (2004) proposed a distinct approach to multi-class SVM classifica-
tion. We refer to this approach as the LLW-SVM. It was the first machine to use absolute
margins in an all-in-one approach. The absolute margin violations are combined under the
sum-to-zero constraint by means of the sum-over-others operator.

The LLW machine was the first multi-class SVM with a classification calibrated loss
function, which guarantees its Fisher consistency (Lee et al., 2004; Tewari and Bartlett,
2007; Liu, 2007; Liu and Yuan, 2011). That is, in the limit of infinite data minimal risk in
the LLW sense implies minimal 0-1-risk and thus a Bayes-optimal decision rule.

The multi-class maximum margin regression (MMR) method proposed by Szedmak et al.
(2006) is driven by the observation that the quadratic term

∑̀
i=1

∑̀
j=1

αiαjyiyjk(xi, xj)

in the Wolfe dual of the binary SVM (Cortes and Vapnik, 1995; Bottou and Lin, 2007)
can be interpreted as the squared norm with respect to the product kernel k ⊗ ky, where
the “label kernel” ky : {±1} × {±1} → R is defined as ky(yi, yj) = yiyj . This is the
standard inner product on the label space Y = {−1,+1} ⊂ R. This idea is generalized to
multiple classes by considering the standard inner product on Rd applied to label prototype
vectors {ŷ1, . . . , ŷd} = Y ⊂ Rd representing the classes. This corresponds one-to-one to the
definition of a positive definite kernel ky(c, c

′) = 〈ŷc, ŷc′〉 on the standardized label space
Y = {1, . . . , d}. Two different sets of prototypes have been proposed, namely

ŷc =

√
d− 1

d

(
−1

d− 1
, . . . , 1, . . . ,

−1

d− 1

)
1. For relative margins, the sum-over-others and the total-sum operator coincide.

8



A Unified View on Multi-category Support Vector Classification

and ŷc = (0, . . . , 1, . . . , 0), where the c-th component equals 1. The first set corresponds to a
symmetric setup of unit vectors with maximal angles between prototypes, while the second
setup relies on an orthonormal basis. We refer to these variants as MMR and MMR⊥,
respectively. They correspond to the label kernels

ky(yi, yj) =

{
1 for yi = yj

− 1
d−1 otherwise

and k⊥y (yi, yj) = δyi,yi .

Both of these machines are obtained by applying the self aggregation operator to absolute
margins, where the MMR machine enforces the sum-to-zero constraint, while the MMR⊥

machine does not.
The MMR⊥ method applied to a two-class problem does typically not give the same

decision function as the standard binary SVM. With its orthogonal label kernel, it explicitly
ignores all interactions between classes, so that the machine effectively trains d independent
machines, similar to one-class SVMs for the different classes.

The unique selling proposition of the MMR and MMR⊥ machines is their applicability
to problems with large numbers of classes. By design, the optimization problem of the MMR
machine has only ` dual variables. Even better, in case of the MMR⊥ machine the problem
decomposes into d independent sub-problems. However, this means that the MMR⊥-SVM
does not take any inter-class relationships in the data into account.

Our unification also captures the reinforced multicategory SVM (RM-SVM) recently
proposed by Liu and Yuan (2011). This machine, or family of machines, weights two types
of margin violations using a parameter γ ∈ [0, 1]. In our framework, it can be viewed as
relying on a reinforced margin function defined as

µr
c(f(x), y) =

{
γfc(x) for c = y

−(1− γ)fc(x) for c ∈ Y \ {y}

and using the total-sum operator and the coefficients

γy,c =

{
γ(d− 1) for c = y

(1− γ) for c ∈ Y \ {y}
(4)

for combining the margin violations. The sum-to-zero constraint is enforced. For γ = 0,
RM equals LLW and for γ = 1 it equals MMR with a scaled target margin.

There exist several general techniques to build a multi-category classifier based on some
binary classifiers, which can be chosen to be binary SVMs. The most prominent of these
so-called sequential approaches are the one-versus-one (OVO) and the one-versus-all (OVA)
scheme. As an OVO approach inevitably requires some additional non-canonical decision
making procedure different from (1) (e.g., Hastie and Tibshirani, 1998; Platt et al., 2000;
Chang and Lin, 2011) and the optimal choice of this procedure is highly task-dependent,
OVO-type approaches are out of the scope of this study (error-correcting-output-codes,
ECOC, provide a general framework covering OVA and many OVO methods, see Dietterich
and Bakiri, 1995; Allwein et al., 2001; Passerini et al., 2004).

However, the OVA scheme fits into our framework. It relies on only d different binary
decision functions, each separating one class from all the rest (Vapnik, 1998, Section 10.10).
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Usually this class is considered the “positive” class (y = +1) in the binary problem, and all
other classes are mapped to the “negative” class (y = −1). The resulting decision function
can be thought of as voting for the class under consideration. Let yci = +1 if c = yi and
yci = −1 if c 6= yi denote the binary label of the i-th example when training the machine
separating class c from the rest. Then OVA constructs decision functions fc according to

min
fc

1

2
‖fc‖2 + C ·

∑̀
i=1

Lhinge
(
yci · fc(xi)

)
.

and plugs them into Equation (1). Solving these d independent optimization problems at
once results in a problem of type (3). This proceeding amounts to summing up the margin
violations of all binary problems. Thus, OVA can be viewed as total-sum aggregation
applied to absolute margins, without enforcing the sum-to-zero constraint.

Our framework highlights the conceptual similarities and differences of the above-mentioned
machines, summarized in Table 1.

machine margin µ aggregation operator ∆ sum-to-zero bias
constraint term

WW relative sum-over-others optional yes
CS relative maximum-over-others optional no
LLW absolute sum-over-others yes yes
MMR absolute self yes yes
MMR⊥ absolute self no yes
RM absolute total-sum yes yes

(affine combination of self and sum-over-others)
OVA absolute total-sum no yes

Table 1: Properties of the various multi-category SVMs in terms of the unifying framework.
The last column indicates the presence of the bias or offset term in the original
formulation found in the literature; all machines can be formulated with or without
bias term.

2.5 Completing the Picture: New Multi-class SVMs

Our unification makes it easy to construct novel loss functions based on the principles ex-
tracted from existing approaches. From Table 1 it becomes obvious that some combinations
of established margin functions and aggregation operators have not yet been explored. In
the following, we define the corresponding machines and name them by a three-letter code,
abbreviating the margin and loss types as indicated in bold in the following. The first of
these new SVMs is the AMO machine, combining the absolute margin concept with the
max-over-others operator. The machine can be understood as a combination of the LLW-
SVM, from which it takes the margin concept, and the CS-SVM with its max-over-others
aggregation.

The other two machines, ATM and ATS, use absolute margins with the total maximum
and the total sum operators. The ATS-SVM resembles the RM-SVM with γ = 0.5, however,

10
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ATS uses target margins of γy,c = 1 for y, c ∈ {1, . . . , d}, while RM-SVM uses the target
margins defined by (4) which differ depending on whether c equals y or not. The only
difference between the OVA scheme and the ATS machine is the presence of the sum-to-
zero constraint in the latter. Still, the ATS machine is an all-in-one machine, because its
training problem is not a composition of independent (binary) problems.

2.6 Unified Dual Problem

Training SVMs amounts to solving convex quadratic optimization problems. The tradi-
tional approach to solving these problems when using non-linear kernels is considering the
corresponding dual formulations. In the following, we derive the Wolfe dual of the unified
primal problem (3). The structure of the dual is often well-suited for the application of
decomposition algorithms, which have proven to be a powerful choice for training SVMs
with non-linear kernels.

For the case without sum-to-zero constraint, we arrive at the following dual problem
(see supplement Section B for details):

max
α

∑
i,p

γyi,p · αi,p −
1

2

∑
i,p

∑
j,q

Myi,p,yj ,q · k(xi, xj) · αi,p · αj,q (5)

s.t. ∀i, p : 0 ≤ αi,p
∀i, r :

∑
p∈P r

y

αi,p ≤ C

∀c :
∑
i,p

αi,pνyi,p,c = 0 (6)

with
Myi,p,yj ,q =

∑
c

νyi,p,cνyj ,q,c .

The bias parameters bc can be obtained from the KKT optimality conditions.
If the sum-to-zero constraint is enforced, we obtain the same structure of the dual

problem, but this time with

Myi,p,yj ,q =
∑
m,n

(
δm,n −

1

d

)
νyi,p,mνyj ,q,n .

We call these auxiliary constants Myi,p,yj ,q used in the formulation of the dual problems
kernel modifiers, because they appear as multipliers of the kernel in the dual problem. Let
the map I : {1, . . . , `} × Py → {1, . . . , `|Py|} assign a unique index to each pair of training
pattern and constraint. We define Q ∈ R`|Py |×`|Py | by

QI(i,p),I(j,q) = Myi,p,yj ,q · k(xi, xj) .

This matrix, together with the vector V ∈ R`|Py |, VI(i,p) = γyi,p, defines the quadratic
objective function

W (α) = V Tα− 1

2
αTQα (7)
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of the dual problem, written in vector notation.
The weight vectors are given by

wc =
∑
i,p

αi,pνyi,p,cφ(xi)− η (8)

with η =
∑

i,p αi,p
(

1
d

∑
c νyi,p,c

)
φ(xi) in case of a sum-to-zero constraint and zero otherwise.

For solving the problem with bias parameters, which lead to d equality constraints, we
adopt the iterative problem alternation approach by Kienzle and Schölkopf (2005).

2.7 Training Complexity

Table 2 gives the asymptotic training times of various approaches. Under the assump-
tion that the runtime bounds are tight, the table suggests that training MMR⊥ is faster
than training OVO, which is slightly faster than MMR, which is again faster than training
OVA, which is finally followed by the various all-on-one SVMs with O(d) dual variables
per training example. The asymptotic nature of the runtime bounds hides factors con-
siderably influencing training times in practice: Different machines often perform best for
different hyper-parameters, and different concepts of separability (as discussed in Section 2
and Section 3) have an impact.

MMR⊥ OVO MMR OVA WW / CS / LLW
AMO / ATM / ATS / RM∑d

c=1 C(`c)
∑

1≤c<e≤d C(`c + `e) C(`) d · C(`) C(d`)
=̂ d · C(`/d) =̂ d2 · C(`/d)

Table 2: Asymptotic runtime of the training algorithms under the assumption that solving
the different n-dimensional quadratic programs is in the complexity class C(n).
There are good arguments to assume C(n) = O(nq) for some q between 2 and
3 (Joachims, 1998; Bottou and Lin, 2007). The number of training patterns is
denoted by `, the number of examples per class c by `c, and the number of different
classes by d. In the second row the complexity is given under the assumption of
(roughly) balanced classes, that is, `c ∈ Θ(`/d).

3. A Closer Look at Aggregation Operators and Margin Concepts

In this section, we analyze the concepts underlying the various multi-class SVM variants.
First, we will consider the asymptotic behavior in the limit of infinite data by studying

consistency. This analysis is closely related to two streams of research. First, we will
focus on the Fisher consistency of the loss functions employed for SVM training. This
type of consistency, also known as classification calibration, has already been studied for
a number of multi-class losses (Lee et al., 2004; Tewari and Bartlett, 2007; Liu, 2007; Liu
and Yuan, 2011). It is only indirectly concerned with the SVM itself, since the effect of
the regularizer is ignored. Second, we will consider universal consistency building on the
well-known result for binary SVMs by Steinwart (2002b). It states that with a suitable

12



A Unified View on Multi-category Support Vector Classification

dependency C(`) of the regularization parameter C on the data set size `, for any universal
kernel, the SVM approaches the Bayes-optimal decision in the limit of infinite data. In
addition to the theoretical analysis, we will empirically study the performance of the SVMs
on artificial learning tasks that have been designed to highlight crucial differences between
margin concepts and aggregation operators.

3.1 Fisher Consistency of Multi-class Loss Functions

In the following, we will analyze the Fisher consistency of the loss functions considered
in this study. Let L(f(x), y) denote the loss function applied by a multi-class SVM for
training. Let f∗ : X → Rd denote a minimizer (among all measurable functions) of the risk
under the data generating distribution P . A loss function is Fisher consistent if

arg max
{
f∗c (x)

∣∣ c ∈ Y } ⊂ arg max
{
P (y |x)

∣∣ y ∈ Y } .

In the following, we use the statements that a multi-class SVM variant and its training loss
are Fisher consistent interchangeably.

The consistency of the LLW loss was established by Lee et al. (2004), and it was con-
firmed by Liu (2007) that this is the only example of a Fisher consistent multi-class loss
among the popular WW-, CS-, MMR-, and LLW-SVMs. The ATS machine can be viewed
as belonging to the family of reinforced multicategory SVMs. Thus, the Fisher consistency
of the ATS loss follows from the analysis by Liu and Yuan (2011).

We will investigate the consistency of the new machines AMO and ATM following the
proceeding by Liu (2007). We adopt the short notation Py = P (y |x) for the probability of
observing class y given x and define [t]+ = max{0, t}. It holds:

Theorem 5 Let L(f(x), y) denote either the loss function used by the AMO machine or
the loss function used by the ATM machine, that is, the loss resulting from application of
either the max-over-others or the total-max operator to absolute margins:

L(f(x), y) = max
c∈Y \{y}

{
vabsc (f(x), y)

}
=
[
1 + max

c∈Y \{y}

{
fc(x)

}]
+

(AMO)

or

L(f(x), y) = max
c∈Y

{
vabsc (f(x), y)

}
= max

{[
1 + max

c∈Y \{y}
{fc(x)}

]
+

,
[
1− fy(x)

]
+

}
.

(ATM)
Then the minimizer f∗ of the corresponding risk R = E[L(f(x), y)], subject to the sum-to-
zero constraint

∑
c∈Y fc(x) = 0, satisfies:

• If there exists a majority class y ∈ Y such that Py > (d − 1)/d, then f∗y (x) = d − 1
and f∗c (x) = −1 for all c ∈ Y \ {y}.

• If Py < (d− 1)/d for all y ∈ Y , then f∗(x) = 0.

The proof, which is given in the supplementary material (Section C), works by analyzing
the point-wise risk Rx =

∑
y∈Y P (y |x)L(f(x), y) and computing the function values fc(x)

minimizing Rx. Thus, the Fisher consistency of the loss functions used in the all-in-one
machines considering absolute margins can be summarized as follows:
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Corollary 1 It follows directly from the previous results that the AMO-loss and the ATM-
loss are not Fisher consistent while the LLW-loss and the ATS-loss are Fisher consistent.

In light of the conceptual similarity between the ATS machine and the LLW-SVM, it is
not surprising that the ATS-loss is Fisher consistent. However, combining margin violations
by means of the maximum-operator appears to be problematic, since neither the AMO nor
the ATM machine (the two “max-loss siblings” of the Fisher consistent LLW and ATS
machines) share this property.

The question arises how Fisher consistency is related to (a) the margin type, (b) the
aggregation of margins in the loss, and (c) the sum-to-zero constraint. Part (a) is easy to
answer, since Liu (2007) has proved inconsistency of the relative margin machines (WW
and CS). Thus, we focus on absolute margins in the following. We investigate the impact
of the sum-to-zero constraint on the maximum and the sum of margin violations. It turns
out that dropping the constraint destroys Fisher consistency:

Theorem 6 Let L(f(x), y) denote the maximum or the sum over absolute margin viola-
tions, and assume Py < 1/2 for all y ∈ Y . Then the unconstrained minimizer f∗ of the
corresponding risk R = E[L(f(x), y)] satisfies ∀c ∈ Y : f∗c (x) = −1 for the sum and
∀c ∈ Y : f∗c (x) = 0 for the maximum.

We do not prove this statement here; the proof is analog to the one of Theorem 5 using
the techniques developed by Liu (2007). The optimal solution for the maximum operator
is all zeros and satisfies the sum-to-zero constraint (cf. Theorem 5), and therefore dropping
the constraint does not make any difference. However, the constraint is relevant when
the sum operator is employed. The resulting solution does not sum to zero, and it is not
Bayes-optimal. This result confirms the importance of the constraint for Fisher consistency.

The ATS machine can be interpreted as the OVA machine with sum-to-zero constraint,
and Theorem 6 covers the OVA machine, which is inconsistent in the absence of a majority
class. Thus, adding the sum-to-zero constraint makes the OVA machine consistent, at the
cost that the different weight vectors wc cannot be obtained independently anymore.

3.2 Universal Consistency

While Fisher consistency is just a property of the loss function, universal consistency consid-
ers the whole machine including the regularizer and its impact relative to the data set size.
Steinwart’s universal consistency analysis for binary SVMs builds on the fact that the hinge
loss is classification calibrated for binary problems. It can be extended to multi-class SVMs
with Fisher consistent losses under the assumption of the same training set size dependent
choice C(`) of the regularization parameter as assumed for the binary SVMs. Thus, from
Corollary 1 we get:

Theorem 7 The LLW-SVM and the ATS-SVM with universal kernel and regularization
parameter chosen according to Theorem 2 by Steinwart (2002b) are universally consistent
classifiers.

We omit the proof of this statement, because is a straight-forward extension of the involved
proof for binary machines.
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It can be shown that using the same rule for C(`) as in Theorem 2 from Steinwart (2002b)
with a non-Fisher consistent loss does not yield a universally consistent classifier. However,
this negative result does not exclude the existence of a different dependency of C on `
so that the resulting classifier is universally consistent. Thus, the question arises whether
for an SVM surrogate loss function L there exists a dependency C(`) of the regularization
parameter on the training set size such that the resulting classifier is universally consistent.
In the following, we answer the question for all SVM variants covered in this study—with
the surprising result that also the MMR-, WW-, and OVA-SVMs can be made consistent
when operated with a completely different trade-off C(`):

Theorem 8 For the Gaussian kernel k(x, x′) = exp(−γ‖x− x′‖2) on an input space X ⊂
Rp, the machines MMR-SVM, WW-SVM, LLW-SVM, ATS-SVM, and OVA-SVM with
regularization parameter C(`) ≤ 1/(d · `) and kernel parameter γ(`) fulfilling lim`→∞ γ(`) =
∞ and lim`→∞ ` · γ(`)−p/2 =∞ are universally consistent classifiers.

Proof Let us first consider the all-in-one machines. The absolute values of all components of
the quadratic matrix Q in the dual problem (7) are upper bounded by one. All components
of the dual solution α are bounded by C(`) = 1/(d · `). The sum in the derivative

∂W (α)

∂αi,p
= 1−

∑
j,q

QI(i,p),I(j,q) · αj,q

runs over at most d · ` summands, each of which is bounded by 1
d·` . Thus all gradient

components are non-negative in the whole box-shaped feasible region. It follows that all
dual variables αi,p end up at the upper bound C. From Equation (8) and the definition of
the machines it can be seen that for the primal solution it holds wc = w̃c − η̃ with

• η̃ = η and w̃c = C ·
∑

i|yi=c φ(xi) for the MMR machine,

• η̃ = η − C ·
∑

i φ(xi) and w̃c = C · d/2 ·
∑

i|yi=c φ(xi) for the WW machine,

• η̃ = η − C ·
∑

i φ(xi) and w̃c = C ·
∑

i|yi=c φ(xi) for the LLW machine,

• η̃ = η − C ·
∑

i φ(xi) and w̃c = 2C ·
∑

i|yi=c φ(xi) for the ATS machine.

The weight vectors w̃c are a scaled version of the kernel density estimator (KDE), which
is well known to be universally consistent. The above conditions on γ(`) translate into
the preconditions of Theorem 10.1 by Devroye et al. (1996, p. 150) for the kernel width
h =

√
1/γ(`). The KDE output fed into the arg max decision rule (1) ignores the additive

constant η̃ and yields consistent classification predictions.
The OVA result can be proven in the same way. Again, all dual variables take the value

C. It is easy to see that the primal SVM solution is then a scaled KDE plus a constant
vector: wc = w̃c − η̃, with η̃ =

∑
i φ(xi) and w̃c = 2 ·

∑
i|yi=c φ(xi). Thus, the resulting

classifier is universally consistent.

The above statement is a straight-forward reduction of the SVM to a simple kernel den-
sity estimator. The same result holds for binary SVMs. It is a much simpler statement with
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Doğan, Glasmachers and Igel

a much simpler proof than the famous universal consistency result by Steinwart (2002b).
The core idea of Steinwart’s analysis is to carefully increase the modeling power of the SVM
with growing number of training points so that the impact of regularizer decays to zero,
while at the same time overfitting is avoided. In contrast, we keep the impact of the regu-
larizer constantly high. When operating the SVM in this regime it loses its most important
features, namely the large margin approach and the sparsity (Steinwart and Christmann,
2008). This may seem highly undesirable, but from the viewpoint of classification accuracy
it does not matter much whether an SVM with a specific value of C works well because
of a large margin or because of the consistency of KDE. Of course, KDE estimation is less
sample and memory efficient than large-margin prediction. Sample efficiency is one of the
primary arguments brought forward by Vapnik (1998) for preferring direct estimation of
the decision boundary over a plug-in classifier based on KDE.

Theorem 8 establishes the consistency of the MMR, WW, and OVA machines, despite
the Fisher inconsistency of their losses. This implies that an analysis of the loss func-
tion in isolation in terms of Fisher consistency is not sufficient for fully understanding the
predictions made by these machines.

The simple trick of reverting to KDE-based prediction is not trivial, since it does not
work for all large margin losses:

Theorem 9 There exists no function C(`) so that CS-SVM, AMO-SVM, or ATM-SVM
become universally consistent.

Proof Consider a single-point input space X = {x0} with any kernel k(x0, x0) > 0 (any
positive kernel is universal on this space). Consider a problem with d = 3 classes. It is
completely described by the class probabilities; w.l.o.g. they fulfill p1 ≥ p2 ≥ p3. Lemma 4
by Liu (2007) for the CS machine, and Theorem 5 for the AMO-SVM and the ATM-SVM,
respectively, offer choices of these probabilities so that the minimizer of the empirical risk
is f1(x0) = f2(x0) = f3(x0) = 0, with corresponding weight vectors w1 = w2 = w3 = 0.
This inconsistent solution also minimizes the regularizer, and thus the regularized risk for
all C > 0.2

The proof lifts results on Fisher-(in)consistency from the level of the loss function to
inconsistency of the actual SVM, taking the regularizer into account. The case of the
MMR, WW and OVA machines treated above makes clear that this extension is non-
trivial, since for these machines the regularizer makes the difference between consistency
and inconsistency. We regard this type of analysis as highly relevant, since SVMs do not
actually minimize the empirical risk, but instead a combination of empirical risk and a
specific regularizer.

The present analysis covers the three losses involving the max-aggregation completely,
since for no C (or C(`)) they result in a universally consistent SVM. On the other hand,
there is a gap in our analysis of machines employing sum-aggregation losses: For `·C(`)→∞
Steinwart’s analysis applies, while the trivial reduction to a KDE works only for ` · C(`)
(asymptotically) bounded by a rather small constant, so that all target margins are always

2. An alternative proof strategy is to construct a non-zero dual optimal solution that corresponds to the
primal zero solution.
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violated. The question whether an SVM can be consistent for parameters in the gap in
between these regimes is left open.

3.3 Artificial Benchmark Problems

In the following, we will show experimental results on highly controlled problems with
analytically defined distributions. This investigation complements and enriches the previous
theoretical analysis. Some of the theoretical results on Fisher consistency of loss functions
can be demonstrated in a non-asymptotic setting. The theoretical results on universal
consistency require a universal kernel and thus an “arbitrarily rich” feature space. This
is, however, not always the case in practice, where restricted and low-dimensional feature
spaces can occur. We visualize the behavior of nine different multi-class SVMs over a
range of values of the regularization parameter. The simple test problems serve as “counter
examples” that help to understand when and why some of the machines deliver substantially
sub-optimal solutions.

We define a basic test problem with two variants, one noise-free and one with label noise.
The domain X = S1 =

{
x ∈ R2

∣∣ ‖x‖ = 1
}

of these test problems is the unit circle. The
circle is parameterized by t ∈ [0, 20[ through the curve β(t) =

(
cos(t · π/10), sin(t · π/10)

)
.

The problem involves three classes Y = {1, 2, 3}, see Figure 1 and Figure 2. For the
noiseless problem data points (x, y) ∈ X × Y are generated as follows. First the label
y ∈ Y is drawn from the uniform distribution on Y . Then x is drawn uniformly at random
from the sector Xy. The sectors have different sizes. They are defined as X1 = β([0, 5)),
X2 = β([5, 11)), and X3 = β([11, 20)). The only change for the noisy case is that 90% of
the labels are reassigned uniformly at random. In other words the distribution of the x-
component remains unchanged, and conditioned on x ∈ Xz the event y = z has probability
40%, while the other two cases have probabilities of 30%. In both variants of the problem
it is Bayes-optimal to predict label y on sector Xy. This solution can be realized by a linear
model without offset term.

These problems are rather elementary. They are low-dimensional and thus easy to
visualize. Their only difficulty lies in the uneven sector sizes. This also results in different
densities of the x-components in the different sectors. This design avoids the exploitation of
artificial symmetries. The construction is so that in the noisy variant there is no majority
class at any point.

We have conducted a parameter study with all nine machines (with linear kernel and
without offset term). In the noise-free case we have drawn ` = 100 samples. Since the
problem is linearly separable and noise-free, we have tested rather large values of C = 10n

with n ∈ {0, 1, 2, 3, 4} (there are no interesting effects outside this range). The resulting
classifiers are shown in Figure 1. The information content of noisy samples is significantly
reduced, which is why we use ` = 500 and n ∈ {−4,−3,−2,−1, 0} here (again, results do
not change outside this range). The classifier predictions are visualized in Figure 2.
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OVA MMR WW

CS LLW ADM

ATS ATM RM

Figure 1: Noiseless circle problem. The sector separators are the decision boundaries of
the Bayes-optimal predictor. Classes 1, 2, and 3 are indicated by colors blue,
green, and red, respectively. The points on the outside of each graph are the
100 training samples. The colored circles indicate the classifier predictions for
C = 10n, n ∈ {0, 1, 2, 3, 4}, increasing from inner to outer circles.
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OVA MMR WW

CS LLW ADM

ATS ATM RM

Figure 2: Noisy circle problem. The sector separators are the decision boundaries of the
Bayes-optimal predictor. Classes 1, 2, and 3 are indicated by colors blue, green,
and red, respectively. The points on the outside of each graph are the 500 training
samples. The colored circles indicate the classifier predictions for C = 10n, n ∈
{−4,−3,−2,−1, 0}, increasing from inner to outer circles.
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Figure 1 shows that the relative margin machines WW and CS excel, in particular for
high values of C. Also the MMR machine relying on the self-margin component performs
well. In contrast, the absolute margin machines LLW, AMO, ATS, RM, and ATM all
fail, over the whole range of parameters (despite the universal consistency of some of the
approaches in rich enough feature spaces). The same defect can be observed for OVA, but
in weaker form.

The reason for this failure is that the definition of absolute margins does not allow to
solve the given problem without violation of the target margin. This holds even for the
Bayes-optimal classifier. Thus, absolute margins are not compatible with the form of the
decision function. This is obvious for the OVA approach on the circle problem, because
one class cannot be separated from the others by a single linear hyperplane through the
origin. It turns out that this effect is not a direct consequence of the OVA approach, but
of absolute margins in general.

Figure 2 displays the performance in the presence of massive label noise. The perfor-
mance of the WW machine remains good, but as expected it needs a much smaller value
of C. The performance of MMR degrades a bit, while OVA does well in this case. The
sub-optimal performance of the LLW machine is largely unchanged, while the closely related
ATS and RM profit from the self-margin component (which by itself works well, as shown
by the MMR results). Most strikingly, the CS machine with its relative margin as well as
the AMO and ATM machines with their absolute margins give random predictions. All
three approaches rely on maximum-based aggregation operators. This behavior is perfectly
explained by the Fisher consistency results (also reflected in the proof of Theorem 5): Since
there is no majority class, all losses favor the trivial solution w1 = w2 = w3 = 0. This
solution is also optimal for the regularizer. Thus, it is attained for all values of C, and
the figures show nothing but numerical noise. In the noisy case the combination of loss
components with maximum-based aggregation operators results in guessing performance.
Notably this includes the well established CS machine.

In low dimensional feature spaces we see absolute margin machines fail in the noiseless
case and maximum-based aggregation operators in the noisy case.3 Despite the simplicity of
the synthetic problems, only a single machine solves both cases, namely the WW approach.
The simplistic OVA and MMR machines perform worse, but still satisfactory.

4. Empirical Comparison

This section empirically compares nine approaches to multi-category SVM learning, namely
the sequential OVA scheme, the established all-in-one methods WW, CS, LLW, RM, and
MMR, as well as the new methods called AMO, ATS, and ATM. All algorithms were
implemented in the Shark open source machine learning library (Igel et al., 2008). Source
code for reproducing the results can be found in the supplementary material. First, twelve
standard benchmark data sets were considered for non-linear SVM learning, and careful
model selection was conducted. This already makes our experiments the most extensive
comparison of multi-class SVMs so far. Second, additional experiments for linear SVMs are
presented later in this section.

3. This result does of course not exclude the existence of a similar problem where WW also fails. However,
we did not manage to construct such an instance.

20



A Unified View on Multi-category Support Vector Classification

4.1 Multi-class Benchmark Problems

The descriptive statistics of the twelve data sets used to evaluate the non-linear multi-class
SVM methods are given in Section D of the supplementary material. All features of all data
sets were pre-processed by rescaling to unit variance. This rescaling was done for each split
into training and test data individually based on the statistics of the particular training set.

4.2 Model Selection

In all non-linear SVM experiments, Gaussian kernels kγ(x1, x2) = exp(−γ||x1 − x2||2) were
used. The bandwidth γ of the Gaussian kernel and the regularization parameter C of the
machine were determined by nested grid search. Repeated cross-validation was employed
as model selection criterion. Five-fold cross-validation was repeated ten times using ten
independent random splits into five folds. This stabilizes the model selection procedure
especially for small data sets. Candidate parameters were evaluated on the 5×10 validation
subsets and the configuration yielding the best average performance was chosen. If any
of the selected model parameters was at the grid boundary, then the grid was extended
accordingly.

We set the initial grid to γ ∈ {2−12+3i | i = 0, 1, . . . , 4} and C ∈ {23i | i = 0, 1, . . . , 4}.
Let (γ0, C0) denote the parameter configuration picked in the first stage. Then in the
second stage the parameters were further refined on the grid γ ∈ {2i ·γ0 | i = −2,−1, 0, 1, 2}
and C ∈ {2i · C0 | i = −2,−1, 0, 1, 2}. For linear SVMs we applied the same approach
restricted to the complexity control parameter C. The hyperparameters as determined by
the grid-searches are given in Section E of the supplementary material.

Table 3 provides a comparison reflecting the computational demand of parameter tuning.
It lists the total training time for computing the 5-fold cross validation error on a 5×5 grid
of the outer grid search loop, centered on the optimal parameters. Training times differ by
several orders of magnitude depending on the SVM variant.

Data set OVA MMR WW CS LLW AMO ATS ADS RM

Car 36.45 12.89 131.7 1027 6112 40231 2399 34046 4106
Glass 1.10 0.32 2.05 318.6 48.50 369.2 247.1 186.1 69.87
Iris 1.41 0.13 13.02 1.30 25.58 4.63 647.7 35.01 243.1
Red wine 53.87 10.51 57.68 2574 7354 75159 6486 67000 2235

Table 3: Time in seconds for computing the 5-fold cross validation error on a single core
over a 5× 5 grid around the optimal parameter values.

4.3 Evaluation

The multi-class SVMs were evaluated as follows. Using the best parameters found during
model selection, 100 machines were trained on 100 random splits into training and test
data (preserving the original set sizes).4 In this way properties of the test error distribution

4. Doing the full model selection 100 times would be the better setup, however, it was computationally too
demanding.
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can be estimated. We report empirical mean and standard deviation. Furthermore, the
100 repetitions allow to test results for significant differences. For each problem we have
compared each machine to the best performing one with a paired U-test (at significance
level α = 0.01). We are not interested in the test results per se; instead, the tests provide
thresholds for judging performance as competitive or inferior. It must be noted that the 100
repetitions share the same data and are thus not independent. This means that the confi-
dence level needs adjustment. However, the U-test still provides a meaningful thresholding
mechanism.

4.4 Stopping Condition

For a fair comparison of training times of different SVMs, it is of importance to choose
comparable stopping criteria for the quadratic programming. Unfortunately, this is hardly
possible in the experiments presented in this study, because the quadratic programs differ.
However, in the case of just two classes all machines solve the same problem. Therefore
the stopping condition was selected such that for a binary problem these machines would
give the same solution. The common threshold of ε = 10−3 on violations of the Karush-
Kuhn-Tucker (KKT) conditions of optimality was used as stopping criterion (Bottou and
Lin, 2007).

To rule out artifacts of this choice several experiments were repeated with an accuracy
of ε = 10−5. These experiments did not result in improved performance. Thus, the choice
of the stopping criterion may in the worst case influence training times, but not the test
accuracies reported in Section 4.5 and Section 4.6.

For all non-linear machines, the maximum number of SMO iterations was limited to
10.000 times the number of dual variables. The limit for linear machines was 10 times
higher.5 This was necessary to keep the grid searches computationally tractable. However,
the few parameter configurations that had hit this limit corresponded to “degenerated”
machines (i.e., bad solutions), typically with far too small γ and too large C. Thus, this
proceeding did not influence the outcome of the model selection process.

4.5 Non-linear SVM Results

The test accuracies of all nine machines are listed in Table 4. The table also indicates
whether a paired U-test judges the 100 test accuracies as significantly worse than the ma-
chine with the best performance. The relative accuracies of the 9 machines are represented
graphically in Figure 3.

A similar plot in Figure 4 displays training times. The training times varied vastly with
the choice of the hyper-parameters, that is, they were strongly dependent on the outcome
of the model selection procedure. In some cases there exist configurations with similar
prediction performance but different optimization times. Thus, the timing results were
subject to non-negligible noise and should thus be interpreted with care.

5. The higher limit accounts for the fact that single iterations are less efficient, because in the algorithm
proposed by Hsieh et al. (2008) and Fan et al. (2008) and refined by Glasmachers and Doğan (2013,
2014) the choice of the active variable does not take gradient and gain information into account, see
Section 4.6.
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OVA MMR WW CS LLW AMO ATS ATM RM

Abalone 26.89 26.51 27.51 21.33 26.65 20.42 26.64 20.58 22.02
± 1.26 ± 1.31 ± 1.19 ± 0.95 ± 1.25 ± 1.13 ± 1.24 ± 1.43 ± 1.09

Car 98.37 97.58 98.62 98.61 98.14 98.11 98.14 98.09 98.24
± 0.72 ± 0.82 ± 0.72 ± 0.71 ± 0.79 ± 0.80 ± 0.77 ± 0.74 ± 0.62

Glass 68.69 68.03 68.78 69.03 68.03 69.52 68.38 69.53 69.09
± 4.61 ± 5.33 ± 5.24 ± 4.48 ± 4.80 ± 5.01 ± 4.89 ± 4.95 ± 5.68

Iris 96.66 94.71 96.35 95.26 96.22 95.08 95.86 95.11 96.02
± 2.43 ± 2.99 ± 2.59 ± 2.88 ± 2.51 ± 2.57 ± 2.77 ± 2.52 ± 2.64

Opt. digits 98.80 98.25 98.77 98.76 98.85 97.87 98.84 98.84 98.90
± 0.25 ± 0.26 ± 0.24 ± 0.24 ± 0.22 ± 0.29 ± 0.22 ± 0.22 ± 0.23

Page blocks 96.73 96.65 96.83 96.78 96.69 96.63 96.69 96.63 96.75
± 0.46 ± 0.46 ± 0.42 ± 0.44 ± 0.47 ± 0.43 ± 0.45 ± 0.43 ± 0.37

Sat 92.19 91.75 92.19 92.19 92.13 92.14 92.15 92.14 92.20
± 0.53 ± 0.54 ± 0.53 ± 0.54 ± 0.53 ± 0.49 ± 0.52 ± 0.48 ± 0.50

Segment 96.41 96.22 96.39 96.36 96.43 96.41 96.41 96.42 96.60
± 0.73 ± 0.71 ± 0.73 ± 0.60 ± 0.73 ± 0.68 ± 0.73 ± 0.75 ± 0.65

Soy bean 89.58 87.24 89.13 89.88 89.81 88.86 90.41 88.72 91.16
± 3.04 ± 3.40 ± 2.96 ± 3.11 ± 3.32 ± 3.00 ± 3.23 ± 3.21 ± 2.52

Vehicle 84.90 73.94 84.28 83.99 84.86 83.74 84.83 83.84 84.71
± 1.88 ± 2.17 ± 2.00 ± 1.90 ± 1.99 ± 2.30 ± 2.13 ± 2.30 ± 1.81

Red wine 63.93 64.13 63.87 63.90 63.91 64.06 63.93 64.06 63.99
± 2.07 ± 1.83 ± 1.91 ± 2.02 ± 2.13 ± 2.03 ± 2.07 ± 2.03 ± 1.87

White wine 64.03 63.96 64.86 64.04 64.02 64.83 64.39 64.83 64.27
± 1.12 ± 1.18 ± 1.17 ± 1.15 ± 1.11 ± 1.17 ± 1.09 ± 1.17 ± 1.05

Table 4: Classification accuracies in percent of correctly classified test examples. The table
lists mean values and standard deviations. In each row bold numbers indicate that
the result is not significantly worse than the best one (paired U-test, α = 0.01).

In many applications not only training times but also testing times are of relevance.
The time it takes to compute the prediction of an SVM classifier is usually dominated
by the kernel computations. In the multi-class case this means that sparsity in the dual
variables is not enough: only variables that do not appear in any of the expansions of the
weight vectors w1, . . . , wd can be dropped in the evaluation of the classifier. We count every
training example that is used in the construction of any of the weight vectors as a support
vector. The fraction of support vectors is reported in Figure 5.

4.6 Linear SVM Results

In recent years there has been increased interest in linear SVM classifiers. These are a viable
alternative to non-linear SVMs in particular in high-dimensional input spaces commonly
found, for instance, in text mining and bioinformatics problems. A powerful coordinate
descent solver for the dual linear SVM problem was proposed by Hsieh et al. (2008) and
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Figure 3: Relative accuracies of all nine machines. The average performance per data set
defines the mid-line. Each dashed line marks 1% of deviation. The colored bars
denote (relative) classification accuracy (higher is better). The error bars indicate
the standard deviation across multiple training/test splits. The best result is
indicated with a star (∗). Statistically insignificant differences to the best solution
(U-test, α = 0.01) are marked with a plus sign (+). Colors represent models as
follows: green (OVA), cyan (MMR), blue (WW), pink (CS), red (LLW), orange
(AMO), yellow (ATS), light gray (ATM), and dark gray (RM).

Fan et al. (2008) and has been recently extended by Glasmachers and Doğan (2013, 2014).
All linear SVM results reported in this section were obtained with an extension of the latter
technique to the multi-class case.

For the linear kernel case we have extended the testbed beyond the twelve problems to
data sets with different characteristics, which are typically used to evaluate linear multi-
class models, see supplementary material (Section E). These data sets are available from
the libsvm data collection.6 We have included problems with rather low-dimenional as well
as extremely high-dimensional input spaces. The test errors of the nine linear multi-class
SVMs are summarized in Table 5.

6. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 4: Average training times (logarithmic scale) of all nine machines, in seconds (lower
is better). Colors represent models as follows: green (OVA), cyan (MMR), blue
(WW), pink (CS), red (LLW), orange (AMO), yellow (ATS), light gray (ATM),
and dark gray (RM). The (geometric) average training time across all 12 problems
is found on the right.

4.7 Discussion

Our results allow to compare the nine different machines from different angles. We generally
view accuracy as a primary goal and training speed and prediction speed (related to sparsity
of the solution) as secondary criteria.

The accuracy results of the non-linear SVMs presented in Table 4 and Figure 3 were
mixed. The prediction performances of most machines were rather close to each other. This
is in accordance with the findings of Hsu and Lin (2002) and Rifkin and Klautau (2004).
Larger deviations could be observed on the problems Abalone and Vehicle. The maximum
combination operator absolute margin machines AMO and ATM fell behind on the Abalone
problem, while the self-margin MMR machine did not give satisfactory performance on the
Vehicle problem. Overall the WW and RM machines performed best, for example, when
counting the number of data sets where the solution was either best or not significantly worse
than the best result. The MMR machines showed the weakest performance. However, it
appears than most machines give rather competitive results; OVA, CS, LLW and ATS are
hard to put in a clear order, and they are only slightly worse than WW and RM (if at all).

This picture changes completely for linear SVMs. The results presented in Table 5 reveal
drastic differences between machines, as already found by Hsu and Lin (2002). There were
only two problems where all machines achieved roughly comparable performance, namely
News-20 and Sector. These problems come with extremely high-dimensional feature spaces
and are thus similar in character to the non-linear SVM problems. Here the classification
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Figure 5: Average fraction of support vectors for all nine machines (lower is better). A bar
hitting the top indicates that all points are support vectors, while a bar vanishing
at the bottom indicates that no points were used as support vectors. Colors
represent models as follows: green (OVA), cyan (MMR), blue (WW), pink (CS),
red (LLW), orange (AMO), yellow (ATS), light gray (ATM), and dark gray (RM).
The average fraction of support vectors across all 12 problems is found on the
right.

calibrated LLW and RM approaches and the other absolute margin machines worked about
as well as in the non-linear case. Most other problems have rather low-dimensional feature
spaces. Thus, the setting comes conceptually closer to the synthetic circle problems pre-
sented in Section 3. This explains the complete breakdown of some methods on some of the
problems, for example, all absolute margin machines on the letter data. In accordance with
the findings in Section 3, WW and CS outperformed the classification calibrated LLW, ATS
and RM machines. The linear SVM results also clearly display the problems of the OVA
and MMR approaches. While OVA works well at least in some cases, we have to dismiss
the MMR machine completely for its consistently inferior performance. The WW and CS
machines clearly performed best, again with a slight but insignificant edge for WW.

The secondary goals of training and test times give a yet completely different picture.
The rightmost column in Figure 4 summarizes the training times. The measurements are in
accordance with the asymptotical results in Table 2. Not surprisingly, the MMR machine
was clearly fastest to train. It is followed by OVA, which is, however, closely followed by
WW and CS. It is clear from the asymptotical considerations that the differences between
OVA and the all-in-one machines will get more pronounced with increasing number of
classes. The WW machine was not slower to train than the popular CS approach, actually
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OVA MMR WW CS LLW AMO ATS ATM RM

Covertype 50.59 23.55 70.55 45.73 21.87 47.31 18.44 51.19 69.61
± 5.49 ± 0.19 ± 0.09 ± 5.88 ± 23.19 ± 6.79 ± 17.71 ± 7.52 ± 0.40

Letter 63.69 21.66 69.39 76.59 12.78 6.54 17.44 6.78 21.39
± 0.48 ± 1.21 ± 0.63 ± 0.61 ± 0.40 ± 1.88 ± 0.79 ± 2.04 ± 1.84

News-20 85.36 78.10 85.13 85.17 86.71 85.65 86.69 85.61 86.61
± 0.32 ± 0.53 ± 0.15 ± 0.32 ± 0.39 ± 0.32 ± 0.37 ± 0.35 ± 0.37

Sector 94.53 91.97 94.10 94.80 94.82 95.09 94.82 95.09 94.74
± 0.22 ± 0.30 ± 0.33 ± 0.29 ± 0.28 ± 0.30 ± 0.28 ± 0.30 ± 0.37

Usps 94.50 87.84 94.46 95.26 78.18 40.57 80.60 40.27 88.08
± 0.39 ± 0.75 ± 0.57 ± 0.46 ± 5.27 ± 2.15 ± 0.65 ± 3.27 ± 0.69

Abalone 18.95 15.80 21.70 14.12 16.56 8.36 18.33 8.78 18.86
± 0.86 ± 0.90 ± 1.30 ± 1.64 ± 1.17 ± 2.34 ± 0.76 ± 2.31 ± 1.38

Car 71.69 70.47 73.76 73.15 65.34 70.43 72.14 70.49 72.52
± 1.73 ± 1.86 ± 1.68 ± 2.02 ± 12.17 ± 1.83 ± 1.71 ± 1.94 ± 1.58

Glass 56.98 43.87 61.93 61.93 46.78 28.43 49.51 32.13 51.50
± 6.44 ± 7.74 ± 6.63 ± 6.04 ± 6.77 ± 11.98 ± 5.78 ± 12.04 ± 6.77

Iris 91.11 65.34 95.88 91.76 74.65 67.32 82.05 67.32 85.14
± 4.85 ± 6.07 ± 1.71 ± 7.18 ± 7.52 ± 6.66 ± 5.94 ± 6.66 ± 4.96

Opt. Digits 95.98 89.08 96.03 96.42 73.56 18.45 81.32 19.11 92.10
± 0.60 ± 1.08 ± 0.37 ± 0.37 ± 2.11 ± 4.77 ± 1.62 ± 4.41 ± 0.66

Page Blocks 70.44 48.99 91.14 94.20 93.22 93.87 93.81 93.74 93.58
± 21.20 ± 24.39 ± 5.41 ± 2.34 ± 1.02 ± 1.58 ± 1.44 ± 1.71 ± 0.75

Sat 75.04 31.04 77.40 66.87 51.47 47.59 61.21 45.49 63.47
± 0.96 ± 0.95 ± 3.00 ± 9.90 ± 9.01 ± 6.89 ± 0.95 ± 6.97 ± 1.29

Segment 92.54 50.90 92.43 92.43 74.50 67.58 76.30 67.58 81.94
± 0.75 ± 2.52 ± 2.13 ± 2.13 ± 1.32 ± 12.21 ± 4.26 ± 12.21 ± 2.48

Soy Bean 90.65 61.41 87.75 83.49 77.95 38.87 66.74 39.86 79.20
± 3.03 ± 7.80 ± 3.16 ± 5.80 ± 9.97 ± 6.42 ± 4.52 ± 5.84 ± 4.23

Vehicle 52.02 52.33 72.75 72.75 63.21 63.21 63.21 63.21 76.42
± 11.98 ± 2.98 ± 4.13 ± 4.13 ± 10.63 ± 10.63 ± 10.63 ± 10.63 ± 2.38

Red wine 53.38 23.63 58.37 55.61 57.26 36.58 56.29 36.27 57.81
± 2.63 ± 5.68 ± 1.69 ± 2.47 ± 2.02 ± 10.95 ± 1.64 ± 9.67 ± 1.68

White wine 50.73 19.20 51.78 50.85 46.44 30.03 51.16 27.06 51.41
± 1.27 ± 9.68 ± 1.24 ± 1.12 ± 1.74 ± 8.21 ± 0.98 ± 7.21 ± 1.27

Table 5: Classification accuracies of the linear machines in percent of correctly classified
test examples. The table lists mean values and standard deviations. In each row,
bold numbers indicate that the result is not significantly worse than the best one
(paired U-test, α = 0.01).

it was slightly faster on average in our experiments.7 Finally, the various absolute margin
machines took at least an order of magnitude longer to train than WW and CS.

7. Here we only present our results for training without bias parameters. However, this statement also
holds true for training with bias parameters.
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At least for expensive kernel functions prediction speed is governed by the sparsity of
the resulting model. Figure 5 reveals that sparsity is primarily a property of the problem,
while the chosen loss function has only a minor impact. Overall, multi-class models are
expected to be less sparse than, for instance, binary SVMs since a training point can be
dropped only if it does not appear in any of the d weight vectors. We observed significant
sparsity only for the page blocks data. In comparison relative margin machines gave slightly
more sparse models than absolute margin machines. The MMR self-margin machine did
not stand out in this category. However, only few problems had sparse solutions at all, and
inter-problem spread was much higher than differences between methods. Hence we do not
see good reasons to reject any machine based on these data.

In summary, the WW and CS machines showed robust performance across all disciplines,
with WW slightly ahead of CS. The MMR machine performed worst in terms of accuracy,
but was fastest to train. In most cases there are no good reasons for absolute margin
machines.

The results have an interesting interpretation in the unified view presented in Sec-
tion 2. Differences between self, relative and absolute machine machines were much more
pronounced than differences between aggregation operators. Relying only on the single
self-margin component (MMR) is computationally attractive but results in rather poor
prediction accuracy. Relative margins give strong machines. Consistent absolute margin
machines with sum-aggregation are a viable alternative in sufficiently high-dimensional fea-
ture spaces, although they are usually costly to train.

It is questionable whether a connection between asymptotic consistency and practical
performance exists. This is partially observable in sum-aggregation absolute margin ma-
chines performing well only in high-dimensional feature spaces. However, this condition
does not seem to be necessary, since the other absolute margin machines show the same
trend and also the inconsistent CS machine performs well, except for the noisy circle prob-
lem (see Section 3.3). Overall, prediction performance seems to be more closely related to
the applied margin concept than to uniform consistency.

Based on our empirical findings, we can recommend relative margin machines for almost
all applications. We prefer the WW machine over the CS approach for its slightly more
stable performance and its theoretical properties (consistency of WW with Gaussian kernel,
see Theorem 8, and breakdown of CS on the noisy circle problem).

5. Conclusion

This article provides a novel unified view on multi-class SVMs, showing that the various
approaches are not as different as they seem. All popular algorithms reduce to the standard
SVM for binary classification problems, however, they differ along several dimensions when
applied to more than two classes. The machines can be formulated based on a vector-
valued decision function with as many components as classes. We have highlighted margin
concepts, named relative and absolute margins (including the self-margin component), that
describe whether the components of the decision function are optimized relative to each
other or not. Independent of the margin concept, the machines can employ either sum- or
maximum-based aggregation operators for combining margin violations into a scalar loss. A
further distinction can be made based on whether a machine fulfills (or even enforces) that
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the components of the decision function sum to zero or not. All machines can be formulated
with and without bias term (i.e., for linear and affine hypotheses in feature space), and we
derived a unified formulation of the corresponding dual optimization problems in terms of
margin concepts and aggregation operators.

Our unifying view pointed at three combinations of these features that had not been
investigated. These missing machines were derived and evaluated. The new classifiers,
named AMO-, ATS- and ATM-SVM, all use the absolute margin concept but consider
different aggregates of the margin violations. The ATS machine, which can be viewed as
one-vs-all classification with imposed sum-to-zero constraint and is closely related to RM
SVMs, turns out to be Fisher consistent.

The LLW, RM, and ATS SVMs rely on a classification calibrated loss function. However,
we have shown that a non-classification calibrated training loss function does not need to be
a principal problem for an SVM, since the overall regularized empirical risk minimizer can
still be consistent. This is the case for the maximum margin regression (MMR), one-vs-all
(OVA), and Weston & Watkins (WW) machines. One may argue that for large enough
amounts of data one should prefer consistent models over inconsistent large margins. It
is provably impossible to “repair” the inconsistency of the Crammer & Singer (CS) multi-
class SVM, AMO and ATM losses by means of SVM-style regularization.8 The MMR and
WW machines, and even the OVA scheme (lacking the sum-to-zero property), turn out
to be consistent classifiers when regularized properly. We argue that these results are best
understood in the context of our unified view. All inconsistent machines apply the maximum
operator for aggregation, while none of the consistent machines relies on this operator. Thus,
our results hint at a fundamental difference between the sum and maximum aggregation
operators.

Our unified learning problems lend themselves to efficient optimization algorithms.
These allowed us to perform a thorough empirical comparison of the various multi-class
SVMs and to draw conclusions about training times and generalization performance. We
considered the LLW and RM machines in our experiments, which are typically omitted in
comparison studies for training time reasons (e.g., Ding and Dubchak, 2001; Rifkin and
Klautau, 2004; Statnikov et al., 2005), and we could perform proper model selection. We
compared nine different multi-class SVM with Gaussian and linear kernel on a large col-
lection of benchmark problems. The unified view enables a meaningful interpretation of
the results by relating them to margin concepts and aggregation operators. We find that
relative margin machines are superior for the linear kernel, and that sum-based aggrega-
tion generally outperforms the maximum approach. Our empirical and theoretical results
support the following recommendations:

The standard all-in-one multi-class WW SVM should be used as the default since it
gives robust performance at moderate training times. It can be trained at least as fast as
the popular CS SVM while giving at least as good generalization results and having nicer
theoretical properties (which can matter in practice as shown on artificial test problems
and when using a linear kernel). The simplistic OVA method can be a viable alternative;
it delivers slightly worse results on average while being a little faster to train. If training
time is a major concern then the MMR machine may seem like the best option. However,

8. In practice, the performance of the CS machine is very similar to the WW machine. Thus, more often
than not this effect does not seem to be dominant.
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its performance can be so poor that even sub-sampling the data in combination with WW
or OVA may be a better approach.

With universal kernels and in general in extremely high-dimensional feature spaces the
LLW and RM machines with their classification calibrated losses are usually on par with
WW and CS and thus promising candidates. However, training may be infeasible for large
data sets, for its more than ten times longer training times compared to WW and CS.
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